
DB2 Universal Database for OS/390 and z/OS

SQL Reference
Version 7

SC26-9944-01

���

DB2 Universal Database for OS/390 and z/OS

SQL Reference
Version 7

SC26-9944-01

���

Second Edition, Softcopy Only (August 2001)

This edition applies to Version 7 of IBM DATABASE 2 Universal Database Server for OS/390 and z/OS (DB2 for
OS/390 and z/OS), 5675-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure
you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 for OS/390 and z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/os390/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright International Business Machines Corporation 1982, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note
Before using this information and the product it supports, be sure to read the
general information under “Appendix H. Notices” on page 1117.

Contents

About this book . xv
Who should read this book . xv
Conventions and terminology used in this book xv

Product terminology and citations xv
Conventions for describing mixed data values xvi

SQL standards . xvi
How to read the syntax diagrams xvii
How to send your comments xviii

Summary of changes to this book. xix

Chapter 1. DB2 concepts . 1
Structured query language . 2

Static SQL . 2
Dynamic SQL . 2
Deferred embedded SQL . 2
Interactive SQL . 3
DB2 Open Database Connectivity (ODBC) 3
DB2 access for Java (JDBC and SQLJ) 3

Schemas . 3
Tables . 4
Indexes . 5
Keys . 5

Unique keys . 5
Primary keys . 5
Parent keys . 6
Foreign keys . 6

Constraints . 6
Unique constraints . 6
Referential constaints . 7
Check constraints . 9

Triggers . 9
Storage structures. 10
Storage groups . 10
Databases . 10
Catalog. 10
Views . 10
Application processes, concurrency, and recovery 11

Locking, commit, and rollback 11
Unit of work . 12
Unit of recovery . 13
Rolling back work . 13

Packages and application plans. 14
Distributed data. 14

DRDA access . 15
DB2 private protocol access 16
Connection management for DRDA access and DB2 private protocol 17

Character conversion . 20
Character sets and code pages 22
System CCSIDs . 23
Expanding conversions . 24
Contracting conversions . 25
Other considerations for using UTF-8 and UTF-16 25

© Copyright IBM Corp. 1982, 2001 iii

||

||

Chapter 2. Language elements 27
Characters . 31
Tokens . 31
Identifiers . 32

SQL identifiers . 32
Location identifiers . 34
Host identifiers . 34

Naming conventions . 34
Qualification of unqualified object names 39

Schemas and the SQL path . 40
Aliases and synonyms . 41
Authorization IDs and authorization-names. 42

Authorization IDs and schema names 43
Authorization IDs and statement preparation 43
Authorization IDs and dynamic SQL 43
Authorization IDs and remote execution 46

Data types . 48
Character strings . 49
Graphic strings . 52
Binary strings . 53
Large objects (LOBs) . 53
Restrictions using long strings 54
Numbers . 55
Datetime values . 56
Row ID values . 60
Distinct types . 60

Promotion of data types . 61
Casting between data types . 62
Assignment and comparison . 64

Numeric assignments . 66
String assignments . 68
Datetime assignments . 70
Row ID assignments . 71
Distinct type assignments . 71
Numeric comparisons . 72
String comparisons . 73
Datetime comparisons . 75
Row ID comparisons . 75
Distinct type comparisons . 75

Rules for result data types. 77
String operands . 77
Binary string operands . 78
Numeric operands. 78
Datetime operands . 79
Row ID operands . 79
Distinct type operands . 79
Nullable attribute of a result 79

Constants . 79
Integer constants . 79
Floating-point constants . 80
Decimal constants. 80
Character string constants. 80
Datetime constants . 81
Graphic string constants . 81

Special registers . 82
General rules for special registers 83

iv SQL Reference

||

CURRENT APPLICATION ENCODING SCHEME 85
CURRENT DATE . 86
CURRENT DEGREE. 86
CURRENT LOCALE LC_CTYPE 86
CURRENT OPTIMIZATION HINT 87
CURRENT PACKAGESET 87
CURRENT PATH . 88
CURRENT PRECISION . 88
CURRENT RULES . 89
CURRENT SERVER . 90
CURRENT SQLID. 90
CURRENT TIME . 90
CURRENT TIMESTAMP . 91
CURRENT TIMEZONE . 91
USER . 91
Inheriting special registers in a user-defined function or a stored procedure 92

Column names . 94
Qualified column names . 95
Correlation names. 95
Column name qualifiers to avoid ambiguity 96
Column name qualifiers in correlated references 97
Resolution of column name qualifiers and column names 98

References to variables. 99
References to host variables . 99

Host variables in dynamic SQL 101
References to LOB host variables 101
References to LOB locator variables 102
References to stored procedure result sets 102
References to result set locator variables. 102

Host structures in PL/I, C, and COBOL 103
Functions . 104

Types of functions . 104
Function resolution . 106
Function invocation . 109

Expressions . 110
Without operators . 111
With the concatenation operator 111
With arithmetic operators . 113
Arithmetic with two integer operands 114
Arithmetic with an integer and a decimal operand. 114
Arithmetic with two decimal operands 114
Arithmetic with floating-point operands 116
Datetime operands and durations. 117
Datetime arithmetic in SQL 118
Precedence of operations 122
CASE expressions . 123
CAST specification . 125

Predicates . 129
Basic predicate . 129
Quantified predicate . 131
BETWEEN predicate . 133
EXISTS predicate . 133
IN predicate . 135
LIKE predicate . 136
NULL predicate . 143

Search conditions . 144

Contents v

||

||

||

||

Options affecting SQL . 145
Precompiler options for dynamic statements. 147
Decimal point representation 147
Apostrophes and quotation marks in string delimiters 148
Katakana characters for EBCDIC. 149
Mixed data in character strings 149
Formatting of datetime strings 150
SQL standard language . 150
Positioned updates of columns 152

Chapter 3. Built-in functions 153
Column functions . 158

AVG . 159
COUNT . 160
COUNT_BIG . 161
MAX . 163
MIN . 164
STDDEV or STDDEV_POP 165
STDDEV_SAMP . 166
SUM . 167
VARIANCE, VAR, or VAR_POP 168
VARIANCE_SAMP or VAR_SAMP 169

Scalar functions . 170
ABS or ABSVAL . 171
ACOS. 172
ADD_MONTHS . 173
ASIN . 175
ATAN . 176
ATANH . 177
ATAN2 . 178
BLOB . 179
CCSID_ENCODING . 180
CEIL or CEILING . 181
CHAR. 182
CLOB . 188
COALESCE . 189
CONCAT . 191
COS . 192
COSH. 193
DATE . 194
DAY . 195
DAYOFMONTH . 196
DAYOFWEEK . 197
DAYOFWEEK_ISO . 198
DAYOFYEAR . 199
DAYS . 200
DBCLOB . 201
DECIMAL or DEC . 202
DEGREES . 204
DIGITS . 205
DOUBLE or DOUBLE_PRECISION 206
EXP . 207
FLOAT . 208
FLOOR . 209
GRAPHIC . 210
HEX . 213

vi SQL Reference

||

||

||

||

||

HOUR . 214
IDENTITY_VAL_LOCAL . 215
IFNULL . 219
INSERT . 220
INTEGER or INT. 223
JULIAN_DAY . 224
LAST_DAY . 225
LCASE or LOWER . 226
LEFT . 227
LENGTH. 229
LN . 230
LOCATE . 231
LOG10 . 233
LTRIM . 234
MAX . 235
MICROSECOND. 236
MIDNIGHT_SECONDS . 237
MIN . 238
MINUTE . 239
MOD . 240
MONTH . 242
MULTIPLY_ALT . 243
NEXT_DAY. 244
NULLIF . 245
POSSTR . 246
POWER . 248
QUARTER . 249
RADIANS . 250
RAISE_ERROR . 251
RAND. 252
REAL . 253
REPEAT . 254
REPLACE . 256
RIGHT . 258
ROUND . 260
ROUND_TIMESTAMP. 262
ROWID . 264
RTRIM . 265
SECOND . 266
SIGN . 267
SIN. 268
SINH . 269
SMALLINT . 270
SPACE . 271
SQRT . 272
STRIP . 273
SUBSTR. 275
TAN . 277
TANH . 278
TIME . 279
TIMESTAMP . 280
TIMESTAMP_FORMAT . 281
TRANSLATE . 282
TRUNCATE or TRUNC . 285
TRUNC_TIMESTAMP . 286
UCASE or UPPER . 287

Contents vii

||

||

||

||

||

||
||

||

||

VARCHAR . 288
VARCHAR_FORMAT . 292
VARGRAPHIC . 293
WEEK . 296
WEEK_ISO. 297
YEAR . 298

Chapter 4. Queries . 299
Authorization . 300
subselect . 301

select-clause . 301
from-clause. 304
where-clause . 310
group-by-clause . 311
having-clause . 311
Examples of subselects . 312

fullselect . 317
Character conversion in unions and concatenations 318
Selecting the result CCSID 318
Examples of fullselects . 319

select-statement . 321
order-by-clause . 322
read-only-clause . 323
update-clause . 324
optimize-for-clause . 324
with-clause . 325
queryno-clause . 326
fetch-first-clause . 326
Examples of select statements 327

Chapter 5. Statements . 329
How SQL statements are invoked 332

Embedding a statement in an application program 333
Dynamic preparation and execution 334
Static invocation of a SELECT statement 335
Dynamic invocation of a SELECT statement 335
Interactive invocation . 336

ALLOCATE CURSOR . 338
ALTER DATABASE . 340
ALTER FUNCTION (external scalar) 343
ALTER FUNCTION (SQL scalar) 359
ALTER INDEX . 366
ALTER PROCEDURE (external) 378
ALTER PROCEDURE (SQL) 389
ALTER STOGROUP . 395
ALTER TABLE . 398
ALTER TABLESPACE . 419
ASSOCIATE LOCATORS . 430
BEGIN DECLARE SECTION 433
CALL . 434
CLOSE . 442
COMMENT. 444
COMMIT. 451
CONNECT . 453
CONNECT (Type 1) . 456
CONNECT (Type 2) . 462

viii SQL Reference

||

||

||

CREATE ALIAS . 466
CREATE AUXILIARY TABLE 468
CREATE DATABASE . 471
CREATE DISTINCT TYPE . 474
CREATE FUNCTION . 481
CREATE FUNCTION (external scalar) 482
CREATE FUNCTION (external table) 504
CREATE FUNCTION (sourced) 521
CREATE FUNCTION (SQL scalar) 535
CREATE GLOBAL TEMPORARY TABLE 545
CREATE INDEX . 550
CREATE PROCEDURE (external) 566
CREATE PROCEDURE (SQL) 584
CREATE STOGROUP. 596
CREATE SYNONYM . 599
CREATE TABLE . 601
CREATE TABLESPACE . 629
CREATE TRIGGER. 647
CREATE VIEW . 658
DECLARE CURSOR . 665
DECLARE GLOBAL TEMPORARY TABLE 672
DECLARE STATEMENT . 682
DECLARE TABLE . 683
DECLARE VARIABLE . 685
DELETE . 688
DESCRIBE (prepared statement or table) 695
DESCRIBE CURSOR . 702
DESCRIBE INPUT . 704
DESCRIBE PROCEDURE . 706
DROP. 709
END DECLARE SECTION . 721
EXECUTE . 722
EXECUTE IMMEDIATE . 725
EXPLAIN . 727
FETCH . 739
FREE LOCATOR . 748
GRANT . 749
GRANT (collection privileges) 752
GRANT (database privileges) 753
GRANT (distinct type or JAR privileges) 755
GRANT (function or procedure privileges) 757
GRANT (package privileges) 762
GRANT (plan privileges) . 764
GRANT (schema privileges) 765
GRANT (system privileges) . 767
GRANT (table or view privileges) 770
GRANT (use privileges) . 773
HOLD LOCATOR . 775
INCLUDE . 776
INSERT . 778
LABEL ON . 784
LOCK TABLE . 786
OPEN. 788
PREPARE . 792
RELEASE (connection) . 805
RELEASE SAVEPOINT . 808

Contents ix

||

||

RENAME . 809
REVOKE. 811
REVOKE (collection privileges) 816
REVOKE (database privileges) 817
REVOKE (distinct type or JAR privileges). 819
REVOKE (function or procedure privileges) 821
REVOKE (package privileges) 826
REVOKE (plan privileges) . 828
REVOKE (schema privileges) 829
REVOKE (system privileges) 831
REVOKE (table or view privileges) 834
REVOKE (use privileges) . 837
ROLLBACK . 839
SAVEPOINT . 842
SELECT . 844
SELECT INTO . 845
SET CONNECTION . 848
SET CURRENT APPLICATION ENCODING SCHEME 850
SET CURRENT DEGREE . 851
SET CURRENT LOCALE LC_CTYPE 853
SET CURRENT OPTIMIZATION HINT 855
SET CURRENT PACKAGESET 856
SET CURRENT PRECISION 858
SET CURRENT RULES . 859
SET CURRENT SQLID . 860
SET host-variable assignment 862
SET PATH . 865
SET transition-variable assignment 868
SIGNAL SQLSTATE . 871
UPDATE. 872
VALUES . 882
VALUES INTO . 883
WHENEVER . 885

Chapter 6. SQL procedure statements 887
SQL-procedure-statement . 888
assignment-statement . 889
CALL statement . 891
CASE statement . 893
compound-statement . 895
GET DIAGNOSTICS statement 901
GOTO statement. 902
IF statement . 904
LEAVE statement . 905
LOOP statement . 906
REPEAT statement . 907
WHILE statement . 908

Appendix A. Limits in DB2 for OS/390 and z/OS 909

Appendix B. Characteristics of SQL statements in DB2 for OS/390 and
z/OS . 913

Actions allowed on SQL statements 913
SQL statements allowed in external functions and stored procedures 916
SQL statements allowed in SQL procedures. 918

x SQL Reference

||

||

||

Appendix C. SQLCA and SQLDA 923
SQL communication area (SQLCA) 923

Description of fields. 923
The included SQLCA . 926
The REXX SQLCA . 929

SQL descriptor area (SQLDA) 930
Field descriptions . 932
Unrecognized and unsupported SQLTYPES. 941
The included SQLDA . 942
Identifying an SQLDA in C or C⁺⁺ 947
The REXX SQLDA . 947

Appendix D. DB2 catalog tables 949
Table spaces and indexes . 950

SQL statements allowed on the catalog 955
Reorganizing the catalog . 957

New and changed catalog tables 958
SYSIBM.IPNAMES table . 960
SYSIBM.LOCATIONS table . 961
SYSIBM.LULIST table . 962
SYSIBM.LUMODES table . 963
SYSIBM.LUNAMES table . 964
SYSIBM.MODESELECT table 966
SYSIBM.SYSAUXRELS table 967
SYSIBM.SYSCHECKDEP table 968
SYSIBM.SYSCHECKS table 969
SYSIBM.SYSCHECKS2 table 970
SYSIBM.SYSCOLAUTH table 971
SYSIBM.SYSCOLDIST table 972
SYSIBM.SYSCOLDIST_HIST table 973
SYSIBM.SYSCOLDISTSTATS table 974
SYSIBM.SYSCOLSTATS table. 975
SYSIBM.SYSCOLUMNS table 976
SYSIBM.SYSCOLUMNS_HIST table 981
SYSIBM.SYSCONSTDEP table 983
SYSIBM.SYSCOPY table . 984
SYSIBM.SYSDATABASE table 988
SYSIBM.SYSDATATYPES table 990
SYSIBM.SYSDBAUTH table 991
SYSIBM.SYSDBRM table . 993
SYSIBM.SYSDUMMY1 table 995
SYSIBM.SYSFIELDS table . 996
SYSIBM.SYSFOREIGNKEYS table 997
SYSIBM.SYSINDEXES table 998
SYSIBM.SYSINDEXES_HIST table 1001
SYSIBM.SYSINDEXPART table 1002
SYSIBM.SYSINDEXPART_HIST table 1005
SYSIBM.SYSINDEXSTATS table 1006
SYSIBM.SYSINDEXSTATS_HIST table 1007
SYSIBM.SYSJARCLASS_SOURCE table 1008
SYSIBM.SYSJARCONTENTS table 1009
SYSIBM.SYSJARDATA table 1010
SYSIBM.SYSJAROBJECTS table 1011
SYSIBM.SYSJAVAOPTS table 1012
SYSIBM.SYSKEYCOLUSE table 1013
SYSIBM.SYSKEYS table . 1014

Contents xi

||

||

||

||

||

||

||

||
||
||
||
||
||
||

SYSIBM.SYSLOBSTATS table 1015
SYSIBM.SYSLOBSTATS_HIST table 1016
SYSIBM.SYSPACKAGE table 1017
SYSIBM.SYSPACKAUTH table 1022
SYSIBM.SYSPACKDEP table 1023
SYSIBM.SYSPACKLIST table 1024
SYSIBM.SYSPACKSTMT table 1025
SYSIBM.SYSPARMS table 1028
SYSIBM.SYSPKSYSTEM table 1030
SYSIBM.SYSPLAN table . 1031
SYSIBM.SYSPLANAUTH table 1035
SYSIBM.SYSPLANDEP table 1036
SYSIBM.SYSPLSYSTEM table 1037
SYSIBM.SYSPROCEDURES table 1038
SYSIBM.SYSRELS table . 1041
SYSIBM.SYSRESAUTH table 1042
SYSIBM.SYSROUTINEAUTH table 1043
SYSIBM.SYSROUTINES table 1044
SYSIBM.SYSROUTINES_OPTS table 1050
SYSIBM.SYSROUTINES_SRC table 1051
SYSIBM.SYSSCHEMAAUTH table 1052
SYSIBM.SYSSEQUENCES table 1053
SYSIBM.SYSSEQUENCESDEP table 1054
SYSIBM.SYSSTMT table . 1055
SYSIBM.SYSSTOGROUP table. 1058
SYSIBM.SYSSTRINGS table 1059
SYSIBM.SYSSYNONYMS table. 1061
SYSIBM.SYSTABAUTH table 1062
SYSIBM.SYSTABCONST table 1064
SYSIBM.SYSTABLEPART table 1065
SYSIBM.SYSTABLEPART_HIST table 1068
SYSIBM.SYSTABLES table 1070
SYSIBM.SYSTABLES_HIST table 1074
SYSIBM.SYSTABLESPACE table 1075
SYSIBM.SYSTABSTATS table 1078
SYSIBM.SYSTABSTATS_HIST table 1079
SYSIBM.SYSTRIGGERS table 1080
SYSIBM.SYSUSERAUTH table 1081
SYSIBM.SYSVIEWDEP table 1084
SYSIBM.SYSVIEWS table . 1085
SYSIBM.SYSVOLUMES table 1086
SYSIBM.USERNAMES table 1087

Appendix E. Using the catalog in database design 1089
Retrieving catalog information about DB2 storage groups 1089
Retrieving catalog information about a table 1089
Retrieving catalog information about aliases 1089
Retrieving catalog information about columns. 1090
Retrieving catalog information about indexes 1091
Retrieving catalog information about views 1091
Retrieving catalog information about authorizations. 1091
Retrieving catalog information about parent keys 1092
Retrieving catalog information about foreign keys 1092
Retrieving catalog information about check pending 1093
Retrieving catalog information about table check constraints 1093
Retrieving catalog information about LOBs 1093

xii SQL Reference

||

||
||

||

||

||

||

Retrieving catalog information about user-defined functions and stored
procedures . 1094

Retrieving catalog information about triggers 1094
Retrieving catalog information about distinct types 1094
Adding and retrieving comments 1095
Verifying the accuracy of the database definition 1095

Appendix F. SQL reserved words 1097

Appendix G. Sample user-defined functions 1099
ALTDATE . 1100
ALTTIME . 1103
CURRENCY . 1105
DAYNAME . 1107
MONTHNAME . 1108
TABLE_LOCATION . 1109
TABLE_NAME . 1111
TABLE_SCHEMA . 1113
WEATHER . 1115

Appendix H. Notices . 1117
Programming interface information 1118
Trademarks . 1119

Glossary . 1121

Bibliography . 1141

Index .X-1

Contents xiii

xiv SQL Reference

About this book

This book is a reference for Structured Query Language (SQL) for DB2 Universal
Database™ Server for OS/390® (DB2® for OS/390) and z/OS.

Unless otherwise stated, references to SQL in this book imply SQL for DB2 for
OS/390 and z/OS, and all objects described in this book are objects of DB2 for
OS/390 and z/OS. The syntax and semantics of most SQL statements are
essentially the same in all IBM® relational database products, and the language
elements common to the products provide a base for the definition of IBM SQL.
Consult IBM SQL Reference if you intend to develop applications that adhere to
IBM SQL.

Important
In this version of DB2® for OS/390® and z/OS, some utility functions are
available as optional products. You must separately order and purchase a
license to such utilities, and discussion of those utility functions in this
publication is not intended to otherwise imply that you have a license to them.

Who should read this book
This book is intended for end users, application programmers, system and database
administrators, and for persons involved in error detection and diagnosis.

This book is a reference rather than a tutorial. It assumes that you are already
familiar with Structured Query Language (SQL) programming concepts.

When you first use this book, consider reading Chapters 1 and 2 sequentially.
These chapters describe the basic concepts of relational databases and SQL, the
basic syntax of SQL, and the language elements that are common to many SQL
statements. The rest of the chapters and appendixes are designed for the quick
location of answers to specific SQL questions. They provide you with query forms,
SQL statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog
tables, and SQL reserved words.

Conventions and terminology used in this book
This section explains conventions and terminology used in this book.

Product terminology and citations
In this book, DB2 Universal Database™ Server for OS/390 and z/OS is referred to
as "DB2 for OS/390 and z/OS." In cases where the context makes the meaning
clear, DB2 for OS/390 and z/OS is referred to as "DB2." When this book refers to
other books in this library, a short title is used. (For example, "See DB2 SQL
Reference" is a citation to IBM® DATABASE 2™ Universal Database Server for
OS/390 and z/OS SQL Reference.)

When referring to a DB2 product other than DB2 for OS/390 and z/OS, this book
uses the product’s full name to avoid ambiguity.

The following terms are used as indicated:

© Copyright IBM Corp. 1982, 2001 xv

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C and C language
Represent the C programming language.

CICS® Represents CICS/ESA® and CICS Transaction Server for OS/390.

IMS™ Represents IMS or IMS/ESA®.

MVS Represents the MVS element of OS/390.

OS/390
Represents the OS/390 or z/OS operating system.

RACF®

Represents the functions that are provided by the RACF component of the
SecureWay® Security Server for OS/390 or by the RACF component of the
OS/390 Security Server.

Conventions for describing mixed data values
At sites using a double-byte character set (DBCS), character strings can include a
mixture of single-byte and double-byte characters. When mixed data values are
shown in the examples, the following conventions apply:

SQL standards
The SQL99 ANSI/ISO standard is a replacement for SQL92. SQL99 includes many
new enhancements, such as object-relational capabilities, triggers, and many built-in
functions to aid in data analysis. DB2 family functionality that appears in the SQL99
standard includes:

v SQL Extenders, comprised of text, image, and spatial extenders

v Extensions to SQL for online analytical processing and business intelligence

v Inclusion of federated database support in DB2 Universal Database for UNIX®,
Windows®, OS/2®

v Object-relational extensions (user-defined types, user-defined functions, method,
and so on)

DB2 for OS/390 and z/OS conforms to the following standards for SQL:

v FIPS (Federal Information Processing Standards) publication 127-2, Database
Language SQL

v ANSI (American National Standards Institute) X3.135-1992, Database Language
SQL, Entry Level

v ISO (International Standards Organization) 9075-1992, Database Language SQL,
Entry Level

v IBM SQL Standards, Version 2

The ANSI and ISO documents are collectively referred to as SQL92. DB2 also
supports a subset of the SQL99 standard, which includes a large portion of the core
standard items.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book:

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

About this book xvii

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any comments
that you have about this book or other DB2 for OS/390 and z/OS documentation.
You can use any of the following methods to provide comments:

v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name
of the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.

v Complete the readers’ comment form at the back of the book and return it by
mail, by fax (800-426-7773 for the United States and Canada), or by giving it to
an IBM representative.

xviii SQL Reference

Summary of changes to this book

The major changes to this book are:

Chapter 1. DB2 concepts includes new descriptions of constraints and character
conversion, including Unicode information.

Chapter 2. Language elements contains numerous changes to descriptions of
data types, expressions, and predicates. The chapter also contains the descriptions
of a new special register (CURRENT APPLICATION ENCODING SCHEME).

Chapter 3. Built-in functions includes descriptions of over 60 built-in functions.
(See Table 28 on page 153 for a list and brief description of all the functions.)

Chapter 4. Queries contains changes for fullselect and the select statement.

Chapter 5. Statements includes many new statements, as well as changed
statements. The new statements are:

“ALTER FUNCTION (SQL scalar)” on page 359
“CREATE FUNCTION (SQL scalar)” on page 535
“DECLARE VARIABLE” on page 685
“SET CURRENT APPLICATION ENCODING SCHEME” on page 850
“SET host-variable assignment” on page 862
“SET transition-variable assignment” on page 868

Statements with new clauses, new values for existing clauses, or other changes
include:

“ALTER FUNCTION (external scalar)” on page 343
“ALTER PROCEDURE (external)” on page 378
“ALTER PROCEDURE (SQL)” on page 389
“ALTER STOGROUP” on page 395
“ALTER TABLE” on page 398
“CALL” on page 434
“COMMENT” on page 444
“CONNECT (Type 1)” on page 456
“CONNECT (Type 2)” on page 462
“CREATE FUNCTION” on page 481
“CREATE FUNCTION (external table)” on page 504
“CREATE GLOBAL TEMPORARY TABLE” on page 545
“CREATE INDEX” on page 550
“CREATE PROCEDURE (external)” on page 566
“CREATE PROCEDURE (SQL)” on page 584
“CREATE STOGROUP” on page 596
“CREATE TABLE” on page 601
“CREATE TABLESPACE” on page 629
“CREATE VIEW” on page 658
“DECLARE CURSOR” on page 665
“DECLARE GLOBAL TEMPORARY TABLE” on page 672
“DELETE” on page 688
“EXECUTE IMMEDIATE” on page 725
“FETCH” on page 739
“GRANT (distinct type or JAR privileges)” on page 755
“GRANT (package privileges)” on page 762
“GRANT (schema privileges)” on page 765
“INSERT” on page 778

© Copyright IBM Corp. 1982, 2001 xix

“OPEN” on page 788
“PREPARE” on page 792
“REVOKE (distinct type or JAR privileges)” on page 819
“SELECT INTO” on page 845
“SET PATH” on page 865
“UPDATE” on page 872

Chapter 6. SQL procedure statements includes changes to statements that can
be used in SQL procedures.

Appendix C. SQLCA and SQLDA describes changes to the SQLDA to support
LOBs and distinct types.

Appendix D. DB2 catalog tables includes descriptions of several new catalog
tables. (See “New and changed catalog tables” on page 958 for a summary of all
catalog table changes.)

xx SQL Reference

Chapter 1. DB2 concepts

Structured query language . 2
Static SQL . 2
Dynamic SQL . 2
Deferred embedded SQL . 2
Interactive SQL . 3
DB2 Open Database Connectivity (ODBC) 3
DB2 access for Java (JDBC and SQLJ) 3

Schemas . 3
Tables . 4
Indexes . 5
Keys . 5

Unique keys . 5
Primary keys . 5
Parent keys . 6
Foreign keys . 6

Constraints . 6
Unique constraints . 6
Referential constaints . 7
Check constraints . 9

Triggers . 9
Storage structures. 10
Storage groups . 10
Databases . 10
Catalog. 10
Views . 10
Application processes, concurrency, and recovery 11

Locking, commit, and rollback 11
Unit of work . 12
Unit of recovery . 13
Rolling back work . 13

Rolling back all changes 13
Rolling back selected changes using savepoints 13

Packages and application plans. 14
Distributed data. 14

DRDA access . 15
DB2 private protocol access 16
Connection management for DRDA access and DB2 private protocol 17

SQL connection states . 18
Application process connection states 19
DB2 private connections 20
When a connection is ended 20

Character conversion . 20
Character sets and code pages 22
System CCSIDs . 23
Expanding conversions . 24
Contracting conversions . 25
Other considerations for using UTF-8 and UTF-16 25

© Copyright IBM Corp. 1982, 2001 1

||

||

Structured query language
Structured query language (SQL) is a standardized language for defining and
manipulating data in a relational database. In accordance with the relational model
of data, the database is perceived as a set of tables, relationships are represented
by values in tables, and data is retrieved by specifying a result table that can be
derived from one or more tables. DB2 for OS/390 and z/OS transforms the
specification of a result table into a sequence of internal operations that optimize
data retrieval. This transformation occurs when the SQL statement is prepared. This
transformation is also known as binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The
method of preparing an SQL statement and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

Static SQL statements in a source program must be processed before the program
is compiled. This processing can be accomplished through the DB2 precompiler or
the SQL statement coprocessor. The DB2 precompiler or the coprocessor checks
the syntax of the SQL statements, turns them into host language comments, and
generates host language statements to invoke DB2.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the modified source
program, as described in Part 5 of DB2 Application Programming and SQL Guide.

Dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled
like those that contain static SQL, but unlike static SQL, the dynamic statements
are constructed and prepared at run time. The source form of a dynamic statement
is a character string that is passed to DB2 by the program using the static SQL
statement PREPARE or EXECUTE IMMEDIATE. Whether the operational form of
the statement is persistent depends on whether dynamic statement caching is
enabled. For details on dynamic statement caching, see Part 6 of DB2 Application
Programming and SQL Guide.

You can execute some SQL statements dynamically with the EXEC SQL utility
control statement. See Part 2 of DB2 Utility Guide and Reference.

Deferred embedded SQL
A deferred embedded SQL statement is neither fully static nor fully dynamic. Like a
static statement, it is embedded within an application, but like a dynamic statement,
it is prepared during the execution of the application. Although prepared at run time,
a deferred embedded SQL statement is processed with bind-time rules such that
the authorization ID and qualifier determined at bind time for the plan or package
owner are used. Deferred embedded SQL statements are used for DB2 private
protocol access to remote data.

DB2 Concepts

2 SQL Reference

|
|
|
|
|

#
#

Interactive SQL
In this book, interactive SQL refers to SQL statements submitted to SPUFI (SQL
processor using file input). SPUFI prepares and executes these statements
dynamically. For more details about using SPUFI, see Part 1 of DB2 Application
Programming and SQL Guide.

DB2 Open Database Connectivity (ODBC)
DB2 Open Database Connectivity (DB2 ODBC) is an alternative to using embedded
static or dynamic SQL. DB2 ODBC is an application programming interface in which
functions are provided to application programs to process SQL statements. The
function calls are available only for C and C⁺⁺ application programs. Through the
interface, the application invokes a C function at execution time to connect to the
data source, to issue SQL statements, and to get returned data and status
information. Unlike using embedded SQL, no precompilation is required.
Applications developed using this interface might be executed on a variety of data
sources without being compiled against each of the databases. Note that only C
and C⁺⁺ applications can use this interface.

DB2 ODBC provides a consistent interface to query and retrieve system catalog
information across the DB2 family of database management systems. This reduces
the need to write catalog queries that are specific to each database server. DB2
ODBC can return result sets to those programs.

The DB2 ODBC Guide and Reference describes the APIs supported with this
interface.

DB2 access for Java (JDBC and SQLJ)
JavaSoft™ JDBC and SQLJ are two methods for accessing DB2 data from the
Java® programming language. In general, Java applications use JDBC for dynamic
SQL and SQLJ for static SQL.

JDBC is an application programming interface (API) that Java applications can use
to access any relational database. JDBC is similar to ODBC and is based on the
X/Open SQL Call Level Interface specification.

SQLJ is an API that provides support for embedded static SQL in Java applications.
Because DB2 for OS/390 SQLJ support includes JDBC, SQLJ applications can also
execute dynamic SQL statements through JDBC.

The DB2 Application Programming Guide and Reference for Java describes the
APIs supported with these interfaces.

Schemas
A schema is a collection of named objects. The objects that a schema can contain
include distinct types, functions, stored procedures, and triggers. An object is
assigned to a schema when it is created.

The schema name of the object determines the schema to which the object
belongs. When a distinct type, function, or trigger is created, it is given a qualified,
two-part name. The first part is the schema name (or the qualifier), which is either
implicitly or explicitly specified. The second part is the name of the object. When a
stored procedure is created, it is given a three-part name. The first part is a location

DB2 Concepts

Chapter 1. DB2 concepts 3

name, which is implicitly or explicitly specified, the second part is the schema name,
which is implicitly or explicitly specified, and the third part is the name of the object.

Schemas extend the concept of qualifiers for tables, views, indexes, and aliases to
enable the qualifiers for distinct types, functions, stored procedures, and triggers to
be called schema names.

Tables
Tables are logical structures maintained by DB2. Tables are made up of columns
and rows. There is no inherent order of the rows within a table. At the intersection
of every column and row is a specific data item called a value. A column is a set of
values of the same type. A row is a sequence of values such that the nth value is a
value of the nth column of the table. Every table must have one or more columns,
but the number of rows can be zero.

Some types of tables include:

base table
A table created with the SQL statement CREATE TABLE and used to hold
persistent user data.

auxiliary table
A table created with the SQL statement CREATE AUXILIARY TABLE and
used to hold the data for a column that is defined in a base table.

temporary table
A table defined by either the SQL statement CREATE GLOBAL
TEMPORARY TABLE (a created temporary table) or DECLARE GLOBAL
TEMPORARY TABLE (a declared temporary table) and used to hold data
temporarily, such as the intermediate results of SQL transactions. Both
created temporary tables and declared temporary tables persist only as
long as the application process. The description of a created temporary
table is stored in the DB2 catalog and the description is shareable across
application processes while the description of a declared temporary table is
neither stored nor shareable. Thus, each application process might refer to
the same declared temporary table but have its own unique description of it.
For a complete comparison of the two types of temporary tables, including
how they differ from base tables, see Part 2 (Volume 1) of DB2
Administration Guide.

result table
A set of rows that DB2 selects or generates from one or more base tables.

empty table
A table with zero rows.

sample table
One of several tables sent with the DB2 licensed program that contains
sample data. Many examples in this book are based on sample tables. See
Appendix A of DB2 Application Programming and SQL Guide for a
description of the sample tables.

DB2 Concepts

4 SQL Reference

Indexes
An index is an ordered set of pointers to rows of a base table or an auxiliary table.
Each index is based on the values of data in one or more columns. An index is an
object that is separate from the data in the table. When you define an index using
the CREATE INDEX statement, DB2 builds this structure and maintains it
automatically.

Indexes can be used by DB2 to improve performance and ensure uniqueness. In
most cases, access to data is faster with an index. A table with a unique index
cannot have rows with identical keys. For more details on designing indexes and on
their uses, see An Introduction to DB2 for OS/390.

Keys
A key is one or more columns that are identified as such in the description of a
table, an index, or a referential constraint. Referential constraints are described in .
The same column can be part of more than one key. A key composed of more than
one column is called a composite key.

A composite key is an ordered set of columns of the same table. The ordering of
the columns is not constrained by their ordering within the table. The term value,
when used with respect to a composite key, denotes a composite value. Thus, a
rule, such as “the value of the foreign key must be equal to the value of the parent
key”, means that each component of the value of the foreign key must be equal to
the corresponding component of the value of the parent key.

Unique keys
A unique key is a key that is constrained so that no two of its values are equal. DB2
enforces the constraint during the execution of the LOAD utility and the SQL
INSERT and UPDATE statements. The mechanism used to enforce the constraint is
a unique index. Thus, every unique key is a key of a unique index. Such an index is
also said to have the UNIQUE attribute.

The columns of a unique key cannot contain null values.

A unique key can be defined using the UNIQUE clause of the CREATE TABLE or
ALTER TABLE statement. When a unique key is defined in a CREATE TABLE
statement, the table is marked unavailable until the unique index is created by the
user. However, if the CREATE TABLE statement is processed by the schema
processor, DB2 automatically creates the unique index. When a unique key is
defined in an ALTER TABLE statement, a unique index must already exist on the
columns of that unique key.

Primary keys
A primary key is a unique key that is a part of the definition of a table. A table can
have only one primary key, and the columns of a primary key cannot contain null
values. Primary keys are optional and can be defined in CREATE TABLE or ALTER
TABLE statements.

The unique index on a primary key is called a primary index. When a primary key is
defined in a CREATE TABLE statement, the table is marked unavailable until the
primary index is created by the user unless the CREATE TABLE statement is
processed by the schema processor. In that case, DB2 automatically creates the
primary index.

DB2 Concepts

Chapter 1. DB2 concepts 5

|
|
|
|

|

|
|
|
|
|
|
|

When a primary key is defined in an ALTER TABLE statement, a unique index must
already exist on the columns of that primary key. This unique index is designated as
the primary index.

Parent keys
A parent key is either a primary key or a unique key in the parent table of a
referential constraint. The values of a parent key determine the valid values of the
foreign key in the constraint.

Foreign keys
A foreign key is a key that is specified in the definition of a referential constraint
using the CREATE or ALTER statement. A foreign key refers to or is related to a
specific parent key. A table can have zero or more foreign keys. The value of a
composite foreign key is null if any component of the value is null.

Constraints
Constraints are rules that control values in columns to prevent duplicate values or
set restrictions on data added to a table.

Constraints fall into the following three types:

v A unique constraint is a rule that prevents duplicate values in one or more
columns in a table. Unique constraints are unique and primary keys. For
example, a unique constraint could be defined on a supplier identifier in a
supplier table to ensure that the same supplier identifier applies to one single
supplier.

v A referential constraint is a rule about values in one or more columns in one or
more tables. For example, for a set of tables sharing information about a
corporation’s suppliers, a supplier’s ID may change. A referential constraint could
be defined stating that the ID of the supplier in the table must match a supplier
ID in the supplier information. If the new ID for the supplier is in the supplier
information, this constraint prevents inserts, updates, or deletes caused by
missing supplier information.

v A check constraint sets restrictions on data added to a specific table. For
example, the constraint could be added to define a salary level for an employee
to never be less than a stated amount when salary data is added or updated in a
table for personnel information.

Unique constraints
A unique constraint is a rule that the values of a key are valid only if they are
unique in a table. Unique constraints are optional and can be defined in the
CREATE TABLE or ALTER TABLE statements with the PRIMARY KEY clause or
the UNIQUE clause. The columns specified in a unique constraint must be defined
as NOT NULL. A unique index enforces the uniqueness of the key during changes
to the columns of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one unique
constraint defined as a primary key. A table cannot have more than one unique
constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint is
called the parent key.

DB2 Concepts

6 SQL Reference

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

Referential constaints
Referential integrity is the state in which all values of all foreign keys at a given
DB2 are valid. A referential constraint is the rule that the non-null values of a foreign
key are valid only if they also appear as values of a parent key. The table that
contains the parent key is called the parent table of the referential constraint, and
the table that contains the foreign key is a dependent of that table.

Referential constraints are optional and can be defined using CREATE TABLE and
ALTER TABLE statements. Refer to Part 2 (Volume 1) of DB2 Administration Guide
for examples.

DB2 enforces referential constraints when:

v An INSERT statement is applied to a dependent table.

v An UPDATE statement is applied to a foreign key of a dependent table.

v An UPDATE statement is applied to the parent key of a parent table.

v A DELETE statement is applied to a parent table. All affected referential
constraints and all delete rules of all affected relationships must be satisfied in
order for the delete operation to succeed.

v The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

The order in which referential constraints are enforced is undefined. To ensure that
the order does not affect the result of the operation, there are restrictions on the
definition of delete rules and on the use of certain statements. The restrictions are
specified in the descriptions of the SQL statements CREATE TABLE, ALTER
TABLE, INSERT, UPDATE, and DELETE.

The rules of referential integrity involve the following concepts and terminology:

parent key
A primary key or a unique key of a referential constraint.

parent table
A table that is a parent in at least one referential constraint. A table can be
defined as a parent in an arbitrary number of referential constraints.

dependent table
A table that is a dependent in at least one referential constraint. A table can
be defined as a dependent in an arbitrary number of referential constraints.
A dependent table can also be a parent table.

descendent table
A table that is a dependent of another table or a table that is a dependent
of a descendent table.

referential cycle
A set of referential constraints in which each associated table is a
descendent of itself.

parent row
A row that has at least one dependent row.

dependent row
A row that has at least one parent row.

descendent row
A row that is dependent on another row or a row that is a dependent of a
descendent row.

DB2 Concepts

Chapter 1. DB2 concepts 7

self-referencing row
A row that is a parent of itself.

self-referencing table
A table that is both parent and dependent in the same referential constraint.
The constraint is called a self-referencing constraint.

The following rules provide referential integrity:

insert rule
A non-null insert value of the foreign key must match some value of the
parent key of the parent table.

update rule
A non-null update value of the foreign key must match some value of the
parent key of the parent table.

delete rule
The choices when the referential constraint is defined are RESTRICT, NO
ACTION, CASCADE, or SET NULL. SET NULL can be specified only if
some column of the foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the object
of a delete or propagated delete operation and that row has dependents in the
dependent table of the referential constraint. Let P denote the parent table, let D
denote the dependent table, and let p denote a parent row that is the object of a
delete or propagated delete operation. If the delete rule is:

v RESTRICT or NO ACTION, an error occurs and no rows are deleted.

v CASCADE, the delete operation is propagated to the dependent rows of p in D.

v SET NULL, each nullable column of the foreign key of each dependent row of p
in D is set to null.

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a
delete rule of RESTRICT or NO ACTION or the deletion cascades to any of its
descendents that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and can affect rows
of these tables:

v If D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is
involved in the operation but is not affected by the operation.

v If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation and rows of D might be updated during the operation.

v If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D might be deleted during the operation. If rows of D are
deleted, the delete operation on P is said to be propagated to D. If D is also a
parent table, the actions described in this list apply, in turn, to the dependents of
D.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a
dependent of P or a dependent of a table to which delete operations from P
cascade.

DB2 Concepts

8 SQL Reference

Check constraints
A check constraint is a rule that specifies the values allowed in one or more
columns of every row of a table. Check constraints are optional and can be defined
using the SQL statements CREATE TABLE and ALTER TABLE. The definition of a
check constraint is a restricted form of a search condition. One of the restrictions is
that a column name in a check constraint on table T must identify a column of T.
See Part 2 of DB2 Application Programming and SQL Guide for examples.

A table can have an arbitrary number of check constraints. DB2 enforces the
constraints when:

v A row is inserted into the table.

v A row of the table is updated.

v The LOAD utility with the ENFORCE CONSTRAINTS option is used to populate
the table.

A check constraint is enforced by applying its search condition to each row that is
inserted, updated, or loaded. An error occurs if the result of the search condition is
false for any row.

Triggers
A trigger defines a set of actions that are executed when a delete, insert, or update
operation occurs on a specified table. When such an SQL operation is executed,
the trigger is said to be activated.

Triggers can be used along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
they can also be used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions that perform
operations both inside and outside of DB2. For example, instead of preventing an
update to a column if the new value exceeds a certain amount, a trigger can
substitute a valid value and send a notice to an administrator about the invalid
update.

Triggers are useful for defining and enforcing business rules that involve different
states of the data, for example, limiting a salary increase to 10%. Such a limit
requires comparing the value of a salary before and after an increase. For rules that
do not involve more than one state of the data, consider using referential and check
constraints.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance. With the logic in the database, for example, the previously mentioned
limit on increases to the salary column of a table, DB2 checks the validity of the
changes that any application makes to the salary column. In addition, the
application programs do not need to be changed when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement.

For information on using triggers, see Part 2 of DB2 Application Programming and
SQL Guide.

DB2 Concepts

Chapter 1. DB2 concepts 9

Storage structures
In DB2, a storage structure is a set of one or more VSAM data sets that hold DB2
tables or indexes. A storage structure is also called a page set. A storage structure
can be one of the following:

table space
A table space can hold one or more base tables, or one auxiliary table. All
tables are kept in table spaces. A table space can be defined using the
CREATE TABLESPACE statement.

index space
An index space contains a single index. An index space is defined when the
index is defined using the CREATE INDEX statement.

Storage groups
Defining and deleting the data sets of a storage structure can be left to DB2. If it is
left to DB2, the storage structure has an associated storage group. The storage
group is a list of DASD volumes on which DB2 can allocate data sets for associated
storage structures. The association between a storage structure and its storage
group is explicitly or implicitly defined by the statement that created the storage
structure.

Alternatively, Storage Management Subsystem (SMS) can be used to manage DB2
data sets. Refer to Part 2 (Volume 1) of DB2 Administration Guide for more
information.

Databases
In DB2, a database is a set of table spaces and index spaces. These index spaces
contain indexes on the tables in the table spaces of the same database. Databases
are defined using the CREATE DATABASE statement and are primarily used for
administration. Whenever a table space is created, it is explicitly or implicitly
assigned to an existing database.

Catalog
Each DB2 maintains a set of tables that contain information about the data under its
control. These tables are collectively known as the catalog. The catalog tables
contain information about DB2 objects such as tables, views, and indexes. In this
book, “catalog” refers to a DB2 catalog unless otherwise indicated. In contrast, the
catalogs maintained by access method services are known as “integrated catalog
facility catalogs”.

Tables in the catalog are like any other database tables with respect to retrieval. If
you have authorization, you can use SQL statements to look at data in the catalog
tables in the same way that you retrieve data from any other table in the system.
Each DB2 ensures that the catalog contains accurate descriptions of the objects
that the DB2 controls.

Views
A view provides an alternative way of looking at the data in one or more tables. A
view is a named specification of a result table. The specification is an SQL SELECT
statement that is effectively executed whenever the view is referenced in an SQL
statement. At any time, the view consists of the rows that would result if the

DB2 Concepts

10 SQL Reference

fullselect were executed. Thus, a view can be thought of as having columns and
rows just like a base table. However, columns added to the base tables after the
view is defined do not appear in the view. For retrieval, all views can be used like
base tables. Whether a view can be used in an insert, update, or delete operation
depends on its definition, as described in “CREATE VIEW” on page 658.

Views can be used to control access to a table and make data easier to use.
Access to a view can be granted without granting access to the table. The view can
be defined to show only portions of data in the table. A view can show summary
data for a given table, combine two or more tables in meaningful ways, or show
only the selected rows that are pertinent to the process using the view.

Example: The following SQL statement defines a view named XYZ. The view
represents a table whose columns are named EMPLOYEE and WHEN_HIRED. The
data in the table comes from the columns EMPNO and HIREDATE of the sample
table DSN8710.EMP. The rows from which the data is taken are for employees in
departments A00 and D11.

CREATE VIEW XYZ (EMPLOYEE, WHEN_HIRED)
AS SELECT EMPNO, HIREDATE

FROM DSN8710.EMP
WHERE WORKDEPT IN ('A00', 'D11');

An index cannot be created for a view. However, an index created for a table on
which a view is based might improve the performance of operations on the view.
The column of a view inherits its attributes (such as data type, precision, and scale)
from the table or view column, constant, function, or expression from which it is
derived. In addition, a view column that maps back to a base table column inherits
any default values or constraints specified for that column of the base table. For
example, if a view includes a foreign key of its base table, insert and update
operations using that view are subject to the same referential constraint as the base
table. Likewise, if the base table of a view is a parent table, delete operations using
that view are subject to the same rules as delete operations on the base table. See
the description of “INSERT” on page 778 and “UPDATE” on page 872 for restrictions
that apply to views with derived columns. For information on referential constraints,
see .

Read-only views cannot be used for insert, update, and delete operations. For a
discussion of read-only views, see “CREATE VIEW” on page 658.

The definition of a view is stored in the DB2 catalog. An SQL DROP VIEW
statement can drop a view, and the definition of the view is removed from the
catalog. The definition of a view is also removed from the catalog when any view or
base table on which the view depends is dropped.

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. An application process
involves the execution of one or more programs, and is the unit to which DB2
allocates resources and locks. Different application processes might involve the
execution of different programs, or different executions of the same program. The
means of initiating and terminating an application process are dependent on the
environment.

Locking, commit, and rollback
More than one application process might request access to the same data at the
same time. Furthermore, under certain circumstances, an SQL statement can

DB2 Concepts

Chapter 1. DB2 concepts 11

execute concurrently with a utility on the same table space1. Locking is used to
maintain data integrity under such conditions, preventing, for example, two
application processes from updating the same row of data simultaneously. See Part
5 (Volume 2) of DB2 Administration Guide for more information about DB2 locks.

DB2 implicitly acquires locks to prevent uncommitted changes made by one
application process from being perceived by any other. DB2 will implicitly release all
locks it has acquired on behalf of an application process when that process ends,
but an application process can also explicitly request that locks be released sooner.
A commit operation releases locks acquired by the application process and commits
database changes made by the same process.

DB2 provides a way to back out uncommitted changes made by an application
process. This might be necessary in the event of a failure on the part of an
application process, or in a deadlock situation. An application process, however, can
explicitly request that its database changes be backed out. This operation is called
rollback.

The interface used by an SQL program to explicitly specify these commit and
rollback operations depends on the environment. If the environment can include
recoverable resources other than DB2 databases, the SQL COMMIT and
ROLLBACK statements cannot be used. Thus, these statements cannot be used in
an IMS, CICS, or WebSphere™ environment. Refer to Part 4 of DB2 Application
Programming and SQL Guide for more details.

Unit of work
A unit of work is a recoverable sequence of operations within an application
process. A unit of work is sometimes called a logical unit of work. At any time, an
application process has a single unit of work, but the life of an application process
can involve many units of work as a result of commit or full rollback operations.

A unit of work is initiated when an application process is initiated. A unit of work is
also initiated when the previous unit of work is ended by something other than the
end of the application process. A unit of work is ended by a commit operation, a full
rollback operation, or the end of an application process. A commit or rollback
operation affects only the database changes made within the unit of work it ends.
While these changes remain uncommitted, other application processes are unable
to perceive them unless they are running with an isolation level of uncommitted
read. The changes can still be backed out. Once committed, these database
changes are accessible by other application processes and can no longer be
backed out by a rollback. Locks acquired by DB2 on behalf of an application
process that protects uncommitted data are held at least until the end of a unit of
work.

The initiation and termination of a unit of work define points of consistency within an
application process. A point of consistency is a claim by the application that the
data is consistent. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds have been added to
the second account is consistency reestablished. When both steps are complete,

1. See the description of a table space under “Storage structures” on page 10. Concurrent execution of SQL statements and utilities
is discussed in Part 5 (Volume 2) of DB2 Administration Guide .

DB2 Concepts

12 SQL Reference

|
|

|

the commit operation can be used to end the unit of work, thereby making the
changes available to other application processes.

Unit of recovery
A DB2 unit of recovery is a recoverable sequence of operations executed by DB2
for an application process. If a unit of work involves changes to other recoverable
resources, the unit of work will be supported by other units of recovery. If relational
databases are the only recoverable resources used by the application process, then
the scope of the unit of work and the unit of recovery are the same and either term
can be used.

Rolling back work
DB2 can back out all changes made in a unit of recovery or only selected changes.
Only backing out all changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause specified
causes a full rollback operation. If such a rollback operation is successfully
executed, DB2 backs out uncommitted changes to restore the data consistency that
it assumes existed when the unit of work was initiated. That is, DB2 undoes the
work, as shown in the diagram below:

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as

Time
line

Point of
consistency

New point of
consistency

One unit of work

Database updates

Begin
unit of work

COMMIT;
End

unit of work

Figure 1. Unit of work with a commit operation

Point of
consistency

New point of
consistency

Unit of work

Database updates

Begin
unit of work

Data is returned
to its initial state;
end unit of work

Back out updates

ROLLBACK,
failure, or
deadlock;

begin rollback

Time
line

Figure 2. Rolling back all changes from a unit of work

DB2 Concepts

Chapter 1. DB2 concepts 13

logic dictates, roll back only the changes that were made after a savepoint was set.
For example, part of a reservation transaction might involve booking an airline flight
and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
SQL RELEASE SAVEPOINT statement to delete a savepoint.

Packages and application plans
A package contains control structures used to execute SQL statements. Packages
are produced during program preparation. The control structures can be thought of
as the bound or operational form of SQL statements taken from a database request
module (DBRM). The DBRM contains SQL statements extracted from the source
program during program preparation. All control structures in a package are derived
from the SQL statements embedded in a single source program.

An application plan relates an application process to a local instance of DB2,
specifies processing options, and contains one or both of the following elements:
v A list of package names
v The bound form of SQL statements taken from one or more DBRMs

Every DB2 application requires an application plan. Plans and packages are
created using the DB2 subcommands BIND PLAN and BIND PACKAGE,
respectively, as described in DB2 Command Reference. See Part 5 of DB2
Application Programming and SQL Guide for a description of program preparation
and identifying packages at run time. Refer to “SET CURRENT PACKAGESET” on
page 856 for rules regarding the selection of a plan element.

Distributed data
A DB2 application program can use SQL to access data at other database
management systems (DBMSs) other than the DB2 at which the application’s plan
is bound. This DB2 is known as the local DB2. The local DB2 and the other DBMSs
are called database servers. Any server other than the local DB2 is considered a
remote server, and access to its data is a distributed operation. The recommended
method of accessing data at remote database servers is “DRDA access” on
page 15. “DB2 private protocol access” on page 16 is also available but is not
recommended.

Unit of work

Begin
unit of work

Savepoint A COMMIT
End unit of work

Rollback to A;
database updates

made between
times T1 and T2
are rolled back

Time
line T 1 T 2

Figure 3. Rolling back changes to a savepoint within a unit of work

DB2 Concepts

14 SQL Reference

For servers that support the two-phase commit process, both methods allow for
updating data at several remote locations within the same unit of work. To obtain
the more restrictive level of function available at DB2 Version 2 Release 3, refer to
16. Table 1 summarizes the main differences between DRDA access and DB2
private protocol access.

Table 1. Differences between DRDA access and DB2 private protocol access

Item DRDA access DB2 private protocol access

Program preparation Requires a remote BIND of
packages

A remote BIND is not applicable

Plan members Can use in packages only Can use in packages or DBRMs
bound directly to the plan

Processing of
embedded statements

Processed as static SQL Processed as deferred embedded
SQL. For a definition, see
“Deferred embedded SQL” on
page 2.

Servers Can use any server that uses the
DRDA protocols

Can use DB2 for OS/390 and
z/OS servers only

SQL statements Can use most SQL statements
supported by the system that
executes the statement (for
details, see DB2 Application
Programming and SQL Guide)

Limited to SQL INSERT,
UPDATE, and DELETE
statements, and to statements
supporting SELECT

Connection
management

Three-part names and aliases
can be used to refer to objects at
another server if the package
was bound with bind option
DBPROTOCOL(DRDA) implicitly
or explicitly specified. Otherwise,
the CONNECT statement is used
to connect an application process
to a server.

Three-part names and aliases are
used to refer to objects at
another server.

Common restrictions: IMS and CICS applications are restricted to read-only
operations at a remote site if:

v Its database server does not support two-phase commit.

v It uses DB2 private protocol access to a DB2 Version 2 Release 3. (DB2 private
protocol access from a DB2 Version 3 or subsequent release requester to a DB2
Version 2 Release 2 server is not supported).

See Part 4 of DB2 Application Programming and SQL Guide for more details about
common restrictions.

DRDA access
DRDA® access supports the execution of dynamic SQL statements and SQL
statements that satisfy all the following conditions:

v The static statements appear in a package bound to an accessible server.

v The statements are executed using that package.

v The objects involved in the execution of the statements are at the server where
the package is bound. If the server is a DB2 subsystem, three-part names and
aliases can be used to refer to another DB2 server.

DB2 Concepts

Chapter 1. DB2 concepts 15

DRDA access can be used in application programs by coding explicit CONNECT
statements or by coding three-part names and specifying the
DBPROTOCOL(DRDA) bind option.

DRDA access is based on a set of protocols known as Distributed Relational
Database Architecture (DRDA). (These protocols are documented by theOpen
Group Technical Standard in DRDA Version 2 Vol. 1: Distributed Relational
Database Architecture (DRDA).) DRDA communication conventions are invisible to
DB2 applications, and allow a DB2 to bind and rebind packages at other servers
and to execute the statements in those packages. See Part 5 of DB2 Application
Programming and SQL Guide for the steps involved in binding packages and plans.
If the server supports the two-phase commit process, use the CONNECT (Type 2)
statement and other connection management statements such as RELEASE.

A system that uses DRDA can request the execution of SQL statements at any
DB2. Preparing DB2 for incoming SQL requests is discussed in Part 3 of DB2
Installation Guide.

When preparing a program for use at a server other than DB2, observe the
following rules:

v For SQL statements processed by the server, use the SQL syntax and semantic
rules of that server. For other statements, use the DB2 rules. For a list of where
statements are processed, see “Appendix B. Characteristics of SQL statements in
DB2 for OS/390 and z/OS” on page 913.

v Use the precompiler option SQL(ALL) when precompiling the program.
Statements that violate DB2 rules are flagged, but their detection does not
prevent the creation of a DBRM.

For more information, refer to the Distributed Relational Database Library.

Remote unit of work is a restricted level of function that is available by DRDA
access when the CONNECT(1) precompiler option is specified. An application
process can have only one connection at a time and cannot connect to a new
server until it executes a commit or rollback operation. This restricts the situations in
which the CONNECT statement can be executed. See “CONNECT” on page 453 for
more information about these restrictions. For more details about CONNECT (Type
1) and a description of the connection states, refer to “CONNECT (Type 1)” on
page 456.

DB2 private protocol access
DB2 private protocol access allows one DB2 to execute a range of statements at
another DB2.

A statement is executed using DB2 private protocol access if it refers to objects that
are not at the current server and is implicitly or explicitly bound with
DBPROTOCOL(PRIVATE). The current server is the DBMS to which an application
is actively connected. DB2 private protocol access uses DB2 private connections.
The statements that can be executed are SQL INSERT, UPDATE, and DELETE,
and SELECT statements with their associated SQL OPEN, FETCH, and CLOSE
statements. “When an application process has a current server” on page 454
describes what happens when an application process has a current server.

In a program running under DB2, a three-part name or an alias can refer to a table
or view at another DB2. The location name identifies the other DB2 to the DB2
server. A three-part name has the form:

DB2 Concepts

16 SQL Reference

location-name.aaaaaa.ssssss

where aaaaaa.ssssss uniquely identifies the object at the server named
location-name. For example, the name USIBMSTODB21.DSN8710.EMP refers to a
table named DSN8710.EMP at the server whose location name is
USIBMSTODB21. Location naming conventions are described in “Location
identifiers” on page 34. Preparing DB2 for incoming SQL requests is discussed in
Part 3 of DB2 Installation Guide.

Alias names have the same allowable forms as table or view names. The name can
refer to a table or view at the current server or to a table or view elsewhere. For
more on aliases, see “Aliases and synonyms” on page 41. For more on three-part
names, and on SQL naming conventions in general, see “Naming conventions” on
page 34.

DRDA access has some significant advantages over DB2 private protocol:

v DRDA access uses a more compact format for sending data over the network
and thus improves performance on slow network links.

v Queries sent by DB2 private protocol access are bound at the server whenever
they are first executed in a unit of work. Repeated binds can reduce the
performance of a query that is executed often.

A DBRM for statements executed by DRDA access is bound to a package at the
server once. Those statements can include PREPARE and EXECUTE so that
your application can accept dynamic statements to be executed at the server. But
binding the package is an extra step in program preparation.

v You can use stored procedures with DRDA access.

While a stored procedure is running, it requires no message traffic over the
network and thus reduces the biggest hindrance to high performance for
distributed data.

Connection management for DRDA access and DB2 private protocol
An SQL connection is an association between an application process and a local or
remote database server. SQL connections can be managed by the application or by
using bind options. At any time:

v An application process is in the connected or unconnected state and has a set of
zero or more SQL connections. Each SQL connection of an application process
is uniquely identified by the name of the server of the SQL connection.

v An SQL connection is in one of the following states:
– Current and held
– Current and release pending
– Dormant and held
– Dormant and release pending

Initial state of an application process: An application process is initially in the
connected state and has exactly one SQL connection. The server of that connection
is the local DB2 subsystem. The initial state of an SQL connection is current and
held.

The following diagram shows the state transitions:

DB2 Concepts

Chapter 1. DB2 concepts 17

|

|
|

|
|
|

|
|
|
|

|

|
|
|

SQL connection states
If an application process executes a CONNECT TO statement and the specified
location is known to the local DB2 and is not in the set of existing connections of
the application process, the location is added to the set of connections and the
connection is placed in the current and held state. If the specified location is the
current SQL connection of the application process, and if the SQLRULES(DB2) bind
option is in effect, the states of all existing connections remain the same.

An SQL connection in the dormant state is placed in the current state using:
v The SET CONNECTION statement, or
v The CONNECT statement, if the SQLRULES(DB2) bind option is in effect.

When an SQL connection is placed in the current state, the previous current SQL
connection, if any, is placed in the dormant state. No more than one SQL
connection in the set of existing connections of an application process can be
current at any time. Changing the state of an SQL connection from current to
dormant or from dormant to current has no effect on its held or release pending
status.

An SQL connection is placed in the release pending status by the RELEASE
statement. When an application process executes a commit operation, every
release pending connection of the process is ended. Changing the state of an SQL
connection from held to release pending has no effect on its current or dormant
state. Thus, an SQL connection in the release pending status can still be used until
the next commit operation. Likewise, DB2 private connections in the release

Successful CONNECT
or SET CONNECTION specifying

the existing dormant SQL connection

Current Dormant

Held
Release
Pending

RELEASE

Application Process Connection States

The current SQL connection
is intentionally ended, or a

failure occurs that causes the
loss of the connection

Successful CONNECT or
SET CONNECTION

Connected Unconnected

Begin Process

SQL Connection States

Successful CONNECT
or SET CONNECTION specifying

another SQL connection

Figure 4. SQL connection and application process connection state transitions

DB2 Concepts

18 SQL Reference

pending status can be used until the next commit operation. There is no way to
change the state of a connection from release pending to held.

Application process connection states
A different server can be established by the explicit or implicit execution of a
CONNECT statement. The following rules apply:

v An application process cannot have more than one SQL connection to the same
database server at the same time.

v When an application process executes a SET CONNECTION statement, the
specified location name must be an existing SQL connection in the set of
connections of the application process.

v When an application process executes a CONNECT TO statement and the
SQLRULES(STD) bind option is in effect, the specified location must not be an
existing SQL connection in the set of connections of the application process.

If an application process has a current SQL connection, the application process
is in the connected state. The CURRENT SERVER special register contains the
name of the server of the current SQL connection. The application process can
execute SQL statements that refer to objects managed by that server. If the server
is a DB2 subsystem, the application process can also execute certain SQL
statements that refer to objects managed by a DB2 subsystem with which that
server can establish a connection.

An application process in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an application process does not have a current SQL connection, the
application process is in the unconnected state. The CURRENT SERVER special
register contains blanks. The only SQL statements that can be executed
successfully at the requester are CONNECT, SET CONNECTION, RELEASE,
COMMIT, ROLLBACK, and local SET statements. COMMIT and ROLLBACK are
also processed by an server. If the application process is in the unconnected state,
the server that processes a COMMIT or ROLLBACK is the local DB2.

An application process in the connected state enters the unconnected state when
its current SQL connection is intentionally ended or the execution of an SQL
statement is unsuccessful because of a failure that causes a rollback operation at
the server and loss of the SQL connection. SQL connections are intentionally ended
when an application process successfully executes a commit operation and any of
the following apply:
v The connection is in the release pending status
v The connection is not in the release pending status but it is a remote connection

and:
– The DISCONNECT(AUTOMATIC) bind option is in effect, or
– The DISCONNECT(CONDITIONAL) bind option is in effect and an open

WITH HOLD cursor is not associated with the connection.

A connect (type 1) statement is implicitly executed when an application process
executes an SQL statement other than COMMIT, CONNECT TO, CONNECT
RESET, SET CONNECTION, RELEASE, or ROLLBACK and if all of the following
conditions apply:

v The CURRENTSERVER bind option was specified when creating the application
plan of the application process and the identified server is not the local DB2.

v An explicit CONNECT statement has not already been successfully or
unsuccessfully executed by the application process.

DB2 Concepts

Chapter 1. DB2 concepts 19

v An implicit connection has not already been successfully or unsuccessfully
executed by the application process. An implicit connection occurs as the result
of execution of an SQL statement that contains a three-part name in a package
that is bound with the DBPROTOCOL(DRDA) option.

If the implicit CONNECT fails, the application process is in the unconnected state.

DB2 private connections
When the server is a DB2 subsystem, DB2 private connections are allocated as
necessary to support references to objects at other DB2 subsystems. Like SQL
connections, DB2 private connections are initially in the held state and can be
placed in the release pending status.

An application process cannot have an explicit SQL connection and a DB2 private
connection to the same DB2 subsystem at the same time. However, an implicit SQL
connection and a DB2 private connection can exist concurrently. Accordingly:

v CONNECT TO x fails if the application process has a DB2 private connection to
x, and

v An attempt to allocate a DB2 private connection to x fails if the application
process has an explicit SQL connection to x.

v An implicit SQL connection through a three-part name is successful if the
application process has a DB2 private connection to x, and

v An attempt to allocate a DB2 private connection to x is successful if the
application process has an implicit SQL connection to x.

When a connection is ended
When a connection is ended, all resources that were acquired by the application
process through the connection and all resources that were used to create and
maintain the connection are deallocated. In the case of an SQL connection to a
DB2 subsystem, the resources acquired can include DB2 private connections.
When the SQL connection is ended, such DB2 private connections are also ended.
This is true even if the DB2 subsystem is the local DB2. For example, assume that
an application process implicitly connected to the local DB2 used DB2 private
protocol access to open a cursor at another DB2. If the application process
executes a RELEASE CURRENT statement, that cursor is closed at the commit
operation, unless the cursor has an attribute of WITH HOLD.

A connection can also be ended as a result of a communications failure in which
case the application process is placed in the unconnected state. All connections of
an application process are ended when the process terminates.

Character conversion
A string is a sequence of bytes that can represent characters. Within a string, all the
characters are represented by a common encoding representation. In some cases,
it might be necessary to convert these characters to a different encoding
representation. The process of conversion is known as character conversion.

In client/server environments, character conversion can occur when an SQL
statement is executed remotely. Consider, for example, these two cases:

v The values of host variables sent from the requester to the current server

v The values of result columns sent from the current server to the requester

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

DB2 Concepts

20 SQL Reference

In a local environment, character conversion can occur when:

v An overriding CCSID is specified in the SQLDA (see “SQL descriptor area
(SQLDA)” on page 930).

For languages other than REXX, the CCSID is in the SQLNAME field. For REXX,
the CCSID is in the SQLCCSID field.

v A mixed character string is assigned to an SBCS column or host variable.

Most users do not need a knowledge of character conversion. When character
conversion does occur, it does so automatically, and the conversion, if successful, is
invisible to the application.

The following list defines some of the terms used for character conversion.

ASCII Acronym for American Standard Code for Information Interchange, an
encoding scheme used to represent characters. It is limited to 256 code
positions. The term ASCII is used throughout this book to refer to IBM-PC
Data or ISO 8-bit data.

character set
A defined set of characters, a character being the smallest component of
written language that has semantic value. For example, the following
character set appears in several code pages:

v 26 nonaccented letters A through Z

v 26 nonaccented letters a through z

v digits 0 through 9

v . , : ; ? () ' " / − _ & + % * = < >

code page
A set of assignments of characters to code points. In EBCDIC, for example,
"A" is assigned code point X'C1' and "B" is assigned code point X'C2'. In
Unicode, "A" is assigned code point ″U+0041″. Within a code page, each
code point has only one specific meaning.

code point
A unique bit pattern that represents a character. It is a numerical index or
position in an encoding table used for encoding characters.

coded character set
A set of unambiguous rules that establishes a character set and the
one-to-one relationships between the characters of the set and their coded
representations. It is a character set in which each character is assigned a
numeric code value.

coded character set identifier (CCSID)
A two-byte, unsigned binary integer that uniquely identifies an encoding
scheme and one or more pairs of character sets and code pages.

EBCDIC
Acronym for Extended Binary-Coded Decimal Interchange Code, an
encoding scheme used to represent character data, a group of coded
character sets that consist of 8-bit coded characters. EBCDIC coded
character sets use the first 64 code positions (X'00' to X'3F') for control
codes and the range X'41' to X'FE' for graphic characters.

encoding scheme
A set of rules used to represent character data. All string data stored in a
table must use the same encoding scheme and all tables within a table

DB2 Concepts

Chapter 1. DB2 concepts 21

|

||
|
|
|

|
|
|
|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

space must use the same encoding scheme, except for global temporary
tables, declared temporary tables, and workfile tablespaces. Encoding
schemes include:
v ASCII
v EBCDIC
v Unicode

substitution byte
A unique character that is substituted during character conversion for any
characters in the source encoding representation that do not have a match
in the target encoding representation.

Unicode
A universal encoding scheme for written characters and text that enables
the exchange of data internationally. It provides a character set standard
that can be used all over the world. It uses a 16-bit encoding form that
provides code points for more than 65,000 characters and an extension
called UTF-16 that allows for encoding as many as a million more
characters. It provides the ability to encode all characters used for the
written languages of the world and treats alphabetic characters, ideographic
characters, and symbols equivalently because it specifies a numeric value
and a name for each of its characters. It includes punctuation marks,
mathematical symbols, technical symbols, geometric shapes, and dingbats.
Three encoding forms include the following:
v UTF-8: Unicode Transformation Format, a 8-bit encoding form designed

for ease of use with existing ASCII-based systems. The CCSID value for
data in UTF-8 format is 1208.

v UCS-2: Universal Character Set coded in 2 octets, which means that
characters are represented in 16-bits per character.

v UTF-16: Unicode Transformation Format, a 16-bit encoding form
designed to provide code values for over a million characters and a
superset of UCS-2. The CCSID value for data in UTF-16 format is 1200.2

Character conversion can affect the results of several SQL operations. In this book,
the effects are described in:

“Conversion rules for string assignment” on page 70
“Conversion rules for string comparison” on page 73
“Character conversion in unions and concatenations” on page 318

Character sets and code pages
The following example shows how a typical character set might map to different
code points in two different code pages.

2. DB2 UDB for OS/390 implements UTF-8 and UTF-16. UTF-8 data is supported in mixed data fields and UTF-16 is supported in
graphic data fields.

DB2 Concepts

22 SQL Reference

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Even with the same encoding scheme, different coded character sets exist, and the
same code point can represent a different character in different coded character
sets. Furthermore, a byte in a character string does not necessarily represent a
character from a single-byte character set (SBCS). Character strings are also used
for mixed data (that is a mixture of single-byte characters and multibyte characters)
and for data that is not associated with any character set (called bit data). Note that
this is not the case with graphic strings; every pair of bytes in every graphic string is
assumed to represent a character from a double-byte character set (DBCS).

Character encoding for IBM systems is described in Character Data Representation
Architecture Reference and Registry. For more information on Unicode, see the
Unicode standards Web site at http://www.unicode.org.

System CCSIDs
Every string used in an SQL operation has a CCSID. The CCSID identifies the
manner in which the characters in the string are encoded. Strings can be encoded
in ASCII, EBCDIC, or Unicode. A string representing characters can be one of three
types:

v A character string composed of SBCS (single-byte character set) characters. In
an SBCS string, each character is represented by a single byte. SBCS is a
subtype of the character data type.

v A graphic string composed of DBCS (double-byte character set) characters. In a
graphic string, each character is represented by a pair of bytes, except in UTF-16
where surrogates take four bytes per character. For more information on
surrogates, see “Other considerations for using UTF-8 and UTF-16” on page 25.

DB2 Concepts

Chapter 1. DB2 concepts 23

|

|
|
|
|

v An MBCS multibyte character set, in which multibyte characters, including
single-byte characters, can occur. In an EBCDIC mixed string, certain shift
characters serve as left- and right-delimiters for sequences of multibyte
characters that do not include single-byte characters. MIXED is a subtype of the
character data type.

Every query has some context for an encoding scheme (ASCII, EBCDIC, or
Unicode) whether data is explicitly selected from the database or not. If other string
data from a table or view is selected by a query, the encoding scheme of that string
determines the resulting encoding scheme. The resulting CCSID for string data is
the appropriate CCSID for the encoding scheme of the statement. If there is no
other string data from a table or a view in the query, the default encoding scheme is
used.

When DB2 is installed, the values specified in fields ASCII CODED CHAR SET,
EBCDIC CODED CHAR SET, and UNICODE CCSID on installation panel DSNTIPF
determine the system CCSIDs for ASCII, EBCDIC, or Unicode data. The ASCII
CODED CHAR SET and EBCDIC CODED CHAR SET fields should contain valid
SBCS CCSIDs if the field MIXED DATA on the same installation panel is NO, or
should contain valid MIXED CCSIDs if the field MIXED DATA is YES. For example,
one CCSID whose value is 37 identifies a widely used form of EBCDIC encoding.
That particular CCSID could be the system CCSID for EBCDIC SBCS strings. The
UNICODE CCSID field on the same installation panel should contain 1208, which is
the CCSID of UTF-8 data. The field DEF ENCODING SCHEME on the installation
panel DSNTIPF determines whether the default encoding scheme is ASCII,
EBCDIC, or Unicode.

At a given DB2, all columns that contain SBCS strings for an encoding scheme are
assumed to have a common CCSID for SBCS data. For example, when character
data is fetched from a table at another DBMS, DB2 converts the data from the
CCSID at the source system to the corresponding CCSID at the target system. If
the character string has a subtype of BIT, its bytes do not represent characters and
are not converted.

If the CCSID of an input host variable or a host variable substituted for a parameter
marker is different from the CCSID determined at bind time, and if either CCSID is
X'FFFF' (BIT data), an error occurs. Otherwise, the host variable is converted to the
coded character set determined by the CCSID at bind time.

For more information about character string subtypes and SBCS and DBCS DB2
sites, see “Data types” on page 48. For information on the subsystem parameters
that determine the default encoding scheme and the system CCSIDs, see DB2
Installation Guide.

Expanding conversions
An expanding conversion occurs when the length of the converted string is greater
than that of the source string. For example, an expanding conversion occurs when
an ASCII mixed data string that contains DBCS characters is converted to EBCDIC
mixed data. Because of the addition of shift codes, an error occurs when an
expanding conversion is performed on a fixed-length input host variable that
requires conversion from ASCII mixed to EBCDIC mixed. The remedy is to use a
varying-length string variable with a maximum length that is sufficient to contain the
expansion.

DB2 Concepts

24 SQL Reference

#
#
#
#
#

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

Expanding conversions also can occur when string data is converted to or from
Unicode. It can also occur between UTF-8 and UTF-16, depending on the data
being converted. UTF-8 uses one, two, three, or four bytes per character. UTF-16
uses two or four bytes per character. If UTF-8 were being converted to UTF-16, a
one byte character would be expanded to two bytes.

Contracting conversions
A contracting conversion occurs when the length of the converted string is smaller
than that of the source string. For example, a contracting conversion occurs when
an EBCDIC mixed data string that contains DBCS characters is converted to ASCII
mixed data due to the removal of shift codes.

Contracting conversions also can occur when string data is converted to or from
Unicode data. It can also occur between UTF-8 and UTF-16, depending on the data
being converted.

Other considerations for using UTF-8 and UTF-16
Storage for UTF-8 is one to four bytes per character. Storage for UTF-16 is two or
four bytes per character. For UTF-16, surrogates use four bytes per character.
Surrogates are designed to allow representation of characters in future extensions
of the Unicode standard.

DB2 Concepts

Chapter 1. DB2 concepts 25

|
|
|
|
|

|
|
|

|

|
|
|
|

26 SQL Reference

Chapter 2. Language elements

Characters . 31
Tokens . 31
Identifiers . 32

SQL identifiers . 32
Ordinary identifiers . 32
Delimited identifiers . 33
Short and long identifiers 33

Location identifiers . 34
Host identifiers . 34

Naming conventions . 34
Qualification of unqualified object names 39

Unqualified alias, index, table, and view names 39
Unqualified data type, function, and procedure names 40

Schemas and the SQL path . 40
Aliases and synonyms . 41
Authorization IDs and authorization-names. 42

Authorization IDs and schema names 43
Authorization IDs and statement preparation 43
Authorization IDs and dynamic SQL 43
Authorization IDs and remote execution 46

DRDA access with DB2 for OS/390 and z/OS only. 46
DRDA access with a server or requester other than DB2 47
DB2 private protocol access 47
Authorization ID translations 47
Other security measures 47

Data types . 48
Character strings . 49

The effect of encoding schemes on DBCS characters in mixed strings 49
Examples . 50
DB2 and SBCS defaults 50
DB2 and DBCS defaults 50
Fixed-length character strings 51
Varying-length character strings. 51
Character string host variables 52

Graphic strings . 52
Fixed-length graphic strings 52
Varying-length graphic strings 52
Graphic string host variables 53

Binary strings . 53
Large objects (LOBs) . 53
Restrictions using long strings 54
Numbers . 55

Small integer (SMALLINT). 55
Large integer (INTEGER) 55
Single precision floating-point (REAL) 55
Double precision floating-point (DOUBLE or FLOAT) 55
Decimal (DECIMAL or NUMERIC) 55
String representations of numbers 56
Numeric host variables . 56

Datetime values . 56
Date . 56
Time. 57
Timestamp . 57

© Copyright IBM Corp. 1982, 2001 27

||

String representations of datetime values 57
Restrictions on the use of local datetime formats 59

Row ID values . 60
Distinct types . 60

Promotion of data types . 61
Casting between data types . 62
Assignment and comparison . 64

Numeric assignments . 66
Decimal or integer to floating-point. 66
Floating-point or decimal to integer 66
Decimal to decimal . 67
Integer to decimal . 67
Floating-point to floating-point 67
Floating-point to decimal 67
To COBOL integers . 68

String assignments . 68
Storage assignment . 68
Retrieval Assignment. 69
Assignments involving mixed data strings 69
Assignments involving C NUL-terminated strings 69
Conversion rules for string assignment 70

Datetime assignments . 70
Row ID assignments . 71
Distinct type assignments . 71
Numeric comparisons . 72
String comparisons . 73

String comparisons with field procedures 73
Conversion rules for string comparison 73

Datetime comparisons . 75
Row ID comparisons . 75
Distinct type comparisons . 75

Rules for result data types. 77
String operands . 77
Binary string operands . 78
Numeric operands. 78
Datetime operands . 79
Row ID operands . 79
Distinct type operands . 79
Nullable attribute of a result 79

Constants . 79
Integer constants . 79
Floating-point constants . 80
Decimal constants. 80
Character string constants. 80
Datetime constants . 81
Graphic string constants . 81

Special registers . 82
General rules for special registers 83
CURRENT APPLICATION ENCODING SCHEME 85
CURRENT DATE . 86
CURRENT DEGREE. 86
CURRENT LOCALE LC_CTYPE 86
CURRENT OPTIMIZATION HINT 87
CURRENT PACKAGESET 87
CURRENT PATH . 88
CURRENT PRECISION . 88

Language Elements

28 SQL Reference

||

||

CURRENT RULES . 89
CURRENT SERVER . 90
CURRENT SQLID. 90
CURRENT TIME . 90
CURRENT TIMESTAMP . 91
CURRENT TIMEZONE . 91
USER . 91
Inheriting special registers in a user-defined function or a stored procedure 92

Column names . 94
Qualified column names . 95
Correlation names. 95
Column name qualifiers to avoid ambiguity 96
Column name qualifiers in correlated references 97
Resolution of column name qualifiers and column names 98

References to variables. 99
References to host variables . 99

Host variables in dynamic SQL 101
References to LOB host variables 101
References to LOB locator variables 102
References to stored procedure result sets 102
References to result set locator variables. 102

Host structures in PL/I, C, and COBOL 103
Functions . 104

Types of functions . 104
Function resolution . 106

Method of finding the best fit 108
SQL path considerations for built-in functions 109

Function invocation . 109
Expressions . 110

Without operators . 111
With the concatenation operator 111
With arithmetic operators . 113
Arithmetic with two integer operands 114
Arithmetic with an integer and a decimal operand. 114
Arithmetic with two decimal operands 114

Decimal addition and subtraction 115
Decimal multiplication . 115
Decimal division . 115

Arithmetic with floating-point operands 116
Datetime operands and durations. 117
Datetime arithmetic in SQL 118

Date arithmetic . 118
Time arithmetic . 120
Timestamp arithmetic . 121

Precedence of operations 122
CASE expressions . 123
CAST specification . 125

Predicates . 129
Basic predicate . 129
Quantified predicate . 131
BETWEEN predicate . 133
EXISTS predicate . 133
IN predicate . 135
LIKE predicate . 136

Examples . 141
NULL predicate . 143

Language Elements

Chapter 2. Language elements 29

||

||

||

Search conditions . 144
Options affecting SQL . 145

Precompiler options for dynamic statements. 147
Decimal point representation 147
Apostrophes and quotation marks in string delimiters 148
Katakana characters for EBCDIC. 149
Mixed data in character strings 149
Formatting of datetime strings 150
SQL standard language . 150
Positioned updates of columns 152

Language Elements

30 SQL Reference

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

Characters
The basic symbols of SQL are characters from the EBCDIC syntactic character set.
These characters are classified as letters, digits, or special characters:

v A letter is any one of the uppercase alphabetic characters A through Z plus the
three EBCDIC code points reserved as alphabetic extenders for national
languages (the code points X'5B', X'7B', and X'7C', which display as $, #, and @
using code pages 37 and 500).

v A digit is any one of the characters 0 through 9.

v A special character is any character other than a letter or a digit.

SQL statements can also contain double-byte character set (DBCS) characters.
Regardless of the value of the field MIXED DATA on installation panel DSNTIPF,
double-byte characters can be used in SQL ordinary identifiers and graphic string
constants when enclosed by the necessary shift characters. If the value of MIXED
DATA is YES, double-byte characters can also be used in string constants and
delimited identifiers. In SQL application programs, any use of double-byte
characters must be contained within a single line. Thus, a graphic string constant
cannot be continued from one line to the next and, if MIXED DATA is YES, a
character string constant and delimited identifier can be continued from one line to
the next only if the break occurs between single-byte characters. This restriction
also applies to the use of double-byte characters within tokens of the host
language.

Tokens
The basic syntactical units of the language are called tokens. A token consists of
one or more characters of which none are blanks, control characters, or characters
within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

v An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or
a keyword.

Examples:
1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as explained
in “PREPARE” on page 792.

Examples:
, 'string' "fld1" = .

String constants and certain delimited identifiers are the only tokens that can
include a space or control character. Any token can be followed by a space or
control character. Every ordinary token must be followed by a delimiter token, a
space, or a control character; if the syntax does not allow a delimiter token, a space
or a control character must follow the ordinary token.

Spaces: A space is a sequence of one or more blank characters.

Language Elements

Chapter 2. Language elements 31

Control characters: A control character is a special character that is used for string
alignment. Treated similar to a space, a control character does not cause a
particular action to occur. DB2 handles the following control characters:

Control character EBCDIC hex value
Tab 05
Form feed 0C
Carriage return 0D
New line or next line 15
Line feed (new line) 25

Uppercase and lowercase: Any token can include lowercase letters, but a
lowercase letter in an ordinary token is folded to uppercase. However, it is only
folded to uppercase in a C program if the appropriate precomiler is specified.
Delimiter tokens are never folded to uppercase.

Example: The statement:
select * from DSN8710.EMP where lastname = 'Smith';

is equivalent, after folding, to:
SELECT * FROM DSN8710.EMP WHERE LASTNAME = 'Smith';

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is an
SQL identifier, a location identifier, or a host identifier. See “Appendix A. Limits in
DB2 for OS/390 and z/OS” on page 909 for the identifier length limits that DB2
imposes.

SQL identifiers
SQL identifiers can be ordinary identifiers or delimited identifiers. They can also be
short identifiers or long identifiers. Thus, an SQL identifier can be in one of four
categories: short ordinary, long ordinary, short delimited, or long delimited.

Ordinary identifiers
An ordinary identifier is a letter followed by zero or more characters, each of which
is a letter, a digit, or the underscore character. An ordinary identifier with an
EBCDIC encoding scheme can include Katakana characters if the value of field
EBCDIC CODED CHAR SET on installation panel DSNTIPF is set to 930 or 5026
when the statement is parsed.

DBCS characters are allowed in SQL ordinary identifiers. An SQL ordinary identifier,
when used as the name of a table, column, alias, synonym, view, statement, cursor,
correlation, distinct type, stored procedure, user-defined function, or trigger name
can be specified using either DBCS characters or single-byte character set (SBCS)
characters. However, an SQL ordinary identifier cannot contain a mixture of SBCS
and DBCS characters.

The following list shows the rules for forming DBCS SQL ordinary identifiers. These
are EBCDIC rules because DB2 processes SQL statements in EBCDIC.

v The identifier must start with a shift-out (X'0E'), end with a shift-in (X'0F'), and an
odd-numbered byte between those shifts must not be a shift-out.

v The maximum length is 18 bytes including the shift-out and the shift-in. In other
words, there is a maximum of 16 bytes (8 double-byte characters) between the
shift-out and the shift-in.

Tokens

32 SQL Reference

#
#

v There must be an even number of bytes between the shift-out and the shift-in.

v DBCS blanks (X'4040') are not acceptable between the shift-out and the shift-in.

v The identifiers are not folded to uppercase or changed in any other way.

v Continuation to the next line is not allowed.

An ordinary identifier must not be identical to a keyword that is a reserved word in
any context in which the identifier is used. For a list of reserved words, see
“Appendix F. SQL reserved words” on page 1097.

Example: The following example is an ordinary identifier:
SALARY

Delimited identifiers
A delimited identifier is a sequence of one or more characters enclosed within
escape characters. The escape character is the quotation mark (") except for:

v Dynamic SQL when the field SQL STRING DELIMITER on installation panel
DSNTIPF is set to the quotation mark (") and either of these conditions is true:

– DYNAMICRULES run behavior applies. For a list of the DYNAMICRULES
bind option values that specify run, bind, define, or invoke behavior, see
Table 2 on page 44.

– DYNAMICRULES bind, invoke, or define behavior applies and installation
panel field USE FOR DYNAMIC RULES is YES.

In this case, the escape character is the apostrophe (').

However, for COBOL application programs, if DYNAMICRULES run behavior
does not apply and installation panel field USE FOR DYNAMICRULES is NO, a
COBOL compiler option specifies whether the escape character is the quotation
mark or apostrophe.

v Static SQL in COBOL application programs. A COBOL compiler option specifies
whether the escape character is the quotation mark (") or the apostrophe (').

A delimited identifier can be used when the sequence of characters does not qualify
as an ordinary identifier. Such a sequence, for example, could be an SQL reserved
word, or it could begin with a digit. Two consecutive escape characters are used to
represent one escape character within the delimited identifier. A delimited identifier
that contains double-byte characters also must contain the necessary shift
characters.

Example: If the escape character is the quotation mark, the following example is a
delimited identifier:

“VIEW”

Short and long identifiers
SQL identifiers are also classified according to their maximum length. A long
identifier has a maximum length of 18 bytes. A short identifier has a maximum
length of 8 bytes. These limits do not include the escape characters of a delimited
identifier.

Whether an identifier is long or short depends on what it represents. For example,
the name of a storage group is a short identifier, whereas an unqualified table name
is a long identifier. “Naming conventions” on page 34 describes what identifiers can
represent and whether those representing a given type of entity are long or short.

Identifiers

Chapter 2. Language elements 33

|

Database names and table space names are examples of short identifiers that will
be used as part of data set names. Such identifiers, whether ordinary or delimited,
must conform to the MVS rules for forming data set names. For example, a short
ordinary identifier used to name a database must not contain an underscore
character.

Location identifiers
A location identifier is like an SQL identifier, except as follows:

v The maximum length is 16 bytes.

v The ordinary form must not include alphabetic extenders, lowercase letters, or
Katakana characters.

v The characters allowed in the delimited form are the same as those allowed in
the ordinary form.

Host identifiers
A host identifier is a name declared in the host program. The rules for forming a
host identifier are the rules of the host language.

Naming conventions
The rules for forming a name depend on the type of the object designated by the
name. The syntax diagrams use different terms for different types of names. The
following list defines these terms.

alias-name
A qualified or unqualified name that designates an alias, table, or view. An
alias name designates an alias when it is preceded by the keyword ALIAS,
as in CREATE ALIAS, DROP ALIAS, COMMENT ON ALIAS, and LABEL
ON ALIAS. In all other contexts, an alias name designates a table or view.
For example, COMMENT ON ALIAS A specifies a comment about the alias
A, whereas COMMENT ON TABLE A specifies a comment about the table
or view designated by A.

An alias can be defined at a local server and can refer to a table or view
that is at the current server or a remote server. The alias name can be used
wherever the table name or view name can be used to refer to the table or
view in an SQL statement. The rules for forming an alias name are the
same as the rules for forming a table name or a view name, as explained
below. A fully qualified alias name (a three-part name) can refer to an alias
at a remote server. However, the table or view identified by the alias at the
remote server must exist at the remote server.

Statements that use three-part names and refer to distributed data result in
either DB2 private protocol access or DRDA access to the remote site.
DRDA access for three-part names is used when the plan or package that
contains the query to distributed data is bound with bind option
DBPROTOCOL(DRDA), or the value of field DATABASE PROTOCOL on
installation panel DSNTIP5 is DRDA and bind option PROTOCOL was not
specified when the plan or package was bound. When an application
program uses three-part name aliases for remote objects and DRDA
access, the application program must be bound at each location that is
specified in the three-part names. Also, each alias needs to be defined at
the local site. An alias at a remote site can refer to yet another server as
long as a referenced alias eventually refers to a table or view.

Identifiers

34 SQL Reference

#
#

authorization-name
A short identifier that designates a set of privileges. It can also designate a
user or group of users, but DB2 does not control this property. See
“Authorization IDs and authorization-names” on page 42 for the distinction
between an authorization name and an authorization ID.

aux-table-name
A qualified or unqualified name that designates an auxiliary table. The rules
for the name are the same as the rules for table-name. See “table-name”
on page 38.

bpname
A name that identifies a buffer pool. The following list shows the names of
the different buffer pool sizes.
4KB BP0, BP1, BP2, ..., BP49
8KB BP8K0, BP8K1, BP8K2, ..., BP8K9
16KB BP16K0, BP16K1, BP16K2, ..., BP16K9
32KB BP32K, BP32K1, BP32K2, ..., BP32K9

built-in-data-type
A qualified or unqualified name that identifies an IBM-supplied data type. A
qualified name is SYSIBM followed by a period and the name of the built-in
data type. An unqualified name has an implicit qualifier, the schema name,
which is determined by the rules in “Qualification of unqualified object
names” on page 39.

catalog-name
A short identifier that designates an integrated catalog facility catalog.

collection-id
A long identifier that identifies a collection of packages; therefore, a
collection ID is a qualifier for a package ID. Refer to Chapter 1 of DB2
Command Reference for naming conventions.

column-name
A qualified or unqualified name that designates a column of a table or view.

A qualified column name is a qualifier followed by a period and a long
identifier. The qualifier is a table name, a view name, a synonym, an alias,
or a correlation name.

An unqualified column name is a long identifier.

constraint-name
A short identifier that designates a referential constraint or a long identifier
that designates a unique constraint or a check constraint on a table.

correlation-name
A long identifier that designates a table, a view, or individual rows of a table
or view.

cursor-name
A long identifier that designates an SQL cursor.

database-name
A short identifier that designates a database. The identifier must start with a
letter and must not include special characters.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLDA). See
“References to host variables” on page 99 for a description of a host
identifier. A descriptor name never includes an indicator variable.

Naming Conventions

Chapter 2. Language elements 35

|

distinct-type-name
A qualified or unqualified name that designates a distinct type.

A qualified distinct type name is a two-part name. The first part is a short
identifier. The short identifier is the schema name of the distinct type. The
second part is a long identifier. A period must separate each of the parts.

An unqualified distinct type name is a long identifier with an implicit qualifier.
The implicit qualifier is the schema name, which is determined by the
context in which the distinct type appears as described by the rules in
“Qualification of unqualified object names” on page 39.

function-name
A qualified or unqualified name that designates a user-defined function, a
cast function that was generated when a distinct type was created, or a
built-in function.

A qualified function name is a two-part name. The first part is a short
identifier. The short identifier is the schema name of the function. The
second part is a long identifier. A period must separate each of the parts.

An unqualified function name is a long identifier with an implicit qualifier.
The implicit qualifier is the schema name, which is determined by the
context in which the function appears as described by the rules in
“Qualification of unqualified object names” on page 39.

host-variable
A sequence of tokens that designates a host variable. A host variable
includes at least one host identifier, as explained in “References to host
variables” on page 99.

index-name
A qualified or unqualified name that designates an index.

A qualified index name is a short identifier followed by a period and a long
identifier. The short identifier is the authorization ID that owns the index.

An unqualified index name is a long identifier with an implicit qualifier. The
implicit qualifier is an authorization ID that is determined by the rules set
forth in “Qualification of unqualified object names” on page 39.

For an index on a declared temporary table, the qualifier must be
SESSION.

location-name
A location identifier that identifies an instance of a database management
system.

package-id
A short identifier that identifies a package. For packages created using
DB2, a package ID is the name of the program whose precompilation
produced the package’s DBRM. Refer to Chapter 1 of DB2 Command
Reference for naming conventions.

plan-name
A short identifier that identifies an application plan. Refer to Chapter 1 of
DB2 Command Reference for naming conventions.

procedure-name
A qualified or unqualified name that designates a stored procedure.

A fully qualified procedure name is a three-part name. The first part is a
location name that identifies the DBMS at which the procedure is stored.

Naming Conventions

36 SQL Reference

The second part is the schema name of the stored procedure. The third
part is a long identifier. A period must separate each of the parts.

A two-part procedure name is implicitly qualified with the location name of
the current server. The first part is the schema name of stored procedure.
The second part is a long identifier. A period must separate the two parts.

A one-part or unqualified procedure name is a long identifier with two
implicit qualifiers. The first implicit qualifier is the location name of the
current server. The second implicit qualifier depends on the server. If the
server is DB2 for OS/390 and z/OS, the implicit qualifier is schema name,
which is determined by the context in which the unqualified name appears
as described by the rules in “Qualification of unqualified object names” on
page 39.

The content of an SQL procedure name (whether as a simple identifier or a
delimited identifer) must contain only the uppercase alphabetic characters A
through Z, the characters 0 through 9, or the underscore. The name must
begin with an alphabetic character.

program-name
A short identifier that designates an exit routine.

schema-name
A short identifier that designates a schema. A schema-name that is used as
a qualifier of the name of an object is often also an authorization ID. The
objects that are qualified with a schema name are distinct types, stored
procedures, triggers, and user-defined functions. Built-in data types and
built-in functions are also qualified with a schema name.

specific-name
A qualified or unqualified name that designates a unique name for a
user-defined function.

A qualified specific name is a two-part name. The first part is a short
identifier. The short identifier is the schema name. The second part is a
long identifier. A period must separate each of the parts.

An unqualified specific name is a long identifier with an implicit qualifier. The
implicit qualifier is the schema name, which is determined by the context in
which the unqualified name appears as described by the rules in
“Qualification of unqualified object names” on page 39.

A specific name can be used to identify a function to alter, comment on,
drop, grant privileges on, revoke privileges from, or be the source function
for another function. A specific name cannot be used to invoke a function.
In addition to being used in certain SQL statements, a specific name must
be used in DB2 commands to uniquely identify a function.

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL
procedure body. The unqualified form of an SQL variable name is an SQL
identifier of 1 to 64 bytes. If the SQL variable is a delimited identifier, the
contents of the delimited identifier must conform to the rules for ordinary
identifiers. The qualified form is an SQL procedure statement label followed
by a period (.) and an SQL identifier.

statement-name
A long identifier that designates a prepared SQL statement.

Naming Conventions

Chapter 2. Language elements 37

#
#
#
#

stogroup-name
A short identifier that designates a storage group. The identifier must start
with a letter and must not include special characters.

svpt-name
A savepoint identifier that designates a savepoint. A savepoint identifier is
like an SQL identifier except it has a maximum length of 128 bytes.

synonym
A long identifier that designates a synonym, a table, or a view. The table or
view must exist at the current server. A synonym designates a synonym
when it is preceded by the keyword SYNONYM, as in CREATE SYNONYM
and DROP SYNONYM. In all other contexts, a synonym designates a local
table or view and can be used wherever the name of a table or view can be
used in an SQL statement. A qualified name is never interpreted as a
synonym.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location
name that designates the DBMS at which the table is stored. The second
part is the authorization ID that designates the owner of the table. The third
part is a long identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the
current server. The first part is the authorization ID that designates the
owner of the table. The second part is a long identifier. A period must
separate the two parts.

A one-part or unqualified table name is a long identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current
server. The second is an authorization ID, which is determined by the rules
set forth in “Qualification of unqualified object names” on page 39.

For a declared temporary table, the qualifier that designates the owner (the
second part in a three-part name and the first part in a two-part name) must
be SESSION. For complete details on specifying a name when a declared
temporary table is defined and then later referring to that declared
temporary table in other SQL statements, see “DECLARE GLOBAL
TEMPORARY TABLE” on page 672.

table-space-name
A short identifier that designates a table space of an identified database.
The identifier must start with a letter and must not include special
characters. If a database is not identified, DSNDB04 is implicit.

trigger-name
A qualified or unqualified name that designates a trigger.

A qualified trigger name is a two-part name. The first part is a short
identifier. The short identifier is the schema name of the trigger. The second
part is also a short identifier. A period must separate each of the parts.

An unqualified trigger name is a short identifier with an implicit qualifier. The
implicit qualifier is the schema name, which is determined by the rules set
forth in “Qualification of unqualified object names” on page 39.

Naming Conventions

38 SQL Reference

version-id
An identifier3 of 1 to 64 characters that is assigned to a package when the
package is created. The version ID that is assigned is taken from the
version ID associated with the program being bound. Version IDs are
specified for programs as a parameter of the DB2 precompiler. Refer to
Chapter 1 of DB2 Command Reference for naming conventions.

view-name
A qualified or unqualified name that designates a view.

A fully qualified view name is a three-part name. The first part is a location
name that designates the DBMS where the view is defined. The second
part is the authorization ID that designates the owner of the view. The third
part is a long identifier. A period must separate each of the parts.

A two-part view name is implicitly qualified by the location name of the
current server. The first part is the authorization ID that designates the
owner of the view. The second part is a long identifier. A period must
separate the two parts.

A one-part or unqualified view name is a long identifier with two implicit
qualifiers. The first implicit qualifier is the location name of the current
server. The second is an authorization ID, which is determined by the rules
set forth in “Qualification of unqualified object names”.

Qualification of unqualified object names
Unqualified object names are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified alias, index, table, and view names
Unqualified alias, index, table, and view names are implicitly qualified as follows:

v For static SQL statements, the implicit qualifier is the identifier specified in the
QUALIFIER option of the BIND subcommand used to bind the SQL statements. If
this bind option was not used when the plan or package was created or last
rebound, the implicit qualifier is the authorization ID of the owner of the plan or
package.

v For dynamic SQL statements, the behavior as specified by the combination of
bind option DYNAMICRULES and the run-time environment determines the
implicit qualifier. (For a list of these behaviors and the DYNAMICRULES values
that determine them, see Table 2 on page 44).

– If DYNAMICRULES run behavior applies, the implicit qualifier is the SQL
authorization ID in the CURRENT SQLID special register. Run behavior is the
default.

– If bind behavior applies, the identifier implicitly or explicitly specified in the
QUALIFIER option of the BIND subcommand, as explained above for static
SQL statements.

– If define behavior applies, the implicit qualifier is the owner of the function or
stored procedure (the owner is the definer).

– If invoke behavior applies, the implicit qualifier is the authorization ID of the
invoker of the function or stored procedure.

Exception: For bind, define, and invoke behavior, the implicit qualifier of
PLAN_TABLE (output from the EXPLAIN statement) is always the value in
special register CURRENT SQLID.

3. The version-id can begin with a digit, for example, when it is a timestamp.

Naming Conventions

Chapter 2. Language elements 39

Unqualified data type, function, and procedure names
The qualification of data type, function, and stored procedure names depends on
the SQL statement in which the unqualified name appears:

v If an unqualified name is the main object of an ALTER, CREATE, COMMENT
ON, DROP, GRANT, or REVOKE statement, the name is implicitly qualified with
a schema name as follows:

– In a static statement, the implicit schema name is the identifier specified in the
QUALIFIER option of the BIND subcommand used to bind the SQL
statements. If this bind option was not used when the plan or package was
created or last rebound, the implicit qualifier is the authorization ID of the
owner of the plan or package.

– In a dynamic statement, the implicit schema name is the SQL authorization ID
in the CURRENT SQLID special register.

v Otherwise, the implicit schema name for the unqualified name is determined as
follows:

– For data type names, DB2 searches the SQL path and selects the first
schema in the path such that the data type exists in the schema and the user
has authorization to use the data type.

– For function names, DB2 uses the SQL path in conjunction with function
resolution, as described under “Function resolution” on page 106.

– For stored procedure names4, DB2 searches the SQL path and selects the
first schema in the path such that the schema contains a procedure with the
same name and number of parameters and the user has authorization to use
the procedure.

For information on the SQL path, see “Schemas and the SQL path”.

Schemas and the SQL path
The SQL path is an ordered list of schema names. DB2 uses the path to resolve
the schema name for unqualified data type, function, and stored procedure names
that appear in any context other than as the main object of an ALTER, CREATE,
DROP, COMMENT ON, GRANT or REVOKE statement.5 Searching through the
path from left to right, DB2 implicitly qualifies the object name with the first schema
name in the path that contains the same object with the same unqualified name for
which the user has appropriate authorization. For procedures, DB2 selects a
matching procedure name only if the number of parameters is also the same. For
functions, DB2 uses a process called function resolution in conjunction with the
SQL path to determine which function to choose because several functions with the
same name can reside in a schema. (For details, see “Function resolution” on
page 106.)

For example, if the SQL path is SMITH, XGRAPHIC, SYSIBM and an unqualified
distinct type name MYTYPE was specified, DB2 looks for MYTYPE first in schema
SMITH, then XGRAPHIC, and then SYSIBM.

The PATH bind option establishes the SQL path used to resolve:

v Unqualified data type and function names in static SQL statements

4. In CALL statements only.

5. The SQL path does not apply to unqualified procedure names in ASSOCIATE LOCATOR and DESCRIBE PROCEDURE
statements. For these statements, an implicit schema name is not generated.

Naming Conventions

40 SQL Reference

v Unqualified procedure names in SQL CALL statements that specify the procedure
name as a literal (CALL ’literal’)

If the PATH bind option was not specified when the plan or package was created or
last rebound, its default value is: SYSIBM, SYSFUN, SYSPROC, plan or package
qualifier.

The CURRENT PATH special register determines the SQL path used to resolve:

v Unqualified data type and function names in dynamic SQL statements

v Unqualified procedure names in SQL CALL statements that specify the procedure
name in a host variable (CALL host-variable)

Generally, the initial value of the CURRENT PATH special register is:

v The value of the PATH bind option, or

v SYSIBM, SYSFUN, SYSPROC, value of CURRENT SQLID special register if the
PATH bind option was not specified.

For additional details on the initial value of CURRENT PATH special register and
changing its value, see “CURRENT PATH” on page 88 and “SET PATH” on
page 865.

If schema SYSIBM or SYSPROC is not explicitly specified in the SQL path, the
schema is implicitly assumed at the front of the path; if both are not specified, they
are assumed in the order of SYSIBM, SYSPROC. For example, assume that the
SQL path is explicitly specified as SYSIBM, GEORGIA, SMITH. As an implicitly
assumed schema, SYSPROC is added to the beginning of the explicit path
effectively making the path:

SYSPROC, SYSIBM, GEORGIA, SMITH

Aliases and synonyms
A table or view can be referred to in an SQL statement by its name, by an alias that
has been defined for its name, or by a synonym that has been defined for its name.
Thus, aliases and synonyms can be thought of as alternate names for tables and
views.

The option of referencing a table or view by an alias or a synonym is not explicitly
shown in the syntax diagrams or mentioned in the description of SQL statements.
Nevertheless, an alias or a synonym can be used wherever a table or view can be
referred to in an SQL statement, with two exceptions: a local alias cannot be used
in CREATE ALIAS, and a synonym cannot be used in CREATE SYNONYM. If an
alias is used in CREATE SYNONYM, it must identify a table or view at the current
server. The synonym is defined on the name of that table or view. If a synonym is
used in CREATE ALIAS, the alias is defined on the name of the table or view
identified by the synonym.

The effect of using an alias or a synonym in an SQL statement is that of text
substitution. For example, if A is an alias for table Q.T, one of the steps involved in
the preparation of SELECT * FROM A is the replacement of 'A' by 'Q.T'. Likewise, if
S is a synonym for Q.T, one of the steps involved in the preparation of SELECT *
FROM S is the replacement of 'S' by 'Q.T'.

The differences between aliases and synonyms are as follows:

v SYSADM or SYSCTRL authority or the CREATE ALIAS privilege is required to
define an alias. No authorization is required to define a synonym.

Schemas and the SQL path

Chapter 2. Language elements 41

v An alias can be defined on the name of a table or view, including tables and
views that are not at the current server. A synonym can only be defined on the
name of a table or view at the current server.

v An alias can be defined on an undefined name. A synonym can only be defined
on the name of an existing table or view.

v Dropping a table or view has no effect on its aliases. But dropping a table or
view does drop its synonyms.

v An alias is a qualified name that can be used by any authorization ID. A synonym
is an unqualified name that can only be used by the authorization ID that created
it.

v An alias defined at one DB2 subsystem can be used at another DB2 subsystem.
A synonym can only be used at the DB2 subsystem where it is defined.

v When an alias is used, an error occurs if the name that it designates is undefined
or is the name of an alias at the current server. (The alias can represent another
alias at a different server, which can represent yet another alias at yet another
server as long as eventually a referenced alias represents a table or view.) When
a synonym is used, this error cannot occur.

Authorization IDs and authorization-names
An authorization ID is a character string that designates a defined set of privileges.
Processes can successfully execute SQL statements only if they have the authority
to perform the specified functions. A process derives this authority from its
authorization IDs. An authorization ID can also designate a user or a group of
users, but DB2 does not control this property.

DB2 uses authorization IDs to provide:
v Authorization checking of SQL statements
v Implicit qualifiers for database objects like tables, views, aliases, and indexes

Whenever a connection is established between DB2 and a process, DB2 obtains an
authorization ID and passes it to the authorization exit. The list of one or more
authorization IDs returned by the exit are used as the authorization IDs of the
process.

Every process has exactly one primary authorization ID. Any other authorization IDs
of a process are secondary authorization IDs. As explained below, the use of these
authorization IDs depends on whether the process is a bind process or an
application process.

An authorization-name specified in an SQL statement should not be confused with
an authorization ID of a process. For example, assume that SMITH is your TSO
logon, DYNAMICRULES run behavior is in effect, and you execute the following
statements interactively:

CREATE TABLE TDEPT LIKE DSN8710.DEPT;

GRANT SELECT ON TDEPT TO KEENE;

Also assume that your site has not replaced the default exit routine for connection
authorization and that you have not executed SET CURRENT SQLID. Thus, when
the GRANT statement is prepared and executed by SPUFI, the SQL authorization
ID is SMITH. KEENE is an authorization name specified in the GRANT statement.

Authorization to execute the GRANT statement is checked against SMITH, and
SMITH is the implicit qualifier of TDEPT. The authorization rule is that the privilege

Aliases and Synonyms

42 SQL Reference

|
|
|

set designated by SMITH must include the SELECT privilege with the GRANT
option on SMITH.TDEPT. There is no check involving KEENE.

If SMITH is the implicit qualifier for a statement that contains NAME1, NAME1
identifies the same object as SMITH.NAME1. If the implicit qualifier is other than
SMITH, NAME1 and SMITH.NAME1 identify different objects.

Authorization IDs and schema names
An authorization ID that is the same as the name of a schema implicitly has the
CREATEIN, ALTERIN, and DROPIN privileges for that schema.

Authorization IDs and statement preparation
A process that creates a plan or package is called a bind process. The connection
with DB2 is the result of the execution of a BIND or REBIND subcommand. Both
subcommands allow for the specification of the authorization ID of the owner of the
plan or package. The authorization ID specified as owner must be one of the
authorization IDs of the process, unless one of these has SYSADM or SYSCTRL
authority. In this case, the owner can be set to any value. BINDAGENT can specify
an owner other than himself (or one of his representatives), but it has to be
someone that granted him BINDAGENT. The default owner for BIND is the primary
authorization ID. The default owner for REBIND is the previous owner of the plan or
package (ownership is unchanged if an owner is not explicitly specified). BIND and
REBIND are discussed in Chapter 2 of DB2 Command Reference.

The authorization ID used for the authorization checking of embedded SQL
statements is that of the owner of the plan or package. If an embedded SQL
statement refers to tables or views at a DB2 subsystem other than the one at which
the plan or package is bound, the authorization checking is deferred until run time.
For more information on this, see “Authorization IDs and remote execution” on
page 46.

If VALIDATE(BIND) is specified, the privileges required to use or manipulate objects
at the DB2 subsystem at which the plan or package is bound must exist at bind
time. If the privileges or the referenced objects do not exist and
SQLERROR(NOPACKAGE) is in effect, the bind operation is unsuccessful. If
SQLERROR(CONTINUE) is specified, then the bind is successful and any
statements in error are flagged. If any statements in error are flagged, an error will
occur when you attempt to execute them at run time.

If a plan or package is bound with VALIDATE(RUN), authorization checking is still
performed at bind time, but the referenced objects and the privileges required to
use these objects need not exist at this time. If any privilege required for a
statement does not exist at bind time, an authorization check is performed
whenever the statement is first executed within a unit of work, and all privileges
required for the statement must exist at that time. If any privilege does not exist,
execution of the statement is unsuccessful. When the authorization check is
performed at run time, it is performed against the plan or package owner, not the
SQL authorization ID. For the effect of this option on cursors, see “DECLARE
CURSOR” on page 665.

Authorization IDs and dynamic SQL
This discussion applies to dynamic SQL statements that refer to objects at the
current server. For those that refer to objects elsewhere, see “Authorization IDs and
remote execution” on page 46.

Authorization IDs and Authorization-names

Chapter 2. Language elements 43

Bind option DYNAMICRULES determines the authorization ID that is used for
checking authorization when dynamic SQL statements are processed. In addition,
the option also controls other dynamic SQL attributes such as the implicit qualifier
that is used for unqualified alias, index, table, and view names; the source for
application programming options; and whether certain SQL statements can be
invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is called
the dynamic SQL statement behavior. The four possible behaviors are run, bind,
define, and invoke. As Table 2 shows, the combination of the value of the
DYNAMICRULES bind option and the run-time environment determines which of
behavior is used. DYNAMICRULES(RUN), which implies run behavior, is the
default.

Table 2. How DYNAMICRULES and the run-time environment determine dynamic SQL
statement behavior

DYANMICRULES value

Behavior of dynamic SQL statements

Stand-alone program
environment

User-defined function or
stored procedure
environment

RUN Run behavior Run behavior

BIND Bind behavior Bind behavior

DEFINERUN Run behavior Define behavior

DEFINEBIND Bind behavior Define behavior

INVOKERUN Run behavior Invoke behavior

INVOKEBIND Bind behavior Invoke behavior

Note: BIND and RUN values can be specified for both packages and plans. The other values
can be specified only for packages.

In the following behavior descriptions, a package that runs under a user-defined
function or stored procedure package is a package whose associated program
meets one of the following conditions:

v The program is called by a user-defined function or stored procedure.

v The program is in a series of nested calls that start with a user-defined function
or stored procedure.

Run behavior
DB2 uses the authorization ID of the application process and the SQL
authorization ID (the value of special register CURRENT SQLID) for
authorization checking of dynamic SQL statements.

A process that uses a plan and its associated packages is called an
application process. At any time, the SQL authorization ID is the value of
CURRENT SQLID. This SQL special register can be initialized by the
connection or sign-on exit routine. If the exit does not set a value, the initial
value of CURRENT SQLID is the primary authorization ID of the process.
You can use the SQL statement SET CURRENT SQLID to change the
value of CURRENT SQLID. Unless some authorization ID of the process
has SYSADM authority, the new value must be one of the authorization IDs
of the process. Thus, CURRENT SQLID usually contains either the primary
authorization ID of the process or one of its secondary authorization IDs.

Privilege set: If the dynamically prepared statement is other than an
ALTER, CREATE, DROP, GRANT, RENAME, or REVOKE statement, each

Authorization IDs and Authorization-names

44 SQL Reference

privilege required for the statement can be a privilege designated by any
authorization ID of the process. Therefore, the privilege set is the union of
the set of privileges held by each authorization ID.

If the dynamic SQL statement is an ALTER, CREATE, DROP, GRANT,
RENAME, or REVOKE statement, the only authorization ID that is used for
authorization checking is the SQL authorization ID. Therefore, the privilege
set is the privileges held by that single authorization ID of the process.

Implicit qualification: As explained under “Qualification of unqualified
object names” on page 39, when an SQL statement is dynamically
prepared, the SQL authorization ID is also used as the implicit qualifier for
all unqualified tables, aliases, views, and indexes.

Bind behavior
The same rules that are used to determine the authorization ID for static
(embedded) statements are used for dynamic statements. DB2 uses the
primary authorization ID of the owner of the package or plan for
authorization checking of dynamic SQL statements, as explained in detail
under “Authorization IDs and statement preparation” on page 43.

Privilege set: The privilege set is the privileges that are held by the primary
authorization ID of the owner of the package or plan.

Implicit qualification: The identifier specified in the QUALIFIER option of
the bind command that is used to bind the SQL statements is the implicit
qualifier for all unqualified tables, views, aliases, and indexes. If this bind
option was not used when the plan or package was created or last
rebound, the implicit qualifier is the authorization ID of the owner of the plan
or package.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package
that is run as a stored procedure or user-defined function (or runs under a
stored procedure or user-defined function package), and the package was
bound with DYNAMICRULES(DEFINEBIND) or
DYNAMICRULES(DEFINERUN). DB2 uses the authorization ID of the
stored procedure or user-defined function owner (the definer) for
authorization checking of dynamic SQL statements in the application
package.

Privilege set: The privilege set is the privileges that are held by the
authorization ID of the stored procedure or user-defined function owner.

Implicit qualification: The authorization ID of the stored procedure or
user-defined function owner is also the implicit qualifier for unqualified table,
view, alias, and index names.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package
that is run as a stored procedure or user-defined function (or runs under a
stored procedure or user-defined function package), and the package was
bound with DYNAMICRULES(INVOKEBIND) or
DYNAMICRULES(INVOKERUN). DB2 uses the authorization ID of the
stored procedure or user-defined function invoker for authorization checking
of dynamic SQL statements in the application package.

Privilege set: The privilege set is the privileges that are held by the
authorization ID of the stored procedure or user-defined function invoker.
However, if the invoker is the primary authorization ID of the process or the
CURRENT SQLID value, secondary authorization IDs are also checked if

Authorization IDs and Authorization-names

Chapter 2. Language elements 45

they are needed for the required authorization. Therefore, in that case, the
privilege set is the union of the set of privileges held by each authorization
ID.

Implicit qualification: The authorization ID of the stored procedure or
user-defined function invoker is also the implicit qualifier for unqualified
table, view, alias, and index names.

Restricted statements when run behavior does not apply: When bind, define, or
invoke behavior is in effect, you cannot use the following dynamic SQL statements:
ALTER, CREATE, DROP, GRANT, RENAME, and REVOKE.

For more information on authorization and examples of determining authorization for
dynamic SQL statements, see Part 3 of DB2 Administration Guide. For complete
details about the DYNAMICRULES bind option, see DB2 Command Reference.

Authorization IDs and remote execution
The authorization rules for remote execution depend on whether the distributed
operation is:
v DRDA access with a DB2 for OS/390 and z/OS server and requester
v DRDA access with a server and requester other than DB2
v DB2 private protocol access

DRDA access with DB2 for OS/390 and z/OS only
Any static statement executed using DRDA access is in a package bound at a
server other than the local DB2. Before the package can be bound, its owner must
have the BINDADD privilege and the CREATE IN privilege for the package’s
collection. Also required are enough privileges to execute the package’s static SQL
statements that refer to data on that server. All these privileges are recorded in the
DB2 catalog of the server, not that of the local DB2. Such privileges must be
granted by GRANT statements executed at the server. This allows the server to
control the creation and use of packages that are run from other DBMSs.

A user who invokes an application that has a plan at the local DB2 must have the
EXECUTE privilege on the plan recorded in the DB2 catalog of the requester. If the
application uses a package bound at a server other than the local DB2 and the
package is not a user-defined function, stored procedure, or trigger package, the
plan owner must have the EXECUTE privilege on the package recorded in the DB2
catalog of the server. The plan needs no other privilege to execute the package.
EXECUTE authority is also required to use a package that is a user-defined
function, stored procedure, or trigger package; however, the plan owner is not the
required holder of the privilege, as explained in Part 3 (Volume 1) of DB2
Administration Guide. In the case of trigger packages, the authorization ID of the
SQL statement that activates the trigger must have the EXECUTE privilege on the
trigger. Again, all these privileges must be recorded in the DB2 catalog of the
server.

Having the appropriate privileges recorded as described above allows the execution
of the static SQL statements in the package, and the execution of dynamic SQL
statements if DYNAMICRULES bind, define, or invoke behavior is in effect. If
DYNAMICRULES run behavior is in effect, the authorization rules for dynamic SQL
statements is different. Authorization for the execution of dynamic SQL statements
must come from the set of authorization IDs derived during connection processing.
An application goes through connection processing when it first connects to a

Authorization IDs and Authorization-names

46 SQL Reference

server or when it reuses a CICS or IMS thread that has a different primary
authorization ID. For details on connection processing, see Part 3 (Volume 1) of
DB2 Administration Guide.

If an application uses Recoverable Resources Manager Services attachment facility
(RRSAF) and has no plan, authority to execute the package is determined in the
same way as when the requester is not DB2 for OS/390 and z/OS, which is
described next under “DRDA access with a server or requester other than DB2”.

DRDA access with a server or requester other than DB2
DB2 for OS/390 and z/OS as the server: If the requester is not a DB2 for OS/390
and z/OS subsystem, there is no DB2 application plan involved. In this case, the
privilege set of the authorization ID, which is determined by the DYNAMICRULES
behavior, must have the EXECUTE privilege on the package. Dynamic SQL
statements in the package are executed according to the DYNAMICRULES
behavior, as described in “Authorization IDs and dynamic SQL” on page 43.

DB2 for OS/390 and z/OS as the requester: The authorization rules for remote
execution are those of the server.

DB2 private protocol access
Any statement that refers to a table or view at a DB2 subsystem other than the
current server and is bound with bind option DBPROTOCOL(PRIVATE) is executed
using DB2 private protocol access. Such statements are processed as deferred
embedded SQL statements. The additional cost of the dynamic bind occurs once for
every unit of work where the statement is executed. Authorization to execute such
statements is checked against the owner of a plan or package. Authorization IDs for
executing dynamic statements are handled just as they are for DRDA access. In
either case, the pertinent privileges must be recorded in the catalog of the DBMS
that executes the statement.

Authorization ID translations
Three authorization IDs played roles in the foregoing discussion. These are the
user’s primary authorization ID and those for the owner of the application plan and
the owner of a package. Each of these is sent to the remote DBMS. And each may
undergo translations before it is used.

For example, a user known as SMITH at the local DBMS could be known, after
translation, as JONES at the server. Likewise, a package owner known as GRAY
could be known as WINTERS at the server. If so, JONES or WINTERS would be
used, instead of SMITH or GRAY, to determine the authorization ID for dynamic
SQL statements in the package. If the DYNAMICRULES run behavior applies,
JONES, who is executing the dynamic statement at the server, is used. If
DYNAMICRULES bind behavior applies, WINTERS, the package owner at the
server, is used.

Two sets of communications database (CDB) catalog tables control the translations.
One set is at the local DB2, and the other set is at the remote DB2. Translation can
take place at either or both sites. For how to use and maintain these tables, see
Part 3 (Volume 1) of DB2 Administration Guide.

Other security measures
The fact that DB2 authority requirements are satisfied does not guarantee that a
user has access to a given server. Other security measures may also come into
play. For example, requests to execute remote SQL statements could be denied

Authorization IDs and Authorization-names

Chapter 2. Language elements 47

based on Resource Access Control Facility (RACF®) considerations. Developing
such security measures is discussed in Part 3 (Volume 1) of DB2 Administration
Guide.

Data types
The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:

Columns
Constants
Expressions
Functions
Host variables
Special registers

DB2 supports both IBM-supplied data types (built-in data types) and user-defined
data types (distinct types). This section describes the built-in data types. For a
description of distinct types, see “Distinct types” on page 60.

Figure 5 shows the built-in data types that DB2 supports.

Nulls: All data types include the null value. Distinct from all nonnull values, the null
value is a special value that denotes the absence of a (nonnull) value. Although all
data types include the null value, some sources of values cannot provide the null
value. For example, constants, columns that are defined as NOT NULL, and special

Figure 5. Built-in data types supported by DB2

Authorization IDs and Authorization-names

48 SQL Reference

registers cannot contain null values; the COUNT and COUNT_BIG functions cannot
return a null value; and ROWID columns cannot store a null value although a null
value can be returned for a ROWID column as the result of a query.

Character strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Except for C NUL-terminated strings, the length of a varying-length string is
specified by the value of its length control field. For varying-length character strings,
the length control field specifies the number of bytes.

Each character string has a subtype of SBCS, MIXED, or BIT.

v The bytes of a character string with subtype SBCS represent characters from a
single-byte character set (SBCS). Such strings are called SBCS data.

v The bytes of a character string with subtype MIXED can represent a mixture of
characters from a multibyte character set (MBCS), which includes cahracters
from a single-byte chanracter set (SBCS). Strings that may contain MBCS
characters are called mixed data. EBCDIC mixed data may contain shift
characters, which are not MBCS data. Unicode data is always MIXED, regardless
of the MIXED option on the DSNTIPF install option panel.

v The bytes of a character string with BIT subtype do not represent characters;
therefore, character conversion never occurs for these strings. Such strings are
called BIT data.

Character strings with a CLOB data type can only have an SBCS or MIXED
subtype.

Character subtypes provide a simple and portable way of specifying the CCSID of a
character string column. The subtype is implicitly or explicitly specified when the
column is defined in a CREATE or ALTER TABLE statement. The default depends
on which encoding scheme is in use. With Unicode, the default is MIXED. With
ASCII and EBCDIC, the default is SBCS or MIXED depending on the value of the
field MIXED DATA on installation panel DSNTIPF. The following list shows the
CCSID for each subtype:

BIT The CCSID is X'FFFF' (65535).

SBCS The CCSID is the system CCSID for SBCS data.

MIXED The CCSID is the system CCSID for mixed data.

The FOREIGNKEY column of the SYSCOLUMNS catalog table stores information
about the subtype of a character string column. An administrator can update this
column to change the subtype of existing columns. DB2 does not ensure that the
bytes of a character string are consistent with its CCSID and does not use CCSIDs
for any purpose other than character conversion.

The effect of encoding schemes on DBCS characters in mixed
strings
The method of representing DBCS characters within a mixed string differs among
the encoding schemes.

v ASCII reserves a set of code points for SBCS characters and another set as the
first half of DBCS characters. Upon encountering the first half of a DBCS
character, the system knows that it is to read the next byte in order to obtain the
complete character.

Data Types

Chapter 2. Language elements 49

#
#
#
#
|
|

|
|
|

v EBCDIC makes use of two special code points:
– A shift-out character (X'0E') to introduce a string of DBCS characters.
– A shift-in character (X'0F') to end a string of DBCS characters.

DBCS sequences within mixed data strings are recognized as the string is read
from left to right. At any time, the recognizer is in SBCS mode or DBCS mode. In
SBCS mode, which is the initial mode, any byte other than a shift-out is
interpreted as an SBCS character. When a shift-out is read, the recognizer enters
DBCS mode. In DBCS mode, the next byte and every second byte after that byte
is interpreted as the first byte of a DBCS character unless it is a shift character. If
the byte is a shift-out, an error occurs. If the byte is a shift-in, the recognizer
returns to SBCS mode. An error occurs if the recognizer is in DBCS mode after
processing the last byte of the string. Because of the shift characters, EBCDIC
mixed data requires more storage than ASCII mixed data.

v UTF-8 is a varying-length encoding of byte sequences with the high bits
indicating the part of the sequence to which a byte belongs. The first byte
indicates the number of bytes to follow in a byte sequence.

v UTF-16 uses a fixed 16-bit code assignment for each character, except for
characters encoded by surrogates, which consist of a pair of 16-bit values.

Examples

CHAR(9) in ASCII.

CHAR(13) in EBCDIC.

CHAR(11) in Unicode.

Because of the differences of the representation of mixed data strings in ASCII and
EBCDIC, mixed data is not transparently portable. To minimize the effects of these
differences, use varying-length strings in applications that require mixed data and
operate on both ASCII and EBCDIC data.

DB2 and SBCS defaults
For a DB2 installation with SBCS, the default encoding scheme is ASCII or EBCDIC
and the value of field MIXED DATA on installation panel DSNTIPF is NO. The
subtype of character strings is SBCS with SBCS being the default. The values of
fields ASCII CODED CHAR SET or EBCDIC CODED CHAR SET determine the
system CCSID that identifies the SBCS coded character set used for that DB2. The
default for Unicode data is mixed.

DB2 and DBCS defaults
For a DB2 installation with DBCS, the default encoding scheme is ASCII or EBCDIC
and the value of field MIXED DATA on installation panel DSNTIPF is YES. For
ASCII and EBCDIC, the subtype of character strings is SBCS, BIT, or MIXED,with
MIXED being the default. The values of fields ASCII CODED CHAR SET or
EBCDIC CODED CHAR SET determine the system CCSIDs used for SBCS data,
mixed data, and graphic data. For Unicode, the MIXED DATA field is not relevant
because the subtype for Unicode data is always mixed.

Data Types

50 SQL Reference

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

ASCII and EBCDIC are structured so that some data is represented in SBCS
characters and some data is represented in DBCS or mixed (MBCS) characters.
Mixed data allows both SBCS and DBCS characters as does UTF-8, in a sense. In
UTF-8, A–Z, a–z, 0–9, and a few other characters are SBCS while everything else
is MBCS. UTF-16 is different. In UTF-16, A–Z, a–z, 0–9, and most everything else,
except surrogate characters, are DBCS. Surrogates consist of a pair of 16-bit
values.

A mixed data string can have zero or more sequences of SBCS characters and
zero or more sequences of multiple-byte characters. Each EBCDIC multiple-byte
sequence must be preceded by the shift-out control character (X'0E') and followed
by the shift-in control character (X'0F'). There must be an even number of bytes
between the shift characters and each pair of bytes is assumed to represent a
DBCS character.

DB2 recognizes DBCS sequences within mixed data strings when performing
character-sensitive operations at a DB2 installation with DBCS. These operations
include parsing, character conversion, and the pattern matching specified by the
LIKE predicate. DB2 also recognizes DBCS sequences:

v In source language statements, static SQL statements, and deferred embedded
SQL statements if the GRAPHIC precompiler option is implicitly or explicitly
specified

v In dynamic SQL statements if DYNAMICRULES bind, define, or invoke behavior
is in effect, the value of installation panel field USE FOR DYNAMICRULES is
NO, and the GRAPHIC precompiler option is implicitly or explicitly specified

Fixed-length character strings
All the values of a column with a fixed-length character string data type have the
same length, which is determined by the length attribute of the column. The length
attribute must be between 1 and 255 inclusive. Every fixed-length string column is a
short string column. A fixed-length character string column can also be called a
CHAR or CHARACTER column.

Varying-length character strings
The types of varying-length character strings are:

v VARCHAR (or synonyms CHAR VARYING and CHARACTER VARYING)6

v CLOB (or synonyms CHAR LARGE OBJECT and CHARACTER LARGE
OBJECT)

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a value
can have.

For a VARCHAR column, the length attribute must be between 1 and m inclusive,
where m is determined by the maximum record size as described in “Maximum
record size” on page 624 in the description of the CREATE TABLE statement. For a
CLOB column, the length attribute must be between 1 and 2 147 483 647 inclusive.
(2 147 483 647 is 2 gigabytes minus 1 byte.) For more information about CLOBs,
see “Large objects (LOBs)” on page 53.

6. The syntax of the ALTER and CREATE TABLE statements allows a column to be defined as LONG VARCHAR as an alternative
for VARCHAR(a) where a is the maximum number of characters that is associated with the column. However, after processing the
CREATE or ALTER TABLE statement, DB2 considers the column to be VARCHAR(a).

Data Types

Chapter 2. Language elements 51

|
|
|
|
|
|
|

A VARCHAR column with a maximum length that is greater than 255 bytes or a
CLOB column of any length is a long string column. For the restrictions that apply
to the use of long string columns, see “Restrictions using long strings” on page 54.

Character string host variables
Host variables with CHAR and CLOB string types can be defined in all host
languages. (In C, CHAR string variables are limited to a length of 1.) Host variables
with a VARCHAR string type can be defined in all host languages except Fortran. In
Assembler, C, and COBOL, VARCHAR string variables are simulated as described
in Part 2 of DB2 Application Programming and SQL Guide. In C, VARCHAR string
variables can also be represented by NUL-terminated strings.

A VARCHAR string variable with a maximum length that is greater than 255 bytes
or a CLOB string variable of any length is a long string variable. Long string
variables are subject to the same restrictions as long string columns. For
information, see “Restrictions using long strings” on page 54.

Graphic strings
A graphic string is a sequence of DBCS characters. The length of the string is the
number of characters in the sequence. Like character strings, graphic strings can
be empty. An empty string should not be confused with the null value.

Fixed-length graphic strings
All the values of a column with a fixed-length graphic string data type have the
same length, which is determined by the length attribute of the column. The length
attribute must be between 1 and 127 inclusive. Every fixed-length graphic string
column is a short string column. A fixed-length graphic string column can also be
called a GRAPHIC column.

Varying-length graphic strings
The types of varying-length graphic strings are:
v VARGRAPHIC7

v DBCLOB

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a value
can have. For varying-length graphic strings, the length control field specifies the
number of MBCS (multi-byte) characters, with each character represented by a pair
of bytes, except in UTF-16 where surrogates use four bytes for each character.

For VARGRAPHIC columns, the length attribute of the column must be between 1
and m inclusive, where m is determined by the maximum record size as described
in “Maximum record size” on page 624 in the description of the CREATE TABLE
statement. For DBCLOB columns, the length attribute must be between 1 and
1 073 741 823 inclusive. In all cases, the length control field of a varying-length
graphic string indicates the number of characters, not bytes. For UTF-16, two DBCS
characters can be used to describe a glyph, but the characters are still considered
DBCS characters. For more information about DBCLOBs, see “Large objects
(LOBs)” on page 53.

7. The syntax of the ALTER and CREATE TABLE statements allows a column to be defined as LONG VARGRAPHIC as an
alternative for VARGRAPHIC(a) where a is the maximum number of characters that is associated with the column. However, after
processing the CREATE or ALTER TABLE statement, DB2 considers the column to be VARGRAPHIC(a).

Data Types

52 SQL Reference

|
|
|

A VARGRAPHIC column with a maximum length that is greater than 127 characters
or a DBCLOB column of any length is a long string column. For the restrictions that
apply to the use of long string columns, see “Restrictions using long strings” on
page 54.

Graphic string host variables
Host variables with a graphic string type can be defined in all host languages
except Fortran.

A VARGRAPHIC string variable with a maximum length that is greater than 127
characters or a DBCLOB string variable of any length is a long string variable. Long
string variables are subject to the same restrictions as long string columns. For
information, see “Restrictions using long strings” on page 54.

Binary strings
A binary string is a sequence of bytes. The length of a binary string (BLOB string) is
the number of bytes in the sequence. The CCSID is X'FFFF' (65535).

For a BLOB column, the length attribute must be between 1 and 2 147 483 647
inclusive. (2 147 483 647 is 2 gigabytes minus 1 byte.)

A host variable with a BLOB string type can be defined in all host languages.

For more information about BLOBs, see “Large objects (LOBs)”.

Large objects (LOBs)
The term large object (LOB) refers to any of the following data types:

CLOB A character large object (CLOB) is a varying-length string with a
maximum length of 2 147 483 647 bytes (2 gigabytes minus 1 byte).
A CLOB is designed to store large SBCS data or mixed data, such
as lengthy documents. For example, you can store information such
as an employee resume, the script of a play, or the text of novel in
a CLOB. Alternatively, you can store such information in UTF-8 in a
mixed CLOB. A CLOB is a varying-length character string.

DBCLOB A double-byte character large object (DBCLOB) is a varying-length
string with a maximum length of 1 073 741 823 double-byte
characters. A DBCLOB is designed to store large DBCS data. For
example, you could store the information mentioned for CLOB (an
employee resume, the script for a play, or the text of a novel) in
UTF-16 in a DBCLOB. A DBCLOB is a varying-length graphic
string.

BLOB A binary large object (BLOB) is a varying-length string with a
maximum length of 2 147 483 647 bytes (2 gigabytes minus 1 byte).
A BLOB is designed to store non-traditional data such as pictures,
voice, and mixed media. BLOBs can also store structured data for
use by distinct types and user-defined functions. A BLOB is
considered to be a binary string.

Although BLOB strings and FOR BIT DATA character strings might
be used for similar purposes, the two data types are not
compatible. The BLOB function can be used to change a FOR BIT
DATA character string into a BLOB string.

Data Types

Chapter 2. Language elements 53

|
|

|
|
|
|

Each LOB column is a long string column, and each LOB string variable is a long
string variable. For information on the restrictions that apply to the use of long
strings and the additional restrictions that apply only to LOBs, see “Restrictions
using long strings”.

When an application does not need a LOB value to be stored in application
memory, the application can use a large object locator (LOB locator) to reference
the LOB value.

A LOB locator is a host variable with a value that represents a single LOB value in
the database server. A LOB locator can also represent a LOB expression, such as:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

For information on manipulating LOBs with LOB locators, see Part 3 of DB2
Application Programming and SQL Guide.

Restrictions using long strings
A long string has one of the following varying-length string data types:

v For character strings. A VARCHAR string with a maximum length that is greater
than 255 bytes or any CLOB string.

v For graphic strings. A VARGRAPHIC string with a maximum length that is greater
than 127 characters or any DBCLOB string.

v For binary strings. Any BLOB string.

Table 3 indicates the contexts in which long strings cannot be referenced. The
restrictions differ slightly for long strings with LOB data types (CLOB, DBCLOB, and
BLOB).

Table 3. Contexts in which long strings cannot be referenced

Context of usage VARCHAR (>255) or
VARGRAPHIC (>127)

LOB (CLOB, DBCLOB, or BLOB)

A GROUP BY clause Not allowed Not allowed

An ORDER BY clause Not allowed Not allowed

A CREATE INDEX statement Not allowed Not allowed

A SELECT DISTINCT statement Not allowed Not allowed

A subselect of a UNION without the
ALL keyword

Not allowed Not allowed

A host variable in a EXECUTE
IMMEDIATE or a PREPARE
statement

— Not allowed

Predicates Cannot be used in any predicate
except EXISTS and LIKE. This
restriction includes a
simple-when-clause in a CASE
expression. expression WHEN
expression in a simple-when-clause is
equivalent to a predicate with
expression=expression.

Cannot be used in any predicate
except EXISTS, LIKE, and NULL. This
restriction includes a
simple-when-clause in a CASE
expression. expression WHEN
expression in a simple-when-clause is
equivalent to a predicate with
expression=expression.

The definition of primary, unique, and
foreign keys

Not allowed Not allowed

Check constraints — Cannot be specified for a LOB column

Data Types

54 SQL Reference

Table 3. Contexts in which long strings cannot be referenced (continued)

Context of usage VARCHAR (>255) or
VARGRAPHIC (>127)

LOB (CLOB, DBCLOB, or BLOB)

Field procedure — Cannot be specified for a LOB
column.

Parameters of built-in functions Some functions that allow varying-length character strings, varying-length
graphic strings, or both types of strings as input arguments do not support
VARCHAR or VARGRAPHIC long strings, CLOB or DBCLOB strings, or both
as input. See the description of the individual functions in “Chapter 3. Built-in
functions” on page 153 for the data types that are allowed as input to each
function.

Distributed data applications — LOB columns cannot be used if
remote access is performed with DB2
private protocol access.

Numbers
The numeric data types are binary integer, floating-point, and decimal. Binary
integer includes small integer and large integer. Floating-point includes single
precision and double precision. Binary numbers are exact representations of
integers, decimal numbers are exact representations of real numbers, and
floating-point numbers are approximations of real numbers.

All numbers have a sign and a precision. When the value of a column or the result
of an expression is a decimal or floating-point zero, its sign is positive. The
precision of binary integers and decimal numbers is the total number of binary or
decimal digits excluding the sign. The precision of floating-point numbers is either
single or double, referring to the number of hexadecimal digits in the fraction.

Small integer (SMALLINT)
A small integer is a System/390 binary integer with a precision of 15 bits. The range
of small integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a System/390 binary integer with a precision of 31 bits. The range
of large integers is -2147483648 to +2147483647.

Single precision floating-point (REAL)
A single precision floating-point number is a System/390 short (32 bits)
floating-point number. The range of single precision floating-point numbers is about
-7.2E+75 to 7.2E+75. In this range, the largest negative value is about -5.4E-79,
and the smallest positive value is about 5.4E-079.

Double precision floating-point (DOUBLE or FLOAT)
A double precision floating-point number is a System/390 long (64 bits)
floating-point number. The range of double precision floating-point numbers is about
-7.2E+75 to 7.2E+75. In this range, the largest negative value is about -5.4E-79,
and the smallest positive value is about 5.4E-079.

Decimal (DECIMAL or NUMERIC)
A decimal number is a System/390 packed decimal number with an implicit decimal
point. The position of the decimal point is determined by the precision and the scale
of the number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

Data Types

Chapter 2. Language elements 55

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where n is the
largest positive number that can be represented with the applicable precision and
scale. The maximum range is 1 − 10³¹ to 10³¹ − 1.

String representations of numbers
Values whose data types are small integer, large integer, floating-point, and decimal
are stored in an internal form that is transparent to the user of SQL. But string
representations of numbers can be used in some contexts. A valid string
representation of a number must conform to the rules for numeric constants. For
more information, see “Constants” on page 79.

The encoding scheme in use determines what type of strings may be used for
string representation of numbers. For ASCII and EBCDIC, a string representation of
a number must be a character string. For UNICODE, a string representation of a
number can be either a character string or a graphic string. Thus, the only time a
graphic string can be used for a number is when the encoding scheme is
UNICODE.

Numeric host variables
Binary integer variables can be defined in all host languages.

Floating-point variables can be defined in all host languages. All languages support
System/390 floating-point format. Assembler, C, and C⁺⁺ also support IEEE
floating-point format. In assembler, C, and C⁺⁺ programs, the precompiler option
FLOAT tells DB2 whether floating-point variables contain data in System/390
floating-point format or IEEE floating-point format.

Decimal variables can be defined in all host languages except Fortran. In COBOL,
decimal numbers can be represented in the packed decimal format used for
columns or in the format denoted by DISPLAY SIGN LEADING SEPARATE.

Datetime values
The datetime data types are described in the following sections. Such values are
neither strings nor numbers. Nevertheless, datetime values can be used in certain
arithmetic and string operations and are compatible with certain strings. Moreover,
strings can represent datetime values, as discussed in “String representations of
datetime values” on page 57.

Date
A date is a three-part value (year, month, and day) designating a point in time using
the Gregorian calendar, which is assumed to have been in effect from the year 1
A.D.8 The range of the year part is 0001 to 9999. The range of the month part is 1
to 12. The range of the day part is 1 to 28, 29, 30, or 31, depending on the month
and year.

The internal representation of a date is a string of 4 bytes. Each byte consists of
two packed decimal digits. The first 2 bytes represent the year, the third byte the
month, and the last byte the day.

The length of a DATE column as described in the catalog is the internal length,
which is 4 bytes. The length of a DATE column as described in the SQLDA is the
external length, which is 10 bytes unless a date exit routine was specified when

8. Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as valid
dates although they never existed in the Gregorian calendar.

Data Types

56 SQL Reference

|
|
|
|
|
|

|
|
|
|
|
|

your DB2 subsystem was installed. (Writing a date exit routine is described in
Appendix B (Volume 2) of DB2 Administration Guide.) In that case, the string format
of a date can be up to 255 bytes in length. Accordingly, DCLGEN9 defines
fixed-length string variables for DATE columns with a length equal to the value of
the field LOCAL DATE LENGTH on installation panel DSNTIP4, or a length of 10
bytes if a value for the field was not specified.

Time
A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24. The range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second parts
are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the catalog is the internal length
which is 3 bytes. The length of a TIME column as described in the SQLDA is the
external length which is 8 bytes unless a time exit routine was specified when your
DB2 subsystem was installed. (Writing a date exit routine is described in Appendix
B (Volume 2) of DB2 Administration Guide.) In that case, the string format of a time
can be up to 255 bytes in length. Accordingly, DCLGEN9 defines fixed-length string
variables for TIME columns with a length equal to the value of the field LOCAL
TIME LENGTH on installation panel DSNTIP4, or a length of 8 bytes if a value for
the field was not specified.

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that represents a date and time as defined previously, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of which
consists of two packed decimal digits. The first 4 bytes represent the date, the next
3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column as described in the catalog is the internal
length which is 10 bytes. The length of a TIMESTAMP column as described in the
SQLDA is the external length which is 26 bytes. DCLGEN therefore defines 26-byte,
fixed-length string variables for TIMESTAMP columns.

String representations of datetime values
Values whose data types are date, time, or timestamp are represented in an
internal form that is transparent to the user of SQL. But dates, times, and
timestamps can also be represented by strings. These representations directly
concern the SQL user because there are no special SQL constants for datetime
values and no host variables with a data type of date, time, or timestamp.

The encoding scheme in use determines what type of strings may be used for
string representation of datetime values. For ASCII and EBCDIC, a string
representation of a datetime value must be a character string. For UNICODE, a
string representation of a datetime value can be either a character string or a

9. DCLGEN is a DB2 DSN subcommand for generating table declarations for designated tables or views. The declarations are stored
in MVS data sets, for later inclusion in DB2 source programs.

Data Types

Chapter 2. Language elements 57

|
|
|
|

graphic string. Thus, the only time a graphic string can be used for a datetime value
is when the encoding scheme is UNICODE.

For retrieval, datetime values must be assigned to string variables. When a date or
time is assigned to a variable, the string format is determined by a precompiler
option or subsystem parameter. When a string representation of a datetime value is
used in other operations, it is converted to a datetime value. However, this can be
done only if the string representation is recognized by DB2 or an exit provided by
the installation and the other operand is a compatible datetime value. An input
string representation of a date or time value with LOCAL specified can be any short
string. The following sections describe the string formats that are recognized by
DB2.

Datetime values that are represented by strings can appear in contexts requiring
values whose data types are date, time, timestamp by using the DATE, TIME, or
TIMESTAMP functions.

Date strings: A string representation of a date is a string that starts with a digit and
has a length of at least 8 characters. Trailing blanks can be included, leading blanks
are not allowed, and leading zeros can be omitted in the month and day portions.

Table 4 shows the valid string formats for dates. Each format is identified by name
and includes an associated abbreviation (for use by the CHAR function) and an
example of its use. For an installation-defined date string format, the format and
length must have been specified when DB2 was installed. They cannot be listed
here.

Table 4. Formats for string representations of dates

Format name Abbreviation Date format Example

International Standards Organization ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European standard EUR dd.mm.yyyy 12.10.1987

Japanese industrial standard Christian
era

JIS yyyy-mm-dd 1987-10-12

Installation-defined LOCAL Any installation-
defined form

—

Note: For LOCAL, the date exit for ASCII data is DSNXVDTA, the date exit for EBCDIC is
DSNXVDTX, and the date exit for Unicode is DSNXVDTU.

Time strings: A string representation of a time is a string that starts with a digit,
and has a length of at least 4 characters. Trailing blanks can be included, leading
blanks are not allowed, and leading zeros can be omitted in the hour part of the
time; seconds can be omitted entirely. If you choose to omit seconds, an implicit
specification of 0 seconds is assumed. Thus 13.30 is equivalent to 13.30.00.

Table 5 on page 59 shows the valid string formats for times. Each format is
identified by name and includes an associated abbreviation (for use by the CHAR
function) and an example of its use. In the case of an installation-defined time string
format, the format and length must have been specified when your DB2 subsystem
was installed. They cannot be listed here.

10. This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

Data Types

58 SQL Reference

|
|

|
|

Table 5. Formats for string representations of times

Format name Abbreviation Time format Example

International Standards
Organization10

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese industrial standard Christian
era

JIS hh:mm:ss 13:30:05

Installation-defined LOCAL Any installation-
defined form

—

Note: For LOCAL, the date exit for ASCII data is DSNXVDTA, the date exit for EBCDIC is
DSNXVDTX, and the date exit for Unicode is DSNXVDTU.

In the USA format:

v The minutes can be omitted, thereby specifying 00 minutes. For example, 1 PM
is equivalent to 1:00 PM.

v The letters A, M, and P can be lowercase.

v A single blank must precede the AM or PM.

v The hour must not be greater than 12 and cannot be 0 except for the special
case of 00:00 AM.

Using the ISO format of the 24-hour clock, the correspondence between the USA
format and the 24-hour clock is as follows:
v 12:01 AM through 12:59 AM correspond to 00.01.00 through 00.59.00
v 01:00 AM through 11:59 AM correspond to 01.00.00 through 11.59.00
v 12:00 PM (noon) through 11:59 PM correspond to 12.00.00 through 23.59.00
v 12:00 AM (midnight) corresponds to 24.00.00
v 00:00 AM (midnight) corresponds to 00.00.00

Timestamp strings: A string representation of a timestamp is a string that starts
with a digit and has a length of at least 16 characters. The complete string
representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing
blanks can be included, leading blanks are not allowed, and leading zeros can be
omitted in the month, day, and hour part of the timestamp; trailing zeros can be
truncated or omitted entirely from microseconds. If you choose to omit any digit of
the microseconds portion, an implicit specification of 0 is assumed. Thus,
1990-3-2-8.30.00.10 is equivalent to 1990-03-02-08.30.00.100000.

Restrictions on the use of local datetime formats
The following rules apply to the character string representation of dates and times:

For input: In distributed operations, DB2 as a server uses its local date or time
routine to evaluate host variables and literals. This means that character string
representation of dates and times can be:
v One of the standard formats
v A format recognized by the server’s local date/time exit

For output: With DRDA access, DB2 as a server returns date and time host
variables in the format defined at the server. With DB2 private protocol access, DB2
as a server returns date and time host variables in the format defined at the
requesting system. To have date and time host variables returned in another format,
use CHAR(date-expression, XXXX) where XXXX is JIS, EUR, USA, ISO, or LOCAL
to explicitly specify the specific format.

Data Types

Chapter 2. Language elements 59

|
|

For BIND PACKAGE COPY: When binding a package using the COPY option, DB2
uses the ISO format for output values unless the SQL statement explicitly specifies
a different format. Input values can be specified in the format described above
under “For input” on page 59.

Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a host
variable can have a row ID data type. A ROWID column enables queries to be
written that navigate directly to a row in the table. Each value in a ROWID column
must be unique, and DB2 maintains the values permanently, even across table
space reorganizations. When a row is inserted into the table, DB2 generates a
value for the ROWID column unless one is supplied. If a value is supplied, it must
be a valid row ID value that was previously generated by DB2 and the column must
be defined as GENERATED BY DEFAULT. Users cannot update the value of a
ROWID column.

The internal representation of a row ID value is transparent to the user. The value is
never subject to translation because it is considered to contain BIT data. The length
of a ROWID column as described in the LENGTH column of catalog table
SYSCOLUMNS is the internal length, which is 17 bytes. The length as described in
the LENGTH2 column of catalog table SYSCOLUMNS is the external length, which
is 40 bytes.

In a distributed data environment, the row ID data type is not supported for DB2
private protocol access. For information about using row IDs, see DB2 Application
Programming and SQL Guide.

Distinct types
A distinct type is a user-defined data type that shares its internal representation with
a built-in data type (its source type), but is considered to be a separate and
incompatible data type for most operations. For example, the semantics for a
picture type, a text type, and an audio type that all use the built-in data type BLOB
for their internal representation are quite different. A distinct type is created with the
SQL statement CREATE DISTINCT TYPE.

For example, the following statement creates a distinct type named AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M):

Although AUDIO has the same representation as the built-in data type BLOB, it is a
separate data type that is not comparable to a BLOB or to any other data type. This
inability to compare AUDIO to other data types allows functions to be created
specifically for AUDIO and assures that these functions cannot be applied to other
data types.

The name of a distinct type is qualified with a schema name. The implicit schema
name for an unqualified name depends on the context in which the distinct type
appears. If an unqualified distinct type name is used:

v In a CREATE DISTINCT TYPE or the object of DROP, COMMENT ON, GRANT,
or REVOKE statement, DB2 uses the normal process of qualification by
authorization ID to determine the schema name.

v In any other context, DB2 uses the SQL path to determine the schema name.
DB2 searches the schemas in the path, in sequence, and selects the first
schema in the path such that the distinct type exists in the schema and the user

Data Types

60 SQL Reference

has authorization to use the data type. For a description of the SQL path, see
“Schemas and the SQL path” on page 40.

A distinct type does not automatically acquire the functions and operators of its
source type because they might not be meaningful. (For example, it might make
sense for a “length” function of the AUDIO type to return the length in seconds
rather than in bytes.) Instead, distinct types support strong typing. Strong typing
ensures that only the functions and operators that are explicitly defined on a distinct
type can be applied to that distinct type. However, a function or operator of the
source type can be applied to the distinct type by creating an appropriate
user-defined function. The user-defined function must be sourced on the existing
function that has the source type as a parameter. For example, the following series
of SQL statements shows how to create a distinct type named MONEY based on
data type DECIMAL(9,2), how to define the + operator for the distinct type, and how
the operator might be applied to the distinct type:
CREATE DISTINCT TYPE MONEY AS DECIMAL(9,2) WITH COMPARISONS;

CREATE FUNCTION "+"(MONEY,MONEY)
RETURNS MONEY
SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));

CREATE TABLE SALARY_TABLE
(SALARY MONEY,
COMMISSION MONEY);

SELECT SALARY + COMMISSION FROM SALARY_TABLE;

A distinct type is subject to the same restrictions as its source type. For example, a
table can only have one ROWID column. Therefore, a table with a ROWID column
cannot also have a column with distinct type that is sourced on a row ID.

The comparison operators are automatically generated for distinct types, except
those that are sourced on a CLOB, DBCLOB, or BLOB. In addition, DB2
automatically generates functions for every distinct type that support casting from
the source type to the distinct type and from the distinct type to the source type. For
example, for the AUDIO type created above, these are generated cast functions:
FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS SYSIBM.BLOB (1M)
FUNCTION schema-name.AUDIO (SYSIBM.BLOB (1M)) RETURNS schema-name.AUDIO

In a distributed data environment, distinct types are not supported for DB2 private
protocol access.

Promotion of data types
Data types can be classified into groups of related data types. Within such groups,
an order of precedence exists in which one data type is considered to precede
another data type. This precedence enables DB2 to support the promotion of one
data type to another data type that appears later in the precedence order. For
example, DB2 can promote the data type CHAR to VARCHAR and the data type
INTEGER to DOUBLE PRECISION; however, DB2 cannot promote a CLOB to a
VARCHAR.

DB2 considers the promotion of data types when:

v Performing function resolution (see “Function resolution” on page 106)

v Casting distinct types (see “Casting between data types” on page 62)

v Assigning distinct types to built-in data types (see “Distinct type assignments” on
page 71)

Data Types

Chapter 2. Language elements 61

For each data type, Table 6 shows the precedence list (in order) that DB2 uses to
determine the data types to which the data type can be promoted. The table
indicates that the best choice is the same data type and not promotion to another
data type.

Table 6. Precedence of data types

Data type1,2 Data type precedence list (in best-to-worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or
DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, decimal, real, double

INTEGER INTEGER, decimal, real, double

decimal decimal, real, double

real real, double

double double

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

ROWID ROWID

A distinct type The same distinct type

Notes:

1. The data types in lowercase letters represent the following data types:

decimal DECIMAL(p,s) or NUMERIC(p,s)

real REAL or FLOAT(n) where n is not greater than 24

double DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is
greater than 24

2. Other synonyms for the listed data types are considered to be the same as the synonym
listed.

Casting between data types
There are many occasions when a value with a given data type needs to be cast
(changed) to a different data type or to the same data type with a different length,
precision, or scale. Data type promotion, as described in “Promotion of data types”
on page 61, is one example of when a value with one data type needs to be cast
to a new data type. A data type that can be changed to another data type is
castable from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. You can
use the function notation syntax or CAST specification syntax to explicitly cast a
data type. DB2 might implicitly cast data types during assignments that involve a
distinct type (see “Distinct type assignments” on page 71). In addition, when you
create a sourced user-defined function, the data types of the parameters of the
source function must be castable to the data types of the function that you are
creating (see “CREATE FUNCTION” on page 481).

Promotion of Data Types

62 SQL Reference

If truncation occurs when a character or graphic string is cast to another data type,
a warning occurs if any non-blank characters are truncated. This truncation
behavior is unlike the assignment of character or graphic strings to a target when
an error occurs if any non-blank characters are truncated.

For casts that involve a distinct type as either the data type to be cast to or from,
Table 7 shows the supported casts. For casts between built-in data types, Table 8
on page 64 shows the supported casts.

Table 7. Supported casts when a distinct type is involved

Data type ... Is castable to data type ...

Distinct type DT Source data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A Distinct type DT where A is promotable to the source data type of distinct type
DT (see “Promotion of data types” on page 61)

INTEGER Distinct type DT if DT’s source data type is SMALLINT

DOUBLE Distinct type DT if DT’s source data type is REAL

VARCHAR Distinct type DT if DT’s source data type is CHAR

VARGRAPHIC Distinct type DT if DT’s source data type is GRAPHIC

When a distinct type is involved in a cast, a cast function that was generated when
the distinct type was created is used. How DB2 chooses the function depends on
whether function notation or CAST specification syntax is used. (For details, see
“Function resolution” on page 106 and “CAST specification” on page 125,
respectively.) Function resolution is similar for both. However, in CAST specification,
when an unqualifed distinct type is specified as the target data type, DB2 first
resolves the schema name of the distinct type and then uses that schema name to
locate the cast function.

Casting Between Data Types

Chapter 2. Language elements 63

Table 8. Supported casts between built-in data types

To data type1 →

Cast from
data type ↓

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

R
O
W
I
D

SMALLINT Y Y Y Y Y Y Y - - - - - - - - -

INTEGER Y Y Y Y Y Y Y - - - - - - - - -

DECIMAL Y Y Y Y Y Y Y - - - - - - - - -

REAL Y Y Y Y Y Y Y - - - - - - - - -

DOUBLE Y Y Y Y Y Y Y - - - - - - - - -

CHAR Y Y Y Y Y Y Y Y Y Y Y2 Y Y Y Y Y

VARCHAR Y Y Y Y Y Y Y Y Y Y Y2 Y Y Y Y Y

CLOB - - - - - Y Y Y Y Y Y2 Y - - - -

GRAPHIC - Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y Y Y Y Y Y2 Y2 -

VARGRAPHIC - Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y Y Y Y Y Y2 Y2 -

DBCLOB - - - - - Y3 Y3 Y3 Y Y Y Y - - - -

BLOB - - - - - - - - - - - Y - - - -

DATE - - - - - Y Y - - - - - Y - - -

TIME - - - - - Y Y - - - - - - Y - -

TIMESTAMP - - - - - Y Y - - - - - Y Y Y -

ROWID - - - - - Y Y - - - - Y - - - Y

Note:
1. Other synonyms for the listed data types are considered to be the same as the synonym listed. Some exceptions

exist when the cast involves character string data if the subtype is FOR BIT DATA.
2. These data types are castable between each other only if the data is Unicode.
3. These data types are castable between each other only if the data is Unicode. The result length for these casts is

3 * LENGTH(graphic string).

Assignment and comparison
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH,
SELECT INTO, SET assignment, and VALUES INTO statements. In addition, when
a function is invoked or a stored procedure is called, the arguments of the function
or stored procedure are assigned. Comparison operations are performed during the
execution of statements that include predicates and other language elements such
as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that data types of the operands must be
compatible. The compatibility rule also applies to other operations that are
described under “Rules for result data types” on page 77. Table 9 on page 65 shows
the compatibility matrix for data types.

Casting Between Data Types

64 SQL Reference

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|
|
|
|
|

Table 9. Compatibility of data types for assignments and comparisons. Y indicates that the data types are compatible.
N indicates no compatibility. For any number in a column, read the corresponding note at the bottom of the table.

Operands
Binary
integer

Decimal
number

Floating
point

Char-
acter
string

Graphic
string

Binary
string Date Time

Time-
stamp

Row
ID

Distinct
type

Binary
Integer

Y Y Y N N N N N N N 2

Decimal
Number

Y Y Y N N N N N N N 2

Floating
Point

Y Y Y N N N N N N N 2

Character
String

N N N Y N4,5 N3 1 1 1 N 2

Graphic
String

N N N N4,5 Y N 1,4 1,4 1,4 N 2

Binary
String

N N N N3 N Y N N N N 2

Date N N N 1 1,4 N Y N N N 2

Time N N N 1 1,4 N N Y N N 2

Time-
stamp

N N N 1 1,4 N N N Y N 2

Row ID N N N N N N N N N Y 2

Distinct
Type

2 2 2 2 2 2 2 2 2 2 Y2

Notes:

1. The compatibility of datetime values is limited to assignment and comparison:
v Datetime values can be assigned to string columns and to string variables, as explained in “Datetime

assignments” on page 70.
v A valid string representation of a date can be assigned to a date column or compared to a date.
v A valid string representation of a time can be assigned to a time column or compared to a time.
v A valid string representation of a timestamp can be assigned to a timestamp column or compared to a

timestamp.

2. A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
DB2 supports assignments between a distinct type value and its source data type. For additional information, see
“Distinct type assignments” on page 71.

3. All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

4. These data types are compatible if the graphic string is Unicode UTF-16. On assignment and comparison from
Graphic to Character, the resulting length is 3 * (LENGTH(graphic string)).

5. Character strings with subtype FOR BIT DATA are not compatible with Unicode UTF-16 Graphic Data.

Compatibility with a column that has a field procedure is determined by the data
type of the column, which applies to the decoded form of its values.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have an
associated indicator variable. For a host variable that does have an associated
indicator variable, a null value is assigned by setting the indicator variable to a
negative value. See “References to host variables” on page 99 for a discussion of
indicator variables.

Assignment and Comparison

Chapter 2. Language elements 65

|

||||

|

|

|

|
|

|

Numeric assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated.

Decimal or integer to floating-point
Because floating-point numbers are only approximations of real numbers, the result
of assigning a decimal or integer number to a floating-point column or variable
might not be identical to the original number.

Floating-point or decimal to integer
When a single precision floating-point number is converted to integer, rounding
occurs on the seventh significant digit, zeros are added to the end of the number, if
necessary, starting from the seventh significant digit, and the fractional part of the
number is eliminated.

When a double precision floating-point or decimal number is converted to integer,
the fractional part of the number is eliminated.

The following examples show a single precision floating-point number converted to
an integer:

Example 1:
The floating-point number 2.0000045E6
assigned to an integer
column or host variable is: 2000000

Example 2:
The floating-point number 2.00000555E8
assigned to an integer
column or host variable is: 200001000

The following examples show a double precision floating-point number converted to
an integer:

Example 1:
The floating-point number 2.0000045E6
assigned to an integer
column or host variable is: 2000004

Example 2:
The floating-point number 2.00000555E8
assigned to an integer
column or host variable is: 200000555

The following examples show a decimal number converted to an integer:

Example 1:
The decimal number 2000004.5
assigned to an integer
column or host variable is: 2000004

Example 2:
The decimal number 200000555.0
assigned to an integer
column or host variable is: 200000555

Assignment and Comparison

66 SQL Reference

Decimal to decimal
When a decimal number is assigned to a decimal column or variable, the number is
converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is added or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is added, or the necessary number
of trailing digits is eliminated.

Integer to decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. The precision and scale of the temporary decimal
number is 5,0 for a small integer or 11,0 for a large integer.

Floating-point to floating-point
When a single precision System/390 floating-point number is assigned to a double
precision floating-point column or variable, the single precision data is padded with
eight hex zeros.

When a double precision System/390 floating-point number is assigned to a single
precision floating-point column or variable, the double precision data is converted
and rounded up on the seventh hex digit.

In assembler, C, or C⁺⁺ applications that are precompiled with the FLOAT(IEEE)
option, floating-point constants and values in host variables are assumed to have
IEEE floating-point format. All floating-point data is stored in DB2 in System/390
floating-point format. Therefore, when the FLOAT(IEEE) precompiler option is in
effect, DB2 performs the following conversions:

v When a number in short or long IEEE floating-point format is assigned to a
single-precision or double-precision floating-point column, DB2 converts the
number to System/390 floating-point format.

v When a single-precision or double-precision floating-point column value is
assigned to a short or long floating-point host variable, DB2 converts the column
value to IEEE floating-point format.

Floating-point to decimal
When a single precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision 6
by rounding on the seventh decimal digit. Twenty five zeros are then appended to
the number to bring the precision to 31. Because of rounding, a number less than
0.5×10-6 is reduced to 0.

When a double precision floating-point number is assigned to a decimal column or
variable, the number is first converted to a temporary decimal number of precision
15, and then, if necessary, truncated to the precision and scale of the target. In this
conversion, zeros are added to the end of the number, if necessary, to bring the
precision to 16. The number is then rounded (using floating-point arithmetic) on the
sixteenth decimal digit to produce a 15-digit number. Because of rounding, a
number less in magnitude than 0.5×10-15 is reduced to 0. If the decimal number
requires more than 15 digits to the left of the decimal point, an error is reported.
Otherwise, the scale is given the largest possible value that allows the whole part of
the number to be represented without loss of significance.

The following examples show the effect of converting a double precision
floating-point number to decimal:

Example 1:

Assignment and Comparison

Chapter 2. Language elements 67

The floating-point number .123456789098765E-05

in decimal notation is: .00000123456789098765
+5

Rounding adds 5
in the 16th position .00000123456789148765

and truncates the result to .000001234567891

Zeros are then added to the
end of a 31-digit result: .0000012345678910000000000000000

Example 2:
The floating-point number 1.2339999999999E+01

in decimal notation is: 12.33999999999900
+5

Rounding adds 5
in the 16th position 12.33999999999905

and truncates the result to 12.3399999999990

Zeros are then added to the
end of a 31-digit result: 12.33999999999900000000000000000

To COBOL integers
Assignment to COBOL integer variables uses the full size of the integer. Thus, the
value placed in the COBOL data item might be out of the range of values.

Example 1: If COL1 contains a value of 12345, the following statements cause the
value 12345 to be placed in A, even though A has been defined with only 4 digits:

01 A PIC S9999 BINARY.
EXEC SQL SELECT COL1

INTO :A
FROM TABLEX

END-EXEC.

Example 2: The following COBOL statement results in 2345 being placed in A:
MOVE 12345 TO A.

String assignments
The following rules apply when both the source and the target are strings. When a
datetime data type is involved, see “Datetime assignments” on page 70. For the
special considerations that apply when a distinct type is involved in an assignment,
especially to a host variable, see “Distinct type assignments” on page 71.

There are two types of string assignments:

v Storage assignment is when a value is assigned to a column or a parameter of a
function or stored procedure.

v Retrieval assignment is when a value is assigned to a host variable.

The rules differ for storage and retrieval assignment.

Storage assignment
The basic rule is that the length of the string assigned to a column or parameter of
a function or stored procedure must not be greater than the length attribute of the

Assignment and Comparison

68 SQL Reference

column or the parameter. Trailing blanks are included in the length of the string.
When the length of the string is greater than the length attribute of the column or
the parameter, the following actions occur:

v If all of the trailing characters that must be truncated to make a string fit the
target are blanks and the string is a character or graphic string, the string is
truncated and assigned without warning.

v Otherwise, the string is not assigned and an error occurs to indicate that at least
one of the excess characters is non-blank.

When a string is assigned to a fixed-length column or parameter and the length of
the string is less than the length attribute of the target, the string is padded to the
right with the necessary number of SBCS or DBCS blanks. The pad character is
always a blank even for columns defined with the FOR BIT DATA attribute.

Retrieval Assignment
The length of a string assigned to a host variable can be greater than the length
attribute of the host variable. When the length of the string is greater than the
length of the host variable, the string is truncated on the right by the necessary
number of SBCS or DBCS characters. When this occurs, the value W is assigned
to the SQLWARN1 field of the SQLCA. Furthermore, if an indicator variable is
provided, it is set to the original length of the string.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right
with the necessary number of blanks. The pad character is always a blank even for
strings defined with the FOR BIT DATA attribute.

Assignments involving mixed data strings
A mixed data string that contains DBCS characters cannot be assigned to an SBCS
column, SBCS parameter, or SBCS host variable. The following rules apply when a
mixed data string is assigned to a host variable and the string is longer than the
length attribute of the variable:

v If the string is not well-formed mixed data, it is truncated as if it were BIT or
graphic data.

v If the string is well-formed mixed data, it is modified on the right such that it is
well-formed mixed data with a length that is the same as the length attribute of
the variable and the number of characters lost is minimal.

Assignments involving C NUL-terminated strings
A C NUL-terminated string variable referenced in a CONNECT statement need not
contain a NUL (X'00'). Otherwise, DB2 enforces the convention that the value of a
NUL-terminated string variable, either character or graphic, is NUL-terminated. An
input host variable that does not contain a NUL will cause an error. A value
assigned to an output variable will always be NUL-terminated even if a character
must be truncated to make room for the NUL.

When a string of length n is assigned to a C NUL-terminated string variable with a
length greater than n+1, the rules depend on whether the source string is a value of
a fixed-length string or a varying-length string:

v If the source is a fixed-length string, the string is padded on the right with x-n-1
blanks, where x is the length of the variable. The padded string is then assigned
to the variable and a NUL is placed in the last byte of the variable.

v If the source is a varying-length string, the string is assigned to the first n bytes
of the variable and a NUL is placed in the next byte.

Assignment and Comparison

Chapter 2. Language elements 69

Conversion rules for string assignment
A character or graphic string assigned to a column or host variable is first
converted, if necessary, to the coded character set of the target. Conversion is
necessary only if all the following are true:
v The CCSIDs of string and target are different.
v Neither CCSID is X'FFFF' (neither the string nor the target is defined as BIT

data).
v The string is neither null nor empty.

An error occurs if:

v The SYSSTRINGS table is used but contains no information about the pair of
CCSIDs and DB2 cannot do the conversion through OS/390 support for Unicode
or Language Environment.

v A character of the string cannot be converted and the operation is assignment to
a column or to a host variable that has no indicator variable.

v A mixed data string that contains DBCS characters is assigned to an SBCS
column.

A warning occurs if:

v A character of the string is converted to a substitution character. A substitution
character is the character that is used when a character of the source character
set is not part of the target character set. For example, if the source character
set includes Katakana characters and the target character set does not, a
Katakana character is converted to the EBCDIC SUB X'3F'.

v A character of the string cannot be converted and the operation is assignment to
a host variable that has an indicator variable. For example, a DBCS character
cannot be converted if the host variable has an SBCS CCSID. In this case, the
string is not assigned to the host variable and the indicator variable is set to -2.

Datetime assignments
A DATE, TIME, or TIMESTAMP value can only be assigned to a column with a
matching data type (whether DATE, TIME, or TIMESTAMP), a string column, or a
string variable. The string column or string variable can be fixed or varying-length,
but must not be a BLOB, CLOB, or DBCLOB column or variable. A value assigned
to a DATE, TIME, or TIMESTAMP column must have a matching data type (whether
DATE, TIME, or TIMESTAMP) or must be a valid string representation of the
matching data type. The string representation must not be a BLOB, CLOB, or
DBCLOB. A datetime value cannot be assigned to a column that has a field
procedure.

When a datetime value is assigned to a string variable or column, it is converted to
its string representation. Leading zeros are not omitted from any part of the date,
time, or timestamp. The required length of the target varies depending on the
format of the string representation. If the length of the target is greater than
required, it is padded on the right with blanks. If the length of the target is less than
required, the result depends on the type of datetime value involved, and on the type
of target.

v If the target is a string column (except for BLOB, CLOB, or DBCLOB), truncation
is not allowed. The length of the column must be at least 10 for a date, 8 for a
time, and 19 for a timestamp.

v When the target is a host variable, the following rules apply:

For a DATE: The length of the variable must not be less than 10.

Assignment and Comparison

70 SQL Reference

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

For a TIME: If the USA format is used, the length of the variable must not be
less than 8. This format does not include seconds.

If the ISO, EUR, or JIS format is used, the length of the variable must not be
less than 5. If the length is 5, 6, or 7, the seconds part of the time is omitted
from the result and SQLWARN1 is set to 'W'. In this case, the seconds part of
the time is assigned to the indicator variable if one is provided, and, if the
length is 6 or 7, the value is padded with blanks so that it is a valid string
representation of a time.

For a TIMESTAMP: The length of the variable must not be less than 19. If
the length is between 19 and 25, the timestamp is truncated like a string,
causing the omission of one or more digits of the microsecond part. If the
length is 20, the trailing decimal point is replaced by a blank so that the value
is a valid string representation of a timestamp.

Row ID assignments
A row ID value can only be assigned to a column, parameter, or host variable with a
row ID data type. For the value of the ROWID column, the column must be defined
as GENERATED BY DEFAULT and the column must have a unique, single-column
index. The value that is specified for the column must be a valid row ID value that
was previously generated by DB2.

Distinct type assignments
The rules that apply to the assignments of distinct types to host variables are
different than the rules for all other assignments that involve distinct types.

Assignments to host variables: The assignment of distinct type to a host variable
is based on the source data type of the distinct type. Therefore, the value of a
distinct type is assignable to a host variable only if the source data type of the
distinct type is assignable to the host variable.

Example: Assume that distinct type AGE was created with the following SQL
statement:

CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS;

When the statement was executed, DB2 also generated these cast functions:
AGE (SMALLINT) RETURNS AGE
AGE (INTEGER) RETURNS AGE
SMALLINT (AGE) RETURNS SMALLINT

Next, assume that column STU_AGE was defined in table STUDENTS with distinct
type AGE. Now, consider this valid assignment of a student’s age to host variable
HV_AGE, which has an INTEGER data type:

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200;

The distinct type value is assignable to host variable HV_AGE because the source
data type of the distinct type (SMALLINT) is assignable to the host variable
(INTEGER). If distinct type AGE had been sourced on a character data type such
as CHAR(5), the above assignment would be invalid because a character type
cannot be assigned to an integer type.

Assignments other than to host variables: A distinct type can be the source or
target of an assignment. Assignment is based on whether the data type of the value
to be assigned is castable to the data type of the target. (Table 7 on page 63 shows

Assignment and Comparison

Chapter 2. Language elements 71

|
|
|
|
|

which casts are supported when a distinct type is involved). Therefore, a distinct
type value can be assigned to any target other than a host variable when:

v The target of the assignment has the same distinct type, or

v The distinct type is castable to the data type of the target

Any value can be assigned to a distinct type when:

v The value to be assigned has the same distinct type as the target, or

v The data type of the assigned value is castable to the target distinct type

Example: Assume that the source data type for distinct type AGE is SMALLINT:
CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, assume that two tables TABLE1 and TABLE2 were created with four identical
column descriptions:
AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DEC(6,2)

Using the following SQL statement and substituting various values for X and Y to
insert values into various columns of TABLE1 from TABLE2, Table 10 shows
whether the assignments are valid. DB2 uses assignment rules in this INSERT
statement to determine if X can be assigned to Y.

INSERT INTO TABLE1 (Y)
SELECT X FROM TABLE2;

Table 10. Assessment of various assignments for example INSERT statement

X (column
in TABLE2)

Y (column
in TABLE1) Valid Reason

AGECOL AGECOL Yes Source and target are same distinct
type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE

INTCOL AGECOL Yes INTEGER can be cast to AGE (because
AGE’s source type is SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type of
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Numeric comparisons
Numbers are compared algebraically, that is, with regard to sign. For example, −2 is
less than +1.

If one number is an integer and the other is decimal, the comparison is made with a
temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is made
with a temporary copy of one of the numbers that has been extended with trailing
zeros so that its fractional part has the same number of digits as the other number.

Assignment and Comparison

72 SQL Reference

If one number is double precision floating-point and the other is integer, decimal, or
single precision floating-point, the comparison is made with a temporary copy of the
other number which has been converted to double precision floating-point. However,
if a single precision floating-point number is compared with a floating-point constant,
the comparison is made with a single precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String comparisons
Two strings are compared by comparing the corresponding bytes of each string. If
the strings do not have the same length, the comparison is made with a temporary
copy of the shorter string that has been padded on the right with blanks so that it
has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are equal.
An empty string is equal to a blank string. If two strings are not equal, their
relationship (that is, which has the greater value) is determined by the comparison
of the first pair of unequal bytes from the left end of the strings. This comparison is
made according to the collating sequence associated with the encoding scheme of
the data. For ASCII data, characters A through Z (both upper and lowercase) have
a greater value than characters 0 through 9. For EBCDIC data, characters A
through Z (both upper and lowercase) have a lesser value than characters 0
through 9.

Varying-length strings with different lengths are equal if they differ only in the
number of trailing blanks. In operations that select one value from a collection of
such values, the value selected is arbitrary. The operations that can involve such an
arbitrary selection are DISTINCT, MAX, MIN, and references to a grouping column.
See the description of GROUP BY for further information about the arbitrary
selection involved in references to a grouping column.

String comparisons with field procedures
If a column with a field procedure is compared with the value of a variable or a
constant, the variable or constant is encoded by the field procedure before the
comparison is made. If the comparison operator is LIKE, the variable or constant is
not encoded and the column value is decoded.

If a column with a field procedure is compared with another column, that column
must have the same field procedure. The comparison is performed on the encoded
form of the values in the columns. If the encoded values are numeric, their data
types must be identical; if they are strings, their data types must be compatible.

If two encoded strings of different lengths are compared, the shorter is temporarily
padded with encoded blanks so that it has the same length as the other string.

In a CASE expression, if a column with a field procedure is used as the
result-expression in a THEN or ELSE clause, all other columns that are used as
result-expressions must have the same field procedure. Otherwise, no column used
in a result-expression may name a field procedure.

Conversion rules for string comparison
When two strings are compared, one of the strings is first converted, if necessary,
to the coded character set of the other string. Conversion is necessary only if all of
the following are true:
v The CCSIDs of the two strings are different.

Assignment and Comparison

Chapter 2. Language elements 73

v Neither CCSID is X'FFFF' (neither string is defined as BIT data or is a BLOB
string).

v The string selected for conversion is neither null nor empty.
v For Unicode data only, the following conversion tables (Table 11 or Table 12

indicate that conversion is necessary.

The conversion that occurs when SBCS data is compared with mixed data depends
on the encoding scheme. For ASCII and EBCDIC data, the conversion depends on
the value of the field MIXED DATA on installation panel DSNTIPF at the DB2 that
does the comparison:
v If this value is YES, the SBCS operand is converted to MIXED.
v If this value is NO, the MIXED operand is converted to SBCS.

For comparison of two Unicode strings, the following table shows which operand is
selected for conversion.

Table 11. Operand that supplies the CCSID for character conversion for the CCSID for
Unicode data

First operand

Second operand

SBCS Data Mixed UTF-8 Data
DBCS UTF-16
Data

SBCS Data See next table. second second

Mixed UTF-8 Data first See next table. second

DBCS UTF-16 Data first first See next table.

In other cases, the string selected for conversion depends on the type of the
operands. The following table shows which operand supplies the target CCSID,
given the operand types.

Table 12. Operand that supplies the CCSID for character conversion

First operand

Second operand

Column
value

String
constant

Special
register

Derived
value

Host
variable

Column Value first first first first first

String Constant second first first first first

Special Register second first first first first

Derived Value second second second first first

Host Variable second second second second first/second1

Note: 1. Both operands are converted, if necessary, to the system CCSID of the server for
the encoding scheme in effect.

For example, assume a comparison of the form:
string-constant = derived-value

Here, the relevant table entry is in the second row and fourth column. The value for
this entry shows that the first operand (string-constant) supplies the target CCSID.
Thus, the derived value is converted, if necessary, to the coded character set of the
string constant.

An error occurs if a character of the string cannot be converted, the SYSSTRINGS
table is used but contains no information about the pair of CCSIDs of the operands

Assignment and Comparison

74 SQL Reference

|
|

|
|

|
|

||
|

|

|

||
|
|

||||

||||

||||
|

|

|
|

being compared, or DB2 cannot do the conversion through OS/390 support for
Unicode or Language Environment. A warning occurs if a character of the string is
converted to a substitution character.

Datetime comparisons
A DATE, TIME, or TIMESTAMP value can be compared either with another value of
the same data type or with a string representation of that data type. All comparisons
are chronological, which means the further a point in time is from January 1, 0001,
the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied.

Comparisons involving TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate is
true:

TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

Row ID comparisons
A value with a row ID type can only be compared to another row ID value. The
comparison of the row ID values is based on their internal representations. The
maximum number of bytes that are compared is 17 bytes, which is the number of
bytes in the internal representation. Therefore, row ID values that differ in bytes
beyond the 17th byte are considered to be equal.

Distinct type comparisons
A value with a distinct type can only be compared to another value with exactly the
same type because distinct types have strong typing, which means that a distinct
type is compatible only with its own type. Therefore, to compare a distinct type to a
value with a different data type, the distinct type value must be cast to the data type
of the comparison value or the comparison value must be cast to the distinct type.
For example, because constants are built-in data types, a constant can be
compared to a distinct type value only if it is first cast to the distinct type or vice
versa.

Table 13 shows examples of valid and invalid comparisons, assuming the following
SQL statements were used to define two distinct types AGE_TYPE and
CAMP_DATE and table CAMP_ROSTER table.

CREATE DISTINCT TYPE AGE_TYPE AS INTEGER WITH COMPARISONS;
CREATE DISTINCT TYPE CAMP_DATE AS DATE WITH COMPARISONS;

CREATE TABLE CAMP_ROSTER
(NAME VARCHAR(20),

ATTENDEE_NUMBER INTEGER NOT NULL,
AGE AGE_TYPE,
FIRST_CAMP_DATE CAMP_DATE,
LAST_CAMP_DATE CAMP_DATE,
BIRTHDATE DATE);

Table 13. Examples of valid and invalid comparisons involving distinct types

SQL statement Valid Reason

Distinct types with distinct types

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE < LAST_CAMP_DATE;

Yes Both values are the same distinct type.

Assignment and Comparison

Chapter 2. Language elements 75

|
|
|

Table 13. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

Distinct types with columns of the same source data type

SELECT * FROM CAMP_ROSTER
WHERE AGE > ATTENDEE_NUMBER;

No A distinct type cannot be compared to integer.

SELECT * FROM CAMP_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER;

SELECT * FROM CAMP_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER;

Yes The distinct type is cast to an integer, making the
comparison of two integers.

SELECT * FROM CAMP_ROSTER
WHERE AGE > AGE_TYPE(ATTENDEE_NUMBER);

SELECT * FROM CAMP_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER as AGE_TYPE);

Yes Integer ATTENDEE_NUMBER is cast to the
distinct type AGE_TYPE, making both values the
same distinct type.

Distinct types with constants

SELECT * FROM CAMP_ROSTER
WHERE AGE IN (15,16,17);

No A distinct type cannot be compared to a constant.

SELECT * FROM CAMP_ROSTER
WHERE INTEGER(AGE) IN (15,16,17);

Yes The distinct type is cast to the data type of
constants, making all the values in the
comparison integers.

SELECT * FROM CAMP_ROSTER
WHERE AGE IN
(AGE_TYPE(15),AGE_TYPE(16),AGE_TYPE(17));

Yes Constants are cast to distinct type AGE_TYPE,
making all the values in the comparison the same
distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE > '06/12/99';

No A distinct type cannot be compared to a constant.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST('06/12/99' AS CAMP_DATE);

No The string constant ’06/12/99’, a VARCHAR data
type, cannot be cast directly to distinct type
CAMP_DATE, which is sourced on a DATE data
type. As illustrated in the next row, the constant
must be cast to a DATE data type and then to
the distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST(DATE('06/12/1999') AS CAMP_DATE);

Yes The string constant ’06/12/99’ is cast to the
distinct type CAMP_DATE, making both values
the same distinct type. To cast a string constant
to a distinct type that is sourced on a DATE,
TIME, or TIMESTAMP data type, the string
constant must first be cast to a DATE, TIME, or
TIMESTAMP data type.

Distinct types with host variables

SELECT * FROM CAMP_ROSTER
WHERE AGE BETWEEN :HV_INTEGER AND :HV_INTEGER2;

No The host variables have integer data types. A
distinct type cannot be compared to an integer.

SELECT * FROM CAMP_ROSTER
WHERE AGE
BETWEEN CAST(:HV_INTEGER AS AGE_TYPE)
AND AGE_TYPE(:HV_INTEGER2);

Yes The host variables are cast to distinct type
AGE_TYPE, making all the values the same
distinct type.

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE > :HV_VARCHAR;

No The host variable has a VARCHAR data type. A
distinct type cannot be compared to a
VARCHAR.

Assignment and Comparison

76 SQL Reference

Table 13. Examples of valid and invalid comparisons involving distinct types (continued)

SQL statement Valid Reason

SELECT * FROM CAMP_ROSTER
WHERE FIRST_CAMP_DATE >
CAST(DATE(:HV_VARCHAR) AS CAMP_DATE);

Yes The host variable is cast to the distinct type
CAMP_DATE, making both values the same
distinct type. To cast a VARCHAR host variable
to a distinct type that is sourced on a DATE,
TIME, or TIMESTAMP data type, the host
variable must first be cast to a DATE, TIME, or
TIMESTAMP data type.

Rules for result data types
Rules that are applied to the operands of an operation determine the data type of
the result. This section explains when those rules apply and lists them by the
possible data types of operands.

The rules apply to:

v Corresponding columns in UNION or UNION ALL operations

v Result expressions of a CASE expression

v Arguments of the scalar functions COALESCE, IFNULL, and VALUE

v Expression values of the IN list of an IN predicate

The rules are applied subject to other restrictions on long strings for the various
operations.

Evaluation of the operands of an operation determines the data type of the result. If
an operation has more than one pair of operands, DB2 determines the result type
of the first pair, uses this result type with the next operand to determine the next
result type, and so on. The last intermediate result type and the last operand
determine the result type of the operation.

String operands
Character and graphic strings are compatible with other character and graphic
strings as long as there is a conversion between their corresponding CCSIDs.

Table 14. Result data types with string operands

One operand Other operand Data type of the result

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) or
VARCHAR(y)

VARGRAPHIC(z) where z = max(x,y)

CLOB(x) CHAR(y), VARCHAR(y),
or CLOB(y)

CLOB(z) where z = max(x,y)

CLOB(x) VARGRAPHIC(y),
GRAPHIC(y),or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

Assignment and Comparison

Chapter 2. Language elements 77

|

|
|

||

|||

|||

|||

||
|
|

||
|
|

||
|
|

||
|
|

|

Table 14. Result data types with string operands (continued)

One operand Other operand Data type of the result

VARGRAPHIC(x) VARGRAPHIC(y),
GRAPHIC(y),
VARCHAR(y), or
CHAR(y)

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) DBCLOB(y),
VARGRAPHIC(y),
GRAPHIC(y), CLOB(y),
VARCHAR(y), or
CHAR(y)

DBCLOB(z) where z = max(x,y)

Character string subtypes are determined as indicated in the following table:

Table 15. Result data types with character string operands

One operand Other operand Data type of the result

Bit data Mixed, SBCS, or bit
data

Bit data

Mixed data Mixed or SBCS data Mixed data

SBCS data SBCS data SBCS data

Binary string operands
Binary strings (BLOBs) are compatible only with other binary strings (BLOB)s. The
data type of the result is a BLOB. Other data types can be treated as a BLOB data
type by using the BLOB scalar function to cast the data type to a BLOB. The length
of the result BLOB is the largest length of all the data types.

Table 16. Result data types with binary string operands

One operand Other operand Data type of the result

BLOB(x) BLOB(y) BLOB(z) where z = max(x,y)

Numeric operands
Numeric types are compatible only with other numeric types.

Table 17. Result data types with numeric operands

One operand Other operand Data type of the result

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s = max(x,z)

REAL REAL REAL

REAL DECIMAL, INTEGER,
or SMALLINT

DOUBLE

Rules for Result Data Types

78 SQL Reference

|

|||

||
|
|
|

|

||
|
|
|
|

|

|

|

||

|||

||
|
|

|||

|||
|

|

Table 17. Result data types with numeric operands (continued)

One operand Other operand Data type of the result

DOUBLE any numeric DOUBLE

Note:

1. Precision cannot exceed 31.

Datetime operands
A DATE type is compatible with another DATE type or any string expression that
contains a valid string representation of a date. A string representation must not be
a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. The data type of the result is DATE.

A TIME type is compatible with another TIME type or any string expression that
contains a valid string representation of a time. A string representation must not be
a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. The data type of the result is TIME.

A TIMESTAMP type is compatible with another TIMESTAMP type or any string
expression that contains a valid string representation of a timestamp. A string
representation must not be a BLOB, CLOB, or DBCLOB and must have an actual
length that is not greater than 255 bytes. The data type of the result is TIMESTAMP.

Row ID operands
A row ID data type is compatible only with itself. The result has a row ID data type.

Distinct type operands
A distinct type is compatible only with itself. The data type of the result is the
distinct type.

Nullable attribute of a result
With the exception of the COALESCE and VALUE functions, the result of an
operation can be null unless the operands do not allow nulls.

Constants
A constant (also called a literal) specifies a value. Constants are classified as string
constants or numeric constants. Numeric constants are further classified as integer,
floating-point, or decimal. String constants are classified as character or graphic.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Constants have a built-in data type. Therefore, an operation that involves a constant
and a distinct type requires that the distinct type be cast to the built-in data type of
the constant or the constant be cast to the distinct type. For example, see Table 13
on page 75, which contains an example of casting data types to compare a
constant to a distinct type.

Integer constants
An integer constant specifies a binary integer as a signed or unsigned number that
has a maximum of 10 significant digits and no decimal point. If the value is not

Rules for Result Data Types

Chapter 2. Language elements 79

|
|
|
|

|
|
|
|

|
|
|
|

within the range of a large integer, the constant is interpreted as a decimal
constant. The data type of an integer constant is large integer.

Examples:
64 -15 +100 32767 720176

In syntax diagrams, the term integer is used for an integer constant that must not
include a sign.

Floating-point constants
A floating-point constant specifies a floating-point number as two numbers
separated by an E. The first number can include a sign and a decimal point. The
second number can include a sign but not a decimal point. The value of the
constant is the product of the first number and the power of 10 specified by the
second number. It must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 30. Excluding leading zeros, the
number of digits in the first number must not exceed 17 and the number of digits in
the second must not exceed 2. The data type of a floating-point constant is double
precision floating-point.

Examples: The following floating-point constants represent the numbers 150,
200000, -0.22, and 500:

15E1 2.E5 -2.2E-1 +5.E+2

Decimal constants
A decimal constant specifies a decimal number as a signed or unsigned number of
no more than 31 digits and either includes a decimal point or is not within the range
of binary integers. The precision is the total number of digits, including those, if any,
to the right of the decimal point. The total includes all leading and trailing zeros. The
scale is the number of digits to the right of the decimal point, including trailing
zeros.

Examples: The following decimal constants have, respectively, precisions and
scales of 5 and 2; 4 and 0; 2 and 0; 23 and 2:

025.50 1000. -15. +375893333333333333333.33

Character string constants
A character string constant specifies a varying-length character string. There are
two forms of character string constant:

v A sequence of characters that starts and ends with a string delimiter, which is
either an apostrophe (') or a quotation mark ("). For the factors that determine
which is applicable, see “Apostrophes and quotation marks in string delimiters”
on page 148. This form of string constant specifies the character string
contained between the string delimiters. The number of bytes between the
delimiters must not be greater than 255. Two consecutive string delimiters are
used to represent one string delimiter within the character string.

v An X followed by a sequence of characters that starts and ends with a string
delimiter. This form of a character string constant is also called a hexadecimal
constant. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 254. A
hexadecimal digit is a digit or any of the letters A through F (uppercase or
lowercase). Under the conventions of hexadecimal notation, each pair of

Constants

80 SQL Reference

hexadecimal digits represents a character. A hexadecimal constant allows you to
specify characters that do not have a keyboard representation.

Examples:
'12/14/1985' '32' 'DON''T CHANGE' X'FFFF' ''

The rightmost string in the example ('') represents an empty character string
constant, which is a string of zero length.

A character string constant is classified as mixed data if it includes a DBCS
substring. In all other cases, a character string constant is classified as SBCS data.
The CCSID assigned to the constant is the appropriate system CCSID of the
database server. A mixed string constant can be continued from one line to the next
only if the break occurs between single byte characters. A Unicode string is always
considered mixed regardless of the content of the string.

For Unicode, character constants can be assigned to UTF-8 and UTF-16. The form
of the constant does not matter. Typically, character string constants are used only
with character strings, but they also can be used with graphic UTF-16 data.
However, hexadecimal constants are just character data. Thus, hexadecimal
constants being used to insert data into UTF-16 data strings should be in UTF-8
format, not UTF-16 format. For example, if you wanted to insert the number 1 into a
UTF-16 column, you would use X'31', not X'0031'. Even though X'0031' is a UTF-16
value, DB2 treats it as two separate UTF-8 codepoints. Thus, X'0031' would
become X'00000031'.

Datetime constants
A datetime constant is a character string constant of a particular format. Character
string constants are described under the previous heading, “Character string
constants” on page 80. For information about the valid string formats, see “String
representations of datetime values” on page 57.

Graphic string constants
A graphic string constant specifies a varying-length graphic string. (Shift-in and
shift-out characters for EBCDIC data are discussed in “Character strings” on
page 49.)

In EBCDIC environments, the forms of graphic string constants are11:

11. The PL/I form of graphic string constants is supported only in static SQL statements.

Constants

Chapter 2. Language elements 81

|
|

|
|
|
|
|
|
|
|
|

In SQL statements and in host language statements in a source program, graphic
string constants cannot be continued from one line to the next. The maximum
number of DBCS characters in a graphic string constant is 124.

For Unicode, graphic constants can be assigned to UTF-8 and UTF-16. The form of
the constant does not matter. Typically, graphic string constants are used only with
graphic strings; however, they also can be used with character UTF-8 data.

Special registers
A special register is a storage area defined for a process by DB2. Wherever its
name appears in an SQL statement, the name is replaced by the register’s value
when the statement is executed. Thus, the name acts like a function that has no
arguments. The form of a special register is as follows:

dbcs-string

dbcs-stringG GG' '

G''

g' '

g''

dbcs-string ' '

''

' '

' '

N

N

n

n

' '

''

' '

N

PL/I

All other
contexts

dbcs-string G G

Context Graphic String Constant Empty String Example

G G GS
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
I

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

S
O

G represents a
DBCS G (X'42C7')

represents a
DBCS apostrophe
(X'427D')

Constants

82 SQL Reference

|
|
|

General rules for special registers
Following these general rules for special registers, each special register is
described individually.

Changing register values: A commit or rollback operation has no effect on the
values of special registers. Nor does any SQL statement, with the following
exceptions:

v SQL SET statements can change the values of CURRENT APPLICATION
ENCODING SCHEME, CURRENT DEGREE, CURRENT LOCALE LC_CTYPE,
CURRENT OPTIMIZATION HINT, CURRENT PACKAGESET, CURRENT PATH,
CURRENT PRECISION, CURRENT RULES, and CURRENT SQLID12.

v SQL CONNECT statements can change the value of CURRENT SERVER.

12. If the SET CURRENT SQLID statement is executed in a stored procedure or user-defined function package that has a dynamic
SQL behavior other than run behavior, the SET CURRENT SQLID statement does not affect the authorization ID that is used for
dynamic SQL statements in the package. The dynamic SQL behavior determines the authorization ID. For more information, see
the discussion of DYNAMICRULES in Chapter 2 of DB2 Command Reference.

special registers

�� CURRENT APPLICATION ENCODING SCHEME
CURRENT DATE

(1)
CURRENT_DATE

CURRENT DEGREE
CURRENT LC_CTYPE

LOCALE
CURRENT_LC_CTYPE

CURRENT MEMBER
CURRENT OPTIMIZATION HINT
CURRENT PACKAGESET

CURRENT PATH
FUNCTION

CURRENT_PATH
CURRENT PRECISION
CURRENT RULES
CURRENT SERVER
CURRENT SQLID

CURRENT TIME
(1)

CURRENT_TIME
CURRENT TIMESTAMP

(1)
CURRENT_TIMESTAMP
CURRENT TIMEZONE
USER

��

Notes:

1 The SQL standard uses the form with the underline.

Special Registers

Chapter 2. Language elements 83

|
|

CCSIDS for register values: The values of certain special registers are character
strings. The registers with string values are:
v CURRENT APPLICATION ENCODING SCHEME
v CURRENT DEGREE
v CURRENT LOCALE LC_CTYPE
v CURRENT MEMBER
v CURRENT OPTIMIZATION HINT
v CURRENT PACKAGESET
v CURRENT PATH
v CURRENT PRECISION
v CURRENT RULES
v CURRENT SERVER
v CURRENT SQLID
v USER

The CCSID that is associated with these registers is the one named in the ASCII
CODED CHAR SET, EBCDIC CODED CHAR SET, or the UNICODE CCSID field
on installation panel DSNTIPF at the server executing the statement. The CCSID
that is used depends on whether the SQL statement in which the special register is
referenced involves data in ASCII, EBCDIC, or Unicode tables; if no table is
involved, the CCSID for the default encoding scheme for your system is used. Field
DEF ENCODING SCHEME on installation panel specifies whether the default
encoding scheme is EBCDIC, ASCII, or UNICODE. For the SET host-variable and
VALUES INTO statements, the application encoding scheme bind option determines
the desired encoding scheme.

Datetime special registers: The datetime registers are named CURRENT DATE,
CURRENT TIME, and CURRENT TIMESTAMP. Datetime special registers are
stored in an internal format. When two or more of these registers are implicitly or
explicitly specified in a single SQL statement, they represent the same point in time.
A datetime special register is implicitly specified when it is used to provide the
default value of a datetime column.

If the SQL statement in which a datetime special register is used is in a
user-defined function or stored procedure that is within the scope of a trigger, DB2
uses the timestamp for the triggering SQL statement to determine the special
register value.

The values of these special registers are based on:

v The time-of-day clock of the processor for the server executing the SQL
statement

v The MVS TIMEZONE parameter for this processor. The TIMEZONE parameter is
in SYS1.PARMLIB(CLOCKXX).

To evaluate the references when the statement is being executed, a single reading
from the time-of-day clock is incremented by the number of hours, minutes, and
seconds specified by the TIMEZONE parameter. The values derived from this are
assumed to be the local date, time, or timestamp, where local means local to the
DB2 that executes the statement. This assumption is correct if the clock is set to
local time and the MVS TIMEZONE parameter is zero or the clock is set to GMT
and the MVS TIMEZONE parameter gives the difference from GMT. Universal time,
coordinated (UTC) is another name for Greenwich Mean Time (GMT).

Since the datetime special registers and the CURRENT TIMEZONE special register
depend on the MVS parameter PARMTZ(SYS1.PARMLIB(CLOCKXX)), their values
are affected if the MVS local time at the server is changed by the MVS system

Special Registers

84 SQL Reference

|

|

|

|

|

|

command SET CLOCK. The values of the CURRENT DATE and CURRENT
TIMESTAMP special registers might be affected if the MVS local date at the server
is changed by the MVS system command SET DATE13.

Where special registers are processed: In distributed applications, CURRENT
APPLICATION ENCODING SCHEME, CURRENT SERVER, and CURRENT
PACKAGESET are processed locally. All other special registers are processed at
the server.

CURRENT APPLICATION ENCODING SCHEME
CURRENT APPLICATION ENCODING SCHEME specifies which encoding scheme
is to be used for dynamic statements. It allows an application to indicate the
encoding scheme that is used to process data. This register is not supported in
REXX applications or in stored procedures written in REXX.

The initial value of CURRENT APPLICATION ENCODING SCHEME is determined
by the value of the ENCODING bind option if the bind option is specified. If the bind
option was not specified, then the initial value is the value of field DEFAULT
APPLICATION ENCODING SCHEME on installation panel DSNTIPF. You can
changes the value of the register by executing the statement SET CURRENT
APPLICATION ENCODING SCHEME. For a description of the statement, see “SET
CURRENT APPLICATION ENCODING SCHEME” on page 850.

The value contained in the special register is a character representation of a
CCSID. Although you can use the values ASCII, EBCDIC, or UNICODE to set the
special register, what is stored in the special register is a character representation
of the numeric CCSID that corresponds to the value used in the SET CURRENT
APPLICATION ENCODING SCHEME statement. The value ASCII, EBCDIC, or
UNICODE is not stored. The CCSID_ENCODING scalar function can be used to
get a value of ASCII, EBCDIC, or UNICODE from a numeric CCSID value.

The data type is CHAR(8). If necessary, the value is padded on the right with
blanks so that its length is 8 bytes.

For stored procedures and user-defined functions, the initial value of the CURRENT
APPLICATION ENCODING SCHEME special register is determined by the value of
the ENCODING bind option for the package that is associated with the procedure or
function. If the bind option was not specified, then the initial value is the value of the
field DEFAULT APPLICATION ENCODING SCHEME field on installation panel
DSNTIPF.

For triggers, the initial value of the CURRENT APPLICATION ENCODING SCHEME
special register is the value of field DEFAULT APPLICATION ENCODING SCHEME
on installation panel DSNTIPF.

Example: The CURRENT APPLICATION ENCODING SCHEME special register can
be used like any other special register:

EXEC SQL VALUES(CURRENT APPLICATION ENCODING SCHEME) INTO :HV1;
EXEC SQL INSERT INTO T1 VALUES (CURRENT APPLICATION ENCODING SCHEME);
EXEC SQL SET :HV1 = CURRENT APPLICATION ENCODING SCHEME;
EXEC SQL SELECT C1 FROM T1 WHERE C1 = CURRENT APPLICATION ENCODING SCHEME;

13. Whether the SET DATE command affects these special registers depends on the MVS system level and the program temporary
fix (PTF) level of the system.

Special Registers

Chapter 2. Language elements 85

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

CURRENT DATE
CURRENT DATE, or equivalently CURRENT_DATE, specifies the current date. The
data type is DATE. The value of CURRENT DATE in a user-defined function or
stored procedure is inherited according to the rules in Table 19 on page 92. For
other applications, the date is derived by the DB2 that executes the SQL statement
that refers to the special register. For a description of how the date is derived, see
“Datetime special registers” on page 84.

Example: Display the average age of employees.
SELECT AVG(YEAR(CURRENT DATE - BIRTHDATE))

FROM DSN8710.EMP;

CURRENT DEGREE
CURRENT DEGREE specifies the degree of parallelism for the execution of queries
that are dynamically prepared by the application process. The data type of the
register is CHAR(3) and the only valid values are 1 (padded on the right with two
blanks) and ANY.

If the value of CURRENT DEGREE is 1 when a query is dynamically prepared, the
execution of that query will not use parallelism. If the value of CURRENT DEGREE
is ANY when a query is dynamically prepared, the execution of that query can
involve parallelism. See Part 5 (Volume 2) of DB2 Administration Guide for a
description of query parallelism.

The initial value of CURRENT DEGREE is determined by the value of field
CURRENT DEGREE on installation panel DSNTIP4. The default for the initial value
of that field is 1 unless your installation has changed it to be ANY by modifying the
value in that field. The initial value of CURRENT DEGREE in a user-defined
function or stored procedure is inherited according to the rules in Table 19 on
page 92.

You can change the value of the register by executing the statement SET
CURRENT DEGREE. For details about this statement, see “SET CURRENT
DEGREE” on page 851.

CURRENT DEGREE is a register at the database server. Its value applies to
queries that are dynamically prepared at that server and to queries that are
dynamically prepared at another DB2 subsystem as a result of the use of a DB2
private connection between that server and that DB2 subsystem.

Example: The following statement inhibits parallelism:
SET CURRENT DEGREE = '1';

CURRENT LOCALE LC_CTYPE
CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will be used
to execute SQL statements that use a built-in function that references a locale.
Functions LCASE, UCASE, and TRANSLATE (with a single argument) refer to the
locale when they are executed. The data type is CHAR(50). If necessary, the value
is padded on the right with blanks so that its length is 50 bytes.

The initial value of CURRENT LOCALE LC_CTYPE is determined by the value of
field LOCALE LC_CTYPE on installation panel DSNTIPF. The default for the initial
value of that field is blank unless your installation has changed the value of that

Special Registers

86 SQL Reference

|

|
|
|

|
|
|

field. The initial value of CURRENT LOCALE LC_CTYPE in a user-defined function
or stored procedure is inherited according to the rules in Table 19 on page 92.

You can change the value of the register by executing the statement SET
CURRENT LOCALE LC_CTYPE. For details about this statement, see “SET
CURRENT LOCALE LC_CTYPE” on page 853.

Example: Save the value of current register CURRENT LOCALE LC_CTYPE in
host variable HV1, which is defined as VARCHAR(50).

EXEC SQL VALUES(CURRENT LOCALE LC_CTYPE) INTO :HV1;

CURRENT OPTIMIZATION HINT
CURRENT OPTIMIZATION HINT specifies the user-defined optimization hint that
DB2 should use to generate the access path for dynamic statements. The data type
is CHAR(8).

The value of the register identifies the rows in auth.PLAN_ID that DB2 uses to
generate the access path. If the value of the register is all blanks, DB2 uses normal
optimization and ignores optimization hints. If the value of the register includes any
non-blank characters and DB2 was installed without optimization hints enabled (field
OPTIMIZATION HINTS on installation panel DSNTIP4), a warning occurs.

The initial value of CURRENT OPTIMIZATION HINT is the value of the OPTHINT
bind option. The initial value of CURRENT OPTIMIZATION HINT in a user-defined
function or stored procedure is inherited according to the rules in Table 19 on
page 92. You can change the value of the special register by executing the
statement SET CURRENT OPTIMIZATION HINT. For details about this statement,
see “SET CURRENT OPTIMIZATION HINT” on page 855.

Example: Set the CURRENT OPTIMIZATION HINT special register so that DB2
uses the optimization plan hint that is identified by host variable NOHYB when
generating the access path for dynamic statements.

SET CURRENT OPTIMIZATION HINT = :NOHYB

For more information about telling DB2 how to generate access paths, see Part 6 of
DB2 Application Programming and SQL Guide.

CURRENT PACKAGESET
CURRENT PACKAGESET specifies a string of blanks or the collection ID of the
package or packages that will be used to execute SQL statements. The data type is
CHAR(18). If necessary, the collection ID is padded on the right with blanks so that
its length is 18 bytes.

The initial value of CURRENT PACKAGESET is blanks. The value is a collection ID
only if the application process has explicitly specified a collection ID by means of
the SET CURRENT PACKAGESET statement. For details about this statement, see
“SET CURRENT PACKAGESET” on page 856. The initial value of CURRENT
PACKAGESET in a user-defined function or stored procedure is inherited according
to the rules in Table 19 on page 92.

Example: Before passing control to another program, identify the collection ID for its
package as ALPHA.

EXEC SQL SET CURRENT PACKAGESET = 'ALPHA';

Special Registers

Chapter 2. Language elements 87

|
|

|
|
|

|
|
|

CURRENT PATH
CURRENT PATH, or equivalently CURRENT_PATH, specifies the SQL path used to
resolve unqualified data type names and function names in dynamically prepared
SQL statements. It is also used to resolve unqualified procedure names that are
specified as host variables in SQL CALL statements (CALL host-variable). The data
type is VARCHAR(254).

The CURRENT PATH special register contains a list of one or more schema
names, where each schema name is enclosed in delimiters and separated from the
following schema by a comma (any delimiters within the string are repeated as they
are in any delimited identifier). The delimiters and commas are included in the 254
character length.

For information on when the SQL path is used to resolve unqualified names in both
dynamic and static SQL statements and the effect of its value, see “Schemas and
the SQL path” on page 40.

The initial value of the CURRENT PATH special register is:

v The value of the PATH bind option, or

v ″SYSIBM″, ″SYSFUN″, ″SYSPROC″, ″value of CURRENT SQLID special
register″ if the PATH bind option was not specified

The initial value of CURRENT PATH in a user-defined function or stored procedure
is inherited according to the rules in Table 19 on page 92.

You can change the value of the register by executing the statement SET PATH.
For details about this statement, see “SET PATH” on page 865.

Example: Set the special register so that schema SMITH is searched before
schemas SYSIBM, SYSFUN, and SYSPROC.

SET PATH = SMITH, SYSIBM, SYSFUN, SYSPROC;

CURRENT PRECISION
CURRENT PRECISION specifies the rules to be used when both operands in a
decimal operation have precisions of 15 or less. The data type of the register is
CHAR(5), and the only valid values are 'DEC15' and 'DEC31'. DEC15 specifies the
rules that do not allow a precision greater than 15 digits, and DEC31 specifies the
rules that allow a precision of up to 31 digits. The rules for DEC31 are always used
if either operand has a precision greater than 15.

The initial value of CURRENT PRECISION is determined by the value of field
DECIMAL ARITHMETIC on installation panel DSNTIP4. The default for the initial
value is DEC15 unless your installation has changed it to be DEC31 by modifying
the value in that field. The initial value of CURRENT PRECISION in a user-defined
function or stored procedure is inherited according to the rules in Table 19 on
page 92.

You can change the value of the register by executing the statement SET
CURRENT PRECISION. For details about this statement, see “SET CURRENT
PRECISION” on page 858.

CURRENT PRECISION only affects dynamic SQL. If the value of CURRENT
PRECISION is DEC15 when an SQL statement is dynamically prepared, DEC15
rules will apply. If the value of CURRENT PRECISION is DEC31 when an SQL
statement is dynamically prepared, DEC31 rules will apply. Preparation of a

Special Registers

88 SQL Reference

|
|

#
#

|
|
|

statement with DEC31 instead of DEC15 is more likely to result in an error,
especially for division operations. For more information, see “Arithmetic with two
decimal operands” on page 114.

Example: Set CURRENT PRECISION so that subsequent statements that are
prepared use DEC31 rules for decimal arithmetic:

SET CURRENT PRECISION = 'DEC31';

CURRENT RULES
CURRENT RULES specifies whether certain SQL statements are executed in
accordance with DB2 rules or the rules of the SQL standard. The data type of the
register is CHAR(3), and the only valid values are 'DB2' and 'STD'.

CURRENT RULES is a register at the database server. If the server is not the local
DB2, the initial value of the register is 'DB2'. Otherwise, the initial value is the same
as the value of the SQLRULES bind option. The initial value of CURRENT RULES
in a user-defined function or stored procedure is inherited according to the rules in
Table 19 on page 92.

You can change the value of the register by executing the statement SET
CURRENT RULES. For details about this statement, see “SET CURRENT RULES”
on page 859.

CURRENT RULES affects the statements listed in Table 18. The table summarizes
when the statements are affected and shows where to find detailed information.
CURRENT RULES also affects whether DB2 issues an existence error (SQLCODE
-204) or an authorization error (SQLCODE -551) when an object does not exist.

Table 18. Summary of statements affected by CURRENT RULES

Statement What is affected Details on
page

ALTER TABLE Enforcement of check constraints added.

Default value of the delete rule for referential
constraints.

Whether DB2 creates LOB table spaces, auxiliary
tables, and indexes on auxiliary tables for added
LOB columns.

Whether DB2 creates an index for an added
ROWID column that is defined with GENERATED
BY DEFAULT.

398

CREATE TABLE Default value of the delete rule for referential
constraints.

Whether DB2 creates LOB table spaces, auxiliary
tables, and indexes on auxiliary tables for LOB
columns.

Whether DB2 creates an index for a ROWID
column that is defined with GENERATED BY
DEFAULT.

601

DELETE Authorization requirements for searched DELETE. 688

GRANT Granting privileges to yourself. 749

REVOKE Revoking privileges from authorization IDs 811

Special Registers

Chapter 2. Language elements 89

|
|
|

Table 18. Summary of statements affected by CURRENT RULES (continued)

Statement What is affected Details on
page

UPDATE Authorization requirements for searched UPDATE. 872

Example: Set CURRENT RULES so that a later ALTER TABLE statement is
executed in accordance with the rules of the SQL standard:

SET CURRENT RULES = 'STD';

CURRENT SERVER
CURRENT SERVER specifies the location name of the current server. The data
type is CHAR(16). If necessary, the location name is padded on the right with
blanks so that its length is 16 bytes.

The initial value of CURRENT SERVER depends on the CURRENTSERVER bind
option. If CURRENTSERVER X is specified on the bind subcommand, the initial
value is X. If the option is not specified, the initial value is the location name of the
local DB2. The initial value of CURRENT SERVER in a user-defined function or
stored procedure is inherited according to the rules in Table 19 on page 92. The
value of CURRENT SERVER is changed by the successful execution of a
CONNECT statement.

The value of CURRENT SERVER is a string of blanks when:
v The application process is in the unconnected state, or
v The application process is connected to a local DB2 subsystem that does not

have a location name.

Example: Set the host variable CS to the location name of the current server.
EXEC SQL SET :CS = CURRENT SERVER;

CURRENT SQLID
CURRENT SQLID specifies the SQL authorization ID of the process. The data type
is CHAR(8). If necessary, the authorization ID is padded on the right with blanks so
that its length is 8 bytes.

The initial value of CURRENT SQLID can be provided by the connection or sign-on
exit routine. If not, the initial value is the primary authorization ID of the process.
The initial value of CURRENT SQLID in a user-defined function or stored procedure
is inherited according to the rules in Table 19 on page 92.

CURRENT SQLID can only be referred to in an SQL statement that is executed by
the current server.

Example: Set the SQL authorization ID to ’GROUP34’ (one of the authorization IDs
of the process).
SET CURRENT SQLID = 'GROUP34';

CURRENT TIME
CURRENT TIME, or equivalently CURRENT_TIME, specifies the current time. The
data type is TIME.

Special Registers

90 SQL Reference

|
|

|
|

The time is derived by the DB2 that executes the SQL statement that refers to the
special register. For a description of how the time is derived, see “Datetime special
registers” on page 84. The value of CURRENT TIME in a user-defined function or
stored procedure is inherited according to the rules in Table 19 on page 92.

Example: Display information about all project activities and include the current date
and time in each row of the result.

SELECT DSN8710.PROJACT.*, CURRENT DATE, CURRENT TIME
FROM DSN8710.PROJACT;

CURRENT TIMESTAMP
CURRENT TIMESTAMP, or equivalently CURRENT_TIMESTAMP, specifies the
current timestamp. The data type is TIMESTAMP.

The timestamp is derived by the DB2 that executes the SQL statement that refers
to the special register. For a description of how the timestamp is derived, see
“Datetime special registers” on page 84. The value of CURRENT TIMESTAMP in a
user-defined function or stored procedure is inherited according to the rules in
Table 19 on page 92.

Example: Display information about the full image copies that were taken in the last
week.

SELECT * FROM SYSIBM.SYSCOPY
WHERE TIMESTAMP > CURRENT TIMESTAMP - 7 DAYS;

CURRENT TIMEZONE
CURRENT TIMEZONE specifies the MVS TIMEZONE parameter in the form of a
time duration. The data type is DECIMAL(6,0).

The time duration is derived by the DB2 that executes the SQL statement that
refers to the special register. The seconds part of the time duration is always zero.
An error occurs if the hours portion of the MVS TIMEZONE parameter is not
between -24 and 24. The value of CURRENT TIMEZONE in a user-defined function
or stored procedure is inherited according to the rules in Table 19 on page 92.

Example: Display information from SYSCOPY, but with the TIMESTAMP converted
to GMT. This example is based on the assumption that the installation sets the
clock to GMT and the MVS TIMEZONE parameter to the difference from GMT.

SELECT DBNAME, TSNAME, DSNUM, ICTYPE, TIMESTAMP - CURRENT TIMEZONE
FROM SYSIBM.SYSCOPY;

USER
USER specifies the primary authorization ID of the process. The data type is
CHAR(8). If necessary, the authorization ID is padded on the right with blanks so
that its length is 8 bytes.

If USER is referred to in an SQL statement that is executed at a remote DB2 and
the primary authorization ID has been translated to a different authorization ID,
USER specifies the translated authorization ID. For an explanation of authorization
ID translation, see Part 3 (Volume 1) of DB2 Administration Guide. The value of
USER in a user-defined function or stored procedure is determined according to the
rules in Table 19 on page 92.

Special Registers

Chapter 2. Language elements 91

|
|

|
|
|

|
|

|
|
|

Example: Display information about tables, views, and aliases that are owned by
the primary authorization ID of the process.

SELECT * FROM SYSIBM.SYSTABLES WHERE CREATOR = USER;

Inheriting special registers in a user-defined function or a stored
procedure

Table 19 shows information you need when you use special registers in a
user-defined function or stored procedure.

Table 19. Characteristics of special registers in a user-defined function or a stored procedure

Special register Initial value when
INHERIT SPECIAL
REGISTERS option is
specified

Initial value when
DEFAULT SPECIAL
REGISTERS option is
specified

Routine
can use
SET
statement
to modify?

CURRENT
APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the
user-defined function or
stored procedure
package

The value of bind option
ENCODING for the
user-defined function or
stored procedure
package

Yes

CURRENT DATE New value for each SQL
statement in the
user-defined function or
stored procedure
package1

New value for each SQL
statement in the
user-defined function or
stored procedure
package1

Not
applicable4

CURRENT DEGREE Inherited from invoker2 The value of field
CURRENT DEGREE on
installation panel
DSNTIP4

Yes

CURRENT LOCALE
LC_CTYPE

Inherited from invoker The value of field
CURRENT LC_CTYPE
on installation panel
DSNTIPF

Yes

CURRENT
OPTIMIZATION HINT

The value of bind option
OPTHINT for the
user-defined function or
stored procedure
package or inherited
from invoker5

The value of bind option
OPTHINT for the
user-defined function or
stored procedure
package

Yes

CURRENT
PACKAGESET

Inherited from invoker3 Inherited from invoker3 Yes

CURRENT PATH The value of bind option
PATH for the
user-defined function or
stored procedure
package or inherited
from invoker5

The value of bind option
PATH for the
user-defined function or
stored procedure
package

Yes

CURRENT PRECISION Inherited from invoker The value of field
DECIMAL ARITHMETIC
on installation panel
DSNTIP4

Yes

Special Registers

92 SQL Reference

|

|

|
|

||

||
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

||
|
|
|
|

|
|
|
|
|

|
|

|||
|
|
|

|

|
|
||
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|||

||
|
|
|
|
|

|
|
|
|
|

|

|||
|
|
|

|

Table 19. Characteristics of special registers in a user-defined function or a stored
procedure (continued)

Special register Initial value when
INHERIT SPECIAL
REGISTERS option is
specified

Initial value when
DEFAULT SPECIAL
REGISTERS option is
specified

Routine
can use
SET
statement
to modify?

CURRENT RULES Inherited from invoker The value of bind option
SQLRULES for the
user-defined function
package or stored
procedure package

Yes

CURRENT SERVER Inherited from invoker Inherited from invoker Yes

CURRENT SQLID The primary
authorization ID of the
application process or
inherited from invoker6

The primary
authorization ID of the
application process

Yes7

CURRENT TIME New value for each SQL
statement in the
user-defined function or
stored procedure
package1

New value for each SQL
statement in the
user-defined function or
stored procedure
package1

Not
applicable4

CURRENT TIMESTAMP New value for each SQL
statement in the
user-defined function or
stored procedure
package1

New value for each SQL
statement in the
user-defined function or
stored procedure
package1

Not
applicable4

CURRENT TIMEZONE Inherited from invoker Inherited from invoker Not
applicable4

CURRENT USER Primary authorization ID
of the application
process

Primary authorization ID
of the application
process

Not
applicable4

Special Registers

Chapter 2. Language elements 93

|
|

||
|
|
|

|
|
|
|

|
|
|
|
|

|||
|
|
|
|

|

||||

||
|
|
|

|
|
|

|

||
|
|
|
|

|
|
|
|
|

|
|

||
|
|
|
|

|
|
|
|
|

|
|

||||
|

||
|
|

|
|
|

|
|

Table 19. Characteristics of special registers in a user-defined function or a stored
procedure (continued)

Special register Initial value when
INHERIT SPECIAL
REGISTERS option is
specified

Initial value when
DEFAULT SPECIAL
REGISTERS option is
specified

Routine
can use
SET
statement
to modify?

Note:

1. If the user-defined function or stored procedure is invoked within the scope of a trigger,
DB2 uses the timestamp for the triggering SQL statement as the timestamp for all SQL
statements in the package.

2. DB2 allows parallelism at only one level of a nested SQL statement. If you set the value
of the CURRENT DEGREE special register to ANY, and parallelism is disabled, DB2
ignores the CURRENT DEGREE value.

3. If the user-defined function or stored procedure definer specifies a value for COLLID in
the CREATE FUNCTION statement, DB2 sets CURRENT PACKAGESET to the value of
COLLID.

4. Not applicable because no SET statement exists for the special register.

5. If a program within the scope of the invoking program issues a SET statement for the
special register before the user-defined function or stored procedure is invoked, the
special register inherits the value from the SET statement. Otherwise, the special register
contains the value that is set by the bind option for the user-defined function or stored
procedure package.

6. If a program within the scope of the invoking program issues a SET CURRENT SQLID
statement before the user-defined function or stored procedure is invoked, the special
register inherits the value from the SET statement. Otherwise, CURRENT SQLID
contains the authorization ID of the application process.

7. If the user-defined function or stored procedure package uses a value other than RUN for
the DYNAMICRULES bind option, the SET CURRENT SQLID statement can be executed
but does not affect the authorization ID that is used for the dynamic SQL statements in
the package. The DYNAMICRULES value determines the authorization ID that is used for
dynamic SQL statements. For more information, see the discussion of DYNAMICRULES
in Chapter 2 of DB2 Command Reference.

Column names
The meaning of a column name depends on its context. A column name can be
used to:

v Declare the name of a column, as in a CREATE TABLE statement or in a
CREATE FUNCTION statement that defines a table function.

v Identify a column, as in a CREATE INDEX statement.

v Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. (Groups
and intermediate result tables are explained in Chapter 4. Queries, which
begins on page 299.) For example, MAX(SALARY) applies the function MAX
to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied. For

Special Registers

94 SQL Reference

|
|

||
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

example, when the search condition CODE = 20 is applied to some row, the
value specified by the column name CODE is the value of the column CODE
in that row.

v Temporarily, rename a column, as in the correlation-clause of a table referenced
in a FROM clause.

Qualified column names
A qualifier for a column name can be a table name, a view name, an alias name, a
synonym, or a correlation name.

Whether a column name can be qualified depends, like its meaning, on its context:

v In some forms of the COMMENT ON and LABEL ON statements, a column
name must be qualified. This is shown in the syntax diagrams.

v Where the column name specifies values of the column, a column name can be
qualified at the user’s option.

v In all other contexts, a column name must not be qualified. This rule will be
mentioned in the discussion of each statement to which it applies.

Where a qualifier is optional, it can serve two purposes. See “Column name
qualifiers to avoid ambiguity” on page 96 and “Column name qualifiers in correlated
references” on page 97 for details.

Correlation names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

With Z defined as a correlation name for table X.MYTABLE, only Z should be used
to qualify a reference to a column of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table, view, nested table expression or table
function only within the context in which it is defined. Hence, the same correlation
name can be defined for different purposes in different statements. In a nested table
expression or table function, a correlation name is required.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example, Z might have been used merely to avoid having to enter
X.MYTABLE more than once.

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the result
table. As with a correlation name, the listed column names should be the names
that are used to reference the columns in that SELECT statement. For example,
assume that the name of the first column in the DEPT table is DEPTNO. Given this
FROM clause:

FROM DEPT D (NUM,NAME,MGR,ANUM,LOC)

You should use D.NUM instead of D.DEPTNO to reference the first column of the
table.

Column Names

Chapter 2. Language elements 95

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, an ORDER BY clause, an
expression, or a search condition, a column name refers to values of a column in
some table, view, nested table expression, or table function. The tables, views,
nested table expression, or table function reference that might contain the column
are called the object tables of the context. Two or more object tables might contain
columns with the same name. One reason for qualifying a column name is to name
the table from which the column comes.

Table designators: A qualifier that names a specific object table is called a table
designator. The clause that identifies the object tables also establishes the table
designators for them. For example, the object tables of an expression in a SELECT
clause are named in the FROM clause that follows it, as in this statement:

SELECT DISTINCT Z.EMPNO, EMPTIME, PHONENO
FROM DSN8710.EMP Z, DSN8710.EMPPROJACT
WHERE WORKDEPT = 'D11'

AND EMPTIME > 0.5
AND Z.EMPNO = DSN8710.EMPPROJACT.EMPNO;

This example illustrates how to establish table designators in the FROM clause:

v A correlation name that follows a table name, view name, nested table
expression, or table function is a table designator. Thus, Z is a table designator
and qualifies the first column name after SELECT.

v A table name or view name that is not followed by a correlation name is a table
designator. Thus, the qualified table name, DSN8710.EMPPROJACT is a table
designator and qualifies the EMPNO column.

Avoiding undefined or ambiguous references in DB2 SQL: When a column
name refers to values of a column, exactly one object table must include a column
with that name. The following situations are considered errors:

v No object table contains a column with the specified name. The reference is
undefined.

v The column name is qualified by a table designator, but the table named does
not include a column with the specified name. Again, the reference is undefined.

v The name is unqualified and more than one object table includes a column with
that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the table names can be used as designators.

Two or more object tables can be instances of the same table. A FROM clause that
includes n references to the same table should include at least n - 1 unique
correlation names.

For example, in the following FROM clause X and Y are defined to refer,
respectively, to the first and second instances of the table EMP.

SELECT X.LASTNAME, Y.LASTNAME
FROM DSN8710.EMP X, DSN8710.EMP Y
WHERE Y.JOB = 'MANAGER'

AND X.WORKDEPT = Y.WORKDEPT
AND X.JOB <> 'MANAGER';

Column Names

96 SQL Reference

Column name qualifiers in correlated references
A subselect and a fullselect are forms of a query that can be used as a component
of various SQL statements. Refer to “Chapter 4. Queries” on page 299 for more
information on subselects and fullselects. A subselect or a fullselect used within a
search condition of any statement is called a subquery.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Thus, an SQL statement can contain a hierarchy of
subqueries. Those elements of the hierarchy that contain subqueries are said to be
at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition of a subquery can reference not only
columns of the tables identified by the FROM clause of its own element of the
hierarchy, but also columns of tables identified at any level along the path from its
own element to the highest level of the hierarchy. A reference to a column of a table
identified at a higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the form
of an unqualified column name is not good practice. The following explanation
is based on the assumption that a correlated reference is always in the form of a
qualified column name and that the qualifier is a correlation name.

A qualified column name, Q.C, is a correlated reference only if these three
conditions are met:
v Q.C is used in a search condition or in a select list of a subquery.
v Q does not name a table used in the FROM clause of that subquery.
v Q does name a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table
designators. If Q is used to name a table at more than one level, Q.C refers to the
lowest level that contains the subquery that includes Q.C.

For example, in the following statement, the correlated reference X.WORKDEPT (in
the last line) refers to the value of WORKDEPT in table DSN8710.EMP at the level
of the first FROM clause (which establishes X as a correlation name for
DSN8710.EMP.). The statement lists employees who make less than the average
salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM DSN8710.EMP X
WHERE SALARY < (SELECT AVG(SALARY)

FROM DSN8710.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example shows a correlated reference in the select list of the
subquery.

SELECT T1.KEY1
FROM BP1TBL T1
GROUP BY T1.KEY1
HAVING MAX(T1.KEY1) = (SELECT MIN(T1.KEY1) + MIN(T2.KEY1)

FROM BP2TBL T2);

Column Names

Chapter 2. Language elements 97

|
|
|
|

|

|
|

|
|
|
|
|

Resolution of column name qualifiers and column names
Names in a FROM clause are either exposed or non-exposed. A correlation name
for a table name, view name, nested table expression, or reference to a function
reference is always exposed. A table name or a view name that is not followed by a
correlation name is also exposed.

In IBM SQL and ANSI/ISO SQL, the exposed names in a FROM clause must be
unique, and the qualifier of a column name must be an exposed name.

The rules for finding the referent of a column name qualifier are as follows:

1. Let Q be a one-, two-, or three-part name, and let Q.C denote a column name
in subselect S. Q must designate a table or view identified in the statement that
includes S and that table or view must have a column named C. An additional
requirement differs for two cases:

v If Q.C is not in a search-condition or S is not a subquery, Q must designate a
table or view identified in the FROM clause of S. For example, if Q.C is in a
SELECT clause, Q refers to a table or view in the following FROM clause.

v If Q.C is in a search-condition and S is a subquery, Q must designate a table
or view identified either in the FROM clause of S or in a FROM clause of a
subselect that directly or indirectly includes S. For example, if Q.C is in a
WHERE clause and S is the only subquery in the statement, the table or view
that Q refers to is either in the FROM clause of S or the FROM clause of the
subselect that includes S.

2. The same table or view can be identified more than once in the same
statement. The particular occurrence of the table or view that Q refers to is
determined by a procedure equivalent to the following steps:

a. The one- and two-part names in every FROM clause and the one- and
two-part qualifiers of column names are expanded into a fully-qualified form.

For example, if a dynamic SQL statement uses FROM Q and
DYNAMICRULES run behavior (RUN) is in effect, Q is expanded to S.A.Q,
where S is the value of CURRENT SERVER and A is the value of
CURRENT SQLID. (If DYNAMICRULES bind behavior is in effect instead, A
is the plan or package qualifier as determined during the bind process.) We
refer to this step later as “name completion”. An error occurs if the first part
of every name (the location) is not the same.

b. Q, now a three-part name, is compared with every name in the FROM
clause of S. If Q.C is in a search-condition and S is a subquery, Q is next
compared with every name in the FROM clause of the subselect that
contains S. If that subselect is a subquery, Q is then compared with every
name in the FROM clause of the subselect containing that subquery, and so
on. If a FROM clause includes multiple names, the comparisons in that
clause are made in order from left to right.

c. The referent of Q is selected by these rules:

v If Q matches exactly one name, that name is selected.

v If Q matches more than one name, but only one exposed name, that
exposed name is selected.

v If Q matches more than one exposed name, the first of those names is
selected.

v If Q matches more than one name, none of which are exposed names,
the first of those names is selected.

Column Names

98 SQL Reference

|

If Q does not match any name, or if the table or view designated by Q does
not include a column named C, an error occurs.

d. Otherwise, Q.C is resolved to column C of the occurrence of the table or
view identified by the selected name.

3. A warning occurs for any of these cases:

v The selected name is not an exposed name.

v The selected name is an exposed name that has an unexposed duplicate
that appears before the selected name in the ordered list of names to which
Q is compared.

v The selected name is an exposed name that has an exposed duplicate in the
same FROM clause.

v Another name would have been selected had the matching been performed
before name completion.

The warnings indicate cases of ambiguous references in which the referent
selected might not be the same one that would have been selected in releases
of DB2 before Version 2 Release 3.

The rules for resolving column name qualifiers apply to every SQL statement
that includes a subselect and are applied before synonyms and aliases are
resolved. In the case of a searched UPDATE or DELETE statement, the first
clause of the statement identifies the table or view to be updated or deleted.
That clause can include a correlation name and, with regard to name resolution,
is equivalent to the first FROM clause of a SELECT statement. For example, a
subquery in the search condition of an UPDATE statement can include a
correlated reference to a column of the updated rows.

The rules for column names in the ORDER BY clause are the same as other
clauses.

References to variables
A variable is a host variable or an SQL variable that is referenced in an SQL
statement. Host variables are defined by statements of a host language. SQL
variables are defined by an SQL compound-statement in an SQL procedure.
Variables cannot be referenced in dynamic SQL statements; parameter markers
must be used instead. In this book, unless otherwise noted, the term host variable
in syntax diagrams is used to indicate where a host-variable, SQL variable, or
parameter marker can be used.

For more information on host variables, see “References to host variables”. For
more information on SQL variables, see “compound-statement” on page 895. For
more information on parameter markers, see “Parameter markers” on page 798.

References to host variables
A host variable is either of these items that is referred to in an SQL statement:

v A variable in a host language such as a PL/I variable, C variable, Fortran
variable, COBOL data item, or Assembler language storage area

v A host language construct that was generated by an SQL precompiler from a
variable declared using SQL extensions

Column Names

Chapter 2. Language elements 99

|

|
|
|
|
|
|
|

|
|
|

Host variables are defined directly by statements of the host language or indirectly
by SQL extensions as described in Part 2 of DB2 Application Programming and
SQL Guide. Host variables cannot be referenced in dynamic SQL statements.

In PL/I, C, and COBOL, host variables can be referred to in ways that do not apply
to Fortran and Assembler language. This is explained in “Host structures in PL/I, C,
and COBOL” on page 103. The following applies to all host languages.

The term host-variable, as used in the syntax diagrams, shows a reference to a
host variable. In a SET assignment statement and the INTO clause of a FETCH,
SELECT INTO, or VALUES INTO statement, a host variable is an output variable to
which a value is assigned by DB2. In all other contexts, a host variable is an input
variable which provides a value to DB2.

The general form of a host variable reference is:

Each host identifier must be declared in the source program, except in a program
written in REXX. The first host identifier designates the main variable; the second
host identifier designates its indicator variable. The variable designated by the
second host identifier must be a small integer. The purposes of the indicator
variable are to:

v Specify the null value. A negative value of the indicator variable specifies the null
value. A -2 null indicates a numeric conversion or arithmetic expression error
occurred in the SELECT list of an outer SELECT statement.

v Record the original length of a truncated string.

v Indicate that a character could not be converted.

v Record the seconds portion of a time if the time is truncated on assignment to a
host variable.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative, the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a FETCH or SELECT INTO statement, and if the
value returned is null, V1 is not changed and V2 is set to -1 or -2. It is set to -1 if
the value selected was actually null. It is set to -2 if the null value was returned
because of numeric conversion errors or arithmetic expression errors in the
SELECT list of an outer SELECT statement. It is also set to -2 as the result of a
character conversion error. If the value returned is not null, that value is assigned to
V1, and V2 is set to zero (unless the assignment to V1 requires string truncation, in
which case V2 is set to the original length of the string). If an assignment requires
truncation of the seconds part of a time, V2 is set to the number of seconds.

If the second host identifier is omitted, the host variable does not have an indicator
variable: the value specified by the host variable :V1 is always the value of V1 and
null values cannot be assigned to the variable. Thus, this form should not be used

�� :host-identifier
INDICATOR

:host-identifier

��

References to Host Variables

100 SQL Reference

|
|

in an INTO clause unless the corresponding result column cannot contain null
values. If this form is used for an output host variable and the value returned is null,
DB2 will generate an error at run time.

An SQL statement that refers to host variables must be within the scope of the
declaration of those host variables. For host variables referred to in the SELECT
statement of a cursor, that rule applies to the OPEN statement rather than to the
DECLARE CURSOR statement.

All references to host variables must be preceded by a colon. If an SQL
statement references a host variable without a preceding colon, the precompiler
issues an error for the missing colon or interprets the host variable as an
unqualified column name, which might lead to unintended results. The interpretation
of a host variable without a colon as a column name occurs when the host variable
is referenced in a context in which a column name can also be referenced.

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.
A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value; that is, where a host
variable would be found if the statement string were a static SQL statement. The
following examples show a static SQL statement that uses host variables and a
dynamic statement that uses parameter markers:

INSERT INTO DEPT VALUES (:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)

INSERT INTO DEPT VALUES (?, ?, ?, ?)

For more information on parameter markers, see “Parameter markers” on page 798
under the PREPARE statement.

References to LOB host variables
Regular LOB variables (CLOB, DBCLOB, and BLOB) and LOB locator variables
(see “References to LOB locator variables” on page 102) can be defined in all host
languages, except in REXX. Where LOBs are allowed, the term host-variable in a
syntax diagram can refer to a regular host variable or a locator variable. Since
these variables are not native data types in host programming languages, SQL
extensions are used and the precompilers generate the host language constructs
necessary to represent each variable.

When it is possible to define a host variable that is large enough to hold an entire
LOB value and the performance benefit of delaying the transfer of data from the
server is not required, a LOB locator is not needed. However, host language
restrictions, storage restrictions, or performance often dictate against storing an
entire LOB value in temporary storage. When it is preferable not to store an entire
LOB value, a LOB locator can be used to refer to the LOB value and portions of the
LOB value can be selected into or updated from host variables that contain only a
portion of the LOB value.

Like all other host variables, a LOB locator variable can have an associated
indicator variable. Indicator variables for LOB locator variables behave in the same
way as indicator variables for other data types. When a null value is returned from
the database, the indicator variable is set and the locator host variable is
unchanged. This means a locator can never represent a null value.

References to Host Variables

Chapter 2. Language elements 101

|

References to LOB locator variables
A LOB locator variable is a host variable that contains the locator representing a
LOB value on the database server.

A locator variable in an SQL statement must identify a LOB locator variable
described in the program according to the rules for declaring locator variables. This
is always indirectly through an SQL statement. For example, in C:

static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

The term locator-variable, as used in the syntax diagrams, shows a reference to a
LOB locator variable. The meta-variable locator-variable can be expanded to include
a host-identifier the same as that for host-variable.

Like all other host variables, a LOB locator variable can have an associated
indicator variable. Indicator variables for LOB locator variables behave in the same
way as indicator variables for other data types. When a null value is returned from
the database, the indicator variable is set and the locator host variable is
unchanged. This means a locator can never represent a null value. However, when
the indicator variable associated with a LOB locator is null, the value of the
referenced LOB value is null.

If a locator variable does not currently represent any value, an error occurs when
the locator variable is referenced.

At transaction commit, all LOB locators that were acquired by the transaction are
released unless a HOLD LOCATOR statement was issued for the LOB locator. At
transaction termination, all LOB locators are released.

References to stored procedure result sets
When an application needs to access a result set returned from a stored procedure,
the invoking application must first define a result set locator to access the result set.
An ASSOCIATE LOCATOR statement defines a result set locator, which identifies
the stored procedure that returns the result set. The DESCRIBE PROCEDURE
statement can be used to determine the number of result sets that a stored
procedure returns, and the DESCRIBE CURSOR statement can be used to get
information about a result set. The ALLOCATE CURSOR statement is used to
define a cursor and associate it with a result set locator. The application then issues
FETCH statements to retrieve rows from the result set.

References to result set locator variables
A result set locator variable is a host variable that contains the locator that identifies
a stored procedure result set.

A result set locator variable in an SQL statement must identify a result set locator
variable described in the program according to the rules for declaring result set
locator variables. This is always indirectly through an SQL statement. For example,
in C:

static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1;

The term rs-locator-variable, as used in the syntax diagrams, shows a reference to
a result set locator variable. The meta-variable rs-locator-variable can be expanded
to include a host-identifier the same as that for host-variable.

References to Host Variables

102 SQL Reference

|
|
|

When the indicator variable associated with a result set locator is null, the
referenced result set is not defined.

If a result set locator variable does not currently represent any stored procedure
result set, an error occurs when the locator variable is referenced.

A commit operation destroys all open cursors that were declared in the stored
procedure without the WITH HOLD operation and the result set locators that are
associated with those cursors. Otherwise, a cursor and its associated result set
locator persist past the commit.

Host structures in PL/I, C, and COBOL
A host structure is a PL/I structure, C structure, or COBOL group that is referred to
in an SQL statement. Host structures are defined by statements of the host
language, as explained in Part 2 of DB2 Application Programming and SQL Guide.
As used here, the term “host structure” does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 names a host
structure. If S1 designates a host structure, S2 must be a small integer variable or
an array of small integer variables. S1 is the host structure and S2 is its indicator
array.

A host structure can be referred to in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is the
indicator variable for the nth variable of the host structure.

In PL/I, for example, if V1, V2, and V3 are declared as the variables within the
structure S1, the statement:

EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:
EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. These rules also apply if a reference to a host structure includes
an indicator variable or a reference to a host variable includes an indicator array. If
an indicator array or variable is not specified, no variable of the host structure has
an indicator variable.

In addition to structure references, individual host variables or indicator variables in
PL/I, C, and COBOL can be referred to by qualified names. The qualified form is a
host identifier followed by a period and another host identifier. The first host
identifier must name a structure, and the second host identifier must name a host
variable within that structure.

In PL/I, C, and COBOL, the syntax of host-variable is:

References to Host Variables

Chapter 2. Language elements 103

In general, a host-variable in an expression must identify a host variable (not a
structure) described in the program according to the rules for declaring host
variables. However, there are a few SQL statements that allow a host variable in an
expression to identify a structure, as specifically noted in the descriptions of the
statements.

The following examples show references to host variables and host structures:
:V1 :S1.V1 :S1.V1:V2 :S1.V2:S2.V4

Functions
A function is an operation denoted by a function name followed by zero or more
operands that are enclosed in parentheses. It represents a relationship between a
set of input values and a set of result values. The input values to a function are
called arguments. For example, a function can be passed two input arguments that
have date and time data types and return a value with a timestamp data type as the
result.

Types of functions
There are several ways to classify functions. One way to classify functions is as
built-in functions, user-defined functions, or cast functions that are generated for
distinct types.

v Built-in functions are IBM-supplied functions that come with DB2 for OS/390 and
z/OS and are in the SYSIBM schema. Built-in functions include operator
functions such as ″+″, column functions such as AVG, and scalar functions such
as SUBSTR. For a list of the built-in column and scalar functions and information
on these functions, see “Chapter 3. Built-in functions” on page 153.

v User-defined functions are functions that are registered to DB2 in catalog table
SYSIBM.SYSROUTINES using the CREATE FUNCTION statement. These
functions allow users to extend the function of the database system by adding
their own or third party vendor function definitions.

A user-defined function can be an external, sourced, or SQL scalar function. An
external function is defined to the database with a reference to a load module
that is executed when the function is invoked. A sourced function is defined to
the database with a reference to a built-in function or another user-defined
function. Sourced functions are useful for supporting the use of built-in column
and scalar functions for distinct types. An SQL function is defined in the RETURN
clause of the function.

A user-defined function resides in the schema in which it was registered. The
schema cannot be SYSIBM. In addition to being external or sourced,
user-defined functions can be further categorized as scalar, column, or table
functions.

To help you define and implement user-defined functions, sample user-defined
functions are supplied with DB2. You can also use these sample user-defined

�� : host-identifier
host-identifier.

�

�
INDICATOR

: host-identifier
host-identifier.

��

Host Structures in PL/I, C, and COBOL

104 SQL Reference

|
|

functions in your application program just as you would any other user-defined
function if the appropriate installation job has been run. For a list of the sample
user-defined functions, see “Appendix G. Sample user-defined functions” on
page 1099. For more information on creating and using user-defined functions,
see Part 2 of DB2 Application Programming and SQL Guide.

v Cast functions are automatically generated by DB2 when a distinct type is
created using the CREATE DISTINCT TYPE statement. These functions support
casting from the distinct type to the source type and from the source type to the
distinct type. The ability to cast between the data types is important because a
distinct type is compatible only with itself.

The generated cast functions reside in the same schema as the distinct type for
which they were created. The schema cannot be SYSIBM. For more information
on the functions that are generated for a distinct type, see “CREATE DISTINCT
TYPE” on page 474.

Another way to classify functions is as column, scalar, or table functions, depending
on the input data values and result values.

v A column function returns a single-value result for the argument it receives. The
argument is a set of like values (such as the values of a column). Column
functions are sometimes called aggregating functions. Built-in functions and
user-defined sourced functions can be column functions. An external user-defined
function cannot be a column function.

v A scalar function also returns a single-value result for the arguments it receives.
Each argument is a single value. Built-in functions and user-defined functions,
both external and sourced, can be scalar functions. The functions that are
created for distinct types are also scalar functions.

v A table function returns a table for the set of arguments it receives. Each
argument is a single value. A table function can only be referenced in the FROM
clause of a subselect. Table functions can be used to apply SQL language
processing power to data that is not DB2 data or to convert such data into a DB2
table. For example, a table function can take a file and convert it to a table, get
data from the World Wide Web and tabularize it, or access a Lotus® Notes™

database and return information about mail messages. Only external
user-defined functions can be table functions.

Each reference to a scalar or column function (either built-in or user-defined)
conforms to the following syntax:

In the above syntax, expression cannot include a column function. See
“Expressions” on page 110 for other rules for expression.

The ALL or DISTINCT keyword can only be specified for a column function or a
user-defined function that is sourced on a column function. The TABLE keyword can
only be used in a trigger body.

�� function-name

�

()
ALL ,
DISTINCT

expression
TABLE transition-table-name

��

Functions

Chapter 2. Language elements 105

Each reference to a table function conforms to the following syntax:

In the above syntax, expression is the same as it is for a scalar or column function.
For more details on referencing a table function, see the description of the FROM
clause on page 304, the only place where a table function can be referenced.

For a description of the built-in functions, see “Chapter 3. Built-in functions” on
page 153. DB2 Application Programming and SQL Guide contains detailed
information on creating and using user-defined functions. (See “Appendix G.
Sample user-defined functions” on page 1099 for descriptions of the sample
user-defined functions that are supplied with DB2).

Function resolution
A function is invoked by its function name, which is implicitly or explicitly qualified
with a schema name, followed by parentheses that enclose the arguments to the
function. Within the database, each function is uniquely identified by its function
signature, which is its schema name, function name, the number of parameters,
and the data types of the parameters. Thus, a schema can contain several
functions that have the same name but each of which have a different number of
parameters or parameters with different data types. Also, a function with the same
name, number of parameters, and types of parameters can exist in multiple
schemas.

Because multiple functions with the same name can exist in the same schema or
different schemas, DB2 must determine which function to execute. The process of
choosing the function is called function resolution.

Function resolution is similar for functions that are invoked with a qualified or
unqualified function name with the exception that for an unqualified name, DB2
needs to search more than one schema.

Qualified function resolution: When a function is invoked with a schema name
and a function name, DB2 only searches the specified schema to resolve which
function to execute. DB2 finds the appropriate function instance when all of the
following conditions are true:

v The name of the function instance matches the name in the function invocation.

v The number of input parameters in the function instance matches the number of
function arguments in the function invocation.

v The invoker of the function is authorized to execute the function instance.

v The data type of each input argument of the function invocation matches or is
promotable to the data type of the corresponding parameter of the function
instance.

For a function invocation that passes a transition table, the data type, length,
precision, and scale of each column in the transition table must match exactly the
data type, length, precision, and scale of each column of the table that is named
in the function instance definition.

��

�

TABLE (function-name())
,

expression
TABLE transition-table-name

correlation-clause ��

Functions

106 SQL Reference

If the function invocation contains no untyped parameter markers, the
comparison of data types results in one best fit, which is the choice for execution
(see “Method of finding the best fit” on page 108). For information on the
promotion of data types, see “Promotion of data types” on page 61.

For a function invocation that contains untyped parameter markers, the data
types of those parameter markers are considered to match or be promotable to
the data types of the parameters in the function instance.

v The create timestamp for the function must be older than the bind timestamp for
the package or plan in which the function is invoked.

If a function invoked from a trigger body receives a transition table, and the
invocation occurs during an automatic rebind, the form of the invoked function
used for function selection includes only the columns of the table that existed at
the time of the original BIND or REBIND package or plan for the invoking
program.

If the function invocation contains untyped parameter markers, the comparison
can result in more than one best fit. In that case, DB2 returns an error.

If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that contains a user-defined function invocation, any
user-defined functions that were created after the original BIND or REBIND of the
invoking plan or package are not candidates for execution.

If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. See Appendix B
(Volume 2) of DB2 Administration Guide for information about function resolution
with access control authorization exit routines.

If no function in the schema meets these criteria, an error occurs. If a function is
selected, its successful use depends on it being invoked in a context in which the
returned result is allowed. For example, if the function returns an integer data type
where a character data type is required, or returns a table function where a table
function is not allowed, an error occurs.

Unqualified function resolution: When a function is invoked with only a function
name and no schema name, DB2 needs to search more than one schema to
resolve the function instance to execute. DB2 uses these steps to choose the
function:

1. The SQL path contains the list of schemas to search. For each schema in the
path, DB2 selects a candidate function based on the same criteria described
immediately above for qualified function resolution. However, if no function in
the schema meets the criteria, an error does not occur, and a candidate function
is not selected for that schema.

2. After identifying the candidate functions for the schemas in the path, DB2
selects the candidate with the best fit as the function to execute. If more than
one schema contains the function instance with the best fit (the function
signatures are identical except for the schema name), DB2 selects the function
whose schema is earliest in the SQL path. If no function in any schema in the
SQL path meets the criteria, an error occurs.

The create timestamp of a user-defined function must be older than the timestamp
resulting from an explicit bind for the plan or package containing the function
invocation. During autobind, built-in functions introduced in a later DB2 release than
the DB2 release that was used to explicitly bind the package or plan are not
considered for function resolution.

Functions

Chapter 2. Language elements 107

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

For more information on user-defined functions, such as how you can simplify
function resolution or use the DSN_FUNCTION_TABLE to see how DB2 resolves a
function, see DB2 Application Programming and SQL Guide.

Method of finding the best fit
More than one function instance with the same name might be a candidate for
execution. In that case, DB2 compares the argument and parameter data types to
determine which function is the best fit for the invocation.

If the data types of all the parameters for a given function are the same as those of
the arguments in the function invocation, that function is the best fit. If there is no
exact match, DB2 compares the data types in the parameter lists from left to right,
using this method:

1. DB2 compares the data types of the first argument in the function invocation to
the data type of the first parameter in each function. Any length, precision,
scale, subtype, and encoding scheme attributes of the data types are not
considered in the comparison.

2. For this argument, if one function has a data type that fits the function
invocation better than the data types in the other functions, that function is the
best fit. The precedence list for the promotion of data types in Table 6 on
page 62 shows the data types that fit each data type, in best-to-worst order.

3. If the data types of the first parameter for all the candidate functions fit the
function invocation equally well, DB2 repeats this process for the next argument
of the function invocation. DB2 continues this process for each argument until a
best fit is found.

Examples of function resolution: The following examples illustrate function
resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA,
that were registered with these partial CREATE FUNCTION statements.
1. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
2. CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10),
SMALLINT, and DECIMAL is invoked with a qualified name:

MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL)

The data types of the first parameter for the two function instances in the schema,
which are both VARCHAR(10), fit the data type of the first argument of the function
invocation, which is VARCHAR(10), equally well. However, for the second
parameter, the data type of the first function (INT) fits the data type of the second
argument (SMALLINT) better than the data type of second function (REAL).
Therefore, DB2 selects Function 1 as the function instance to execute.

Example 2: Assume that these functions were registered with these partial CREATE
FUNCTION statements:
1. CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
2. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
3. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
4. CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...
5. CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
6. CREATE FUNCTION TODD.ADDIT (REAL) ...
7. CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

Functions

108 SQL Reference

Also assume that the SQL path at the time an application invokes a function is
″TAYLOR″ ″JOHNSON″, ″SMITH″. The function is invoked with three data types
(INT, INT, DECIMAL) as follows:

SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following
evaluation:

v Function 6 is eliminated as a candidate because schema TODD is not in the SQL
path.

v Function 7 in schema TAYLOR is eliminated as a candidate because it does not
have the correct function name.

v Both Function 4 and 5 in schema JOHNSON are candidates because the data
types of their parameters match or are promotable to the data types of the
arguments. However, Function 5 is chosen as the better candidate because
although the data types of the first parameter of both functions (INT) match the
first argument (INT), the data type of the second parameter of Function 5 (INT) is
a better match of the second argument (INT) than Function 4 (DOUBLE).

v Function 1 and 3 in schema SMITH are eliminated as candidates. The CHAR
data type of the first parameter of Function 1 is not promotable to INT. Function 3
has the wrong number of parameters. Function 2 is a candidate because the
data types of its parameters match or are promotable to the data types of the
arguments.

v Of the remaining candidates, Function 2 and 5, DB2 selects Function 5 because
schema JOHNSON comes before schema SMITH in the SQL path.

SQL path considerations for built-in functions
Function resolution applies to all functions, including built-in functions. The built-in
functions are in schema SYSIBM. If a built-in function is invoked without its schema
name, the SQL path is searched. If SYSIBM is not first in the path, it is possible
that DB2 will select another function instead of the intended function. If schema
SYSIBM or SYSPROC is not explicitly specified in the SQL path, the schema is
implicitly assumed at the front of the path. DB2 adds implicitly assumed schemas in
the order of SYSIBM and SYSPROC. See “Schemas and the SQL path” on page 40
for information on how to specify the path so that the intended function is selected
when it is invoked with an unqualified name.

Function invocation
Once the function is selected, there are still possible reasons why the use of the
function may not be permitted. Each function is defined to return a result with a
specific data type. If this result data type is not compatible with the context in which
the function is invoked, an error occurs. For example, assume functions named
STEP are defined with different data types:

STEP(SMALLINT)returns CHAR(5)
STEP(DOUBLE)returns INTEGER

Assume also that the function is invoked with the following function reference
(where S is a SMALLINT column):

SELECT ... 3+STEP(S) ...

Because there is an exact match on argument type, the first STEP is chosen. An
error occurs on the statement because the result type is CHAR(5) instead of a
numeric type as required for an argument of the addition operator.

An error also occurs in the following examples:

Functions

Chapter 2. Language elements 109

|

|
|
|
|
|

|
|

|
|

|

|
|
|

|

v The function is referenced in a FROM clause, but the function selected by the
function resolution step is a scalar or column function.

v The function calls for a scalar or column function, but the function resolution step
is a table function.

In cases where the arguments of the function invocation are not an exact match to
the data types of the parameters of the selected function, the arguments are
converted to the data type of the parameter at execution using the same rules as
assignment to columns. See “Assignment and comparison” on page 64. Problems
with conversions can also occur when precision, scale, length, or the encoding
scheme differs between the argument and the parameter. Conversion might occur
for a character string argument when the corresponding parameter of the function
has a different encoding scheme or CCSID. For example, an error occurs on
function invocation when mixed data that actually contains DBCS characters is
specified as an argument and the corresponding parameter of the function is
declared with an SBCS subtype.

Additionally, a character FOR BIT DATA argument cannot be passed as input for a
parameter that is not defined as character FOR BIT DATA. Likewise, a character
argument that is not FOR BIT DATA cannot be passed as input for a parameter that
is defined as character FOR BIT DATA.

Expressions
An expression specifies a value. The form of an expression is as follows:

Functions

110 SQL Reference

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Without operators
If no operators are used, the result of the expression is the specified value.

Examples:
SALARY :SALARY 'SALARY' MAX(SALARY)

With the concatenation operator
Both CONCAT and the vertical bars (||) represent the concatenation operator.
Vertical bars (or the characters that must be used in place of vertical bars in some
countries14) can cause parsing errors in statements passed from one DBMS to
another. The problem occurs if the statement undergoes character conversion with
certain combinations of source and target CCSIDs14. Thus, CONCAT is the
preferable concatenation operator.

When two strings operands are concatenated, the result of the expression is a
string. The operands of concatenation must be compatible strings. A binary string

14. DB2 supports code point combinations X'4F4F', X'BBBB', and X'5A5A' to mean concatenation. X'BBBB' and X'5A5A' are
interpreted to mean concatenation only on single byte character set DB2 subsystems.

�� �

operator
(1)

function
+ (expression)
- constant

column-name
host-variable
special-register

(2)
labeled-duration

(3)
case-expression

(4)
cast-specification

��

Notes:

1 Includes all functions except table functions. See “Functions” on page 104 for more information.

2 See “Labeled durations” on page 117 for more information.

3 See “CASE expressions” on page 123 for more information.

4 See “CAST specification” on page 125 for more information.

operator:

�� CONCAT
||
/
*
+
-

��

Expressions

Chapter 2. Language elements 111

cannot be concatenated with a character string, including character strings that are
defined as FOR BIT DATA (for more information on the compatibility of data types,
see the compatibility matrix in Table 9 on page 65). A distinct type that is sourced on
a string type can be concatenated only if an appropriate user-defined function is
created, as explained at the end of this section.

If either operand can be null, the result can be null, and if either is null, the result is
the null value. Otherwise, the result consists of the first operand string followed by
the second.

Table 20 shows how the string operands determine the data type and the length
attribute of the result (the order in which the operands are concatenated has no
effect on the result).

Table 20. Data type and length of concatenated operands

One
operand

Other
operand

Combined
length
attribute Result1

CHAR(A) CHAR(B) <256 CHAR(A+B)2

CHAR(B) >255 VARCHAR(A+B)

VARCHAR(B) - VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) - VARCHAR(A+B)

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(B) - CLOB(MIN(A+B, 2G))

GRAPHIC(A) UTF-16
UNICODE DATA4

CHAR(B) - VARGRAPHIC(A+B) 3

VARCHAR(B) - VARGRAPHIC(A+B) 3

VARGRAPHIC(A)
UTF-16 UNICODE
DATA4

CHAR(B) - VARGRAPHIC(A+B) 3

VARCHAR(B) - VARGRAPHIC(A+B) 3

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(B) - DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Notes:

1. 2G represents 2 147 483 647 bytes

1G represents 1 073 741 823 double-byte characters

2. Neither CHAR(A) nor CHAR(B) must contain mixed data. If either operand contains
mixed data, the result is VARCHAR(A+B).

3. CHAR(B) or VARCHAR(B) is converted to UTF-16 and the result is concatenated to
GRAPHIC(A) or VARGRAHPIC(A)

4. UTF-16 data is the only graphic data that can be used with a character operand..

As Table 20 shows, the length of the result is the sum of the lengths of the
operands. However, the length of the result is two bytes less if redundant shift code
characters are eliminated from the result. Redundant shift code characters exist
when both character strings are EBCDIC mixed data, and the first string ends with
a “shift-in” character (X'0F') and the second operand begins with a “shift-out”
character (X'0E'). These two shift code characters are removed from the result.

Expressions

112 SQL Reference

|
|

|

The CCSID of the result is determined by the rules set forth in “Character
conversion in unions and concatenations” on page 318. Some consequences of
those rules are the following:

v If either operand is BIT data, the result is BIT data.

v The conversion that occurs when SBCS data is compared with mixed data
depends on the encoding scheme. If the encoding scheme is Unicode, the SBCS
operand is converted to MIXED. Otherwise, the conversion depends on the field
MIXED DATA on installation panel DSNTIPF for the DB2 that does the
comparison:
– Mixed data if the MIXED DATA option at the server is YES15

– SBCS data if the MIXED DATA option at the server is NO.16

If an operand is a string from a column with a field procedure, the operation applies
to the decoded form of the value. The result does not inherit the field procedure.

One operand of concatenation can be a parameter marker. When one operand is a
parameter marker, its data type and length attributes are considered to be the same
as those for the operand that is not a parameter marker. The order of concatenation
operations must be considered to determine these attributes in the case of nested
concatenation.

No operand of concatenation can be a distinct type even if the distinct type is
sourced on a character data type. To concatenate a distinct type, create a
user-defined function that is sourced on the CONCAT operator. For example, if
distinct types TITLE and TITLE_DESCRIPTION were both sourced on data type
VARCHAR(25), the following user-defined function, named ATTACH, could be used
to concatenate the two distinct types:

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternatively, the concatenation operator could be overloaded by using a
user-defined function to add the distinct types:

CREATE FUNCTION "||" (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

With arithmetic operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands. The result of the
expression can be null. If any operand has the null value, the result of the
expression is the null value. Arithmetic operators (except unary plus, which is
meaningless) must not be applied to strings. For example, USER+2 is invalid.
Multiplication and division operators must not be applied to datetime values, which
can only be added and subtracted.

The prefix operator + (unary plus) does not change its operand. The prefix operator
- (unary minus) reverses the sign of a nonzero operand. If the data type of A is
small integer, the data type of -A is large integer. The first character of the token
following a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and
division, respectively. The value of the second operand of division must not be zero.

15. The result is not necessarily well-formed mixed data.

16. If the mixed data cannot be converted to pure SBCS data, an error occurs.

Expressions

Chapter 2. Language elements 113

|
|
|
|
|
|
|

Arithmetic with two integer operands
If both operands of an arithmetic operator are integers, the operation is performed
in binary and the result is a large integer. Any remainder of division is lost. The
result of an integer arithmetic operation (including unary minus) must be within the
range of large integers.

Arithmetic with an integer and a decimal operand
If one operand is an integer and the other is decimal, the operation is performed in
decimal using a temporary copy of the integer that has been converted to a decimal
number with zero scale and precision as defined in the following table:

Operand Precision of decimal copy

Column or variable: large integer 11

Column or variable: small integer 5

Constant: more than five digits (including
leading zeros)

Same as the number of digits in the constant

Constant: five digits or fewer 5

Arithmetic with two decimal operands
If both operands are decimal, the operation is performed in decimal. The result of
any decimal arithmetic operation is a decimal number with a precision and scale
that depend on two factors:
The precision and scale of the operands

In the discussion of operations with two decimal operands, the precision
and scale of the first operand are denoted by p and s, that of the second
operand by p' and s'. Thus, for a division, the dividend has precision p and
scale s, and the divisor has precision p' and scale s'.

Whether DEC31 or DEC15 is in effect for the operation
DEC31 and DEC15 specify the rules to be used when both operands in a
decimal operation have precisions of 15 or less. DEC15 specifies the rules
which do not allow a precision greater than 15 digits, and DEC31 specifies
the rules which allow a precision of up to 31 digits. The rules for DEC31 are
always used if either operand has a precision greater than 15.

For static SQL statements, the value of the field DECIMAL ARITHMETIC on
installation panel DSNTIP4 or the precompiler option DEC determines whether
DEC15 or DEC31 is used.

For dynamic SQL statements, the value of the field DECIMAL ARITHMETIC on
installation panel DSNTIP4, the precompiler option DEC, or the special register
CURRENT PRECISION determines whether DEC15 or DEC31 is used according to
these rules:

v Field DECIMAL ARITHMETIC applies if either of these conditions is true:

– DYNAMICRULES run behavior applies and the application has not set
CURRENT PRECISION.

For a list of the DYNAMICRULES bind option values that specify run, bind,
define, or invoke behavior, see Table 2 on page 44.

– DYNAMICRULES bind, define, or invoke behavior applies; the value of
installation panel field USE FOR DYNAMICRULES is YES; and the
application has not set CURRENT PRECISION.

Expressions

114 SQL Reference

v Precompiler option DEC applies if DYNAMICRULES bind, define, or invoke
behavior is in effect, the value of installation panel field USE FOR
DYNAMICRULES is NO, and the application has not set CURRENT PRECISION.

v Special register CURRENT PRECISION applies if the application sets the
register.

The value of DECIMAL ARITHMETIC is the default value for the precompiler option
and the special register. SQL statements executed using SPUFI use the value in
DECIMAL ARITHMETIC.

Decimal addition and subtraction
If the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands that
has been extended with trailing zeros so that its fractional part has the same
number of digits as the other operand.

The precision of the result is the minimum of n and the quantity
MAX(p-s,p'-s')+MAX(s,s')+1. The scale is MAX(s,s'). n is 31 if DEC31 is in effect or
if the precision of at least one operand is greater than 15. Otherwise, n is 15.

Decimal multiplication
For multiplication, the precision of the result is MIN(n,p+p'), and the scale is
MIN(n,s+s'). n is 31 if DEC31 is in effect or if the precision of at least one operand
is greater than 15. Otherwise, n is 15.

If both operands have a precision greater than 15, the operation is performed using
a temporary copy of the operand with the smaller precision. If the operands have
the same precision, the second operand is selected. If more than 15 significant
digits are needed for the integral part of the copy, the statement’s execution is
ended and an error occurs. Otherwise, the copy is converted to a number with
precision 15, by truncating the copy on the right. The truncated copy has a scale of
MAX(0,S-(P-15)), where P and S are the original precision and scale. If, in the
process of truncation, one or more nonzero digits are removed, SQLWARN7 in
SQLCA is set to W, indicating loss of precision.

When both operands have a precision greater than 15, the foregoing formulas for
the precision and scale of the result still apply, with one change: for the operand
selected as the copy, use the precision and scale of the truncated copy; that is, use
15 as the precision and MAX(0,S-(P-15)) for the scale.

Let n denote the value of the operand with the greater precision or the first operand
in the case of operands with the same precision. The number of leading zeros in a
31-digit representation of n must be greater than the precision of the other operand.
This is always the case if the precision of the operand is 15 or less. With greater
precisions, overflow can occur even if the precision of the result is less than 31. For
example, the expression:

10000000000000000000000000. * 1

will cause overflow because the number of leading zeros in the 31-digit
representation of the large number and the precision of the small number are both
5 (see “Arithmetic with an integer and a decimal operand” on page 114).

Decimal division
The rules for a specific decimal division depend on three factors:
v Whether the DEC31 option is in effect for the operation
v Whether p is greater than 15

Expressions

Chapter 2. Language elements 115

v Whether p' is greater than 15

The following table shows how the precision and scale of the result depend on
these factors. In that table, the occurrence of “N/A” in a row implies that the
indicated factor is not relevant to the case represented by the row.

Table 21. Precision (p) and scale (s) of the result of a decimal division

DEC31 p p' P S

Not in effect ≤15 ≤15 15 15-(p-s+s')

In effect ≤15 ≤15 31 N-(p-s+s'), where
N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A >15 ≤15 31 N-(p-s+s'), where
N is 30-p' if p' is odd.
N is 29-p' if p' is even.

N/A N/A >15 31 15-(p-s+x), where
x is MAX(0,s'-(p'-15))
(See Note 2 below)

Notes on decimal division:

1. If the calculated value of S is negative, an error occurs.

2. If p' is greater than 15, the division is performed using a temporary copy of the
divisor. If more than 15 significant digits are needed for the integral part of the
divisor, the statement’s execution is ended, and an error occurs. Otherwise, the
copy is converted to a number with precision 15, by truncating the copy on the
right. The truncated copy has a scale of MAX(0,s'-(p'-15)), which is the formula
for x that appears in row 4 of Table 21. If, in the process of truncation, one or
more nonzero digits are removed, SQLWARN7 in SQLCA is set to W, indicating
loss of precision.

3. A value of YES for field MINIMUM DIVIDE SCALE on installation panel
DSNTIPF specifies that the scale of the result of a decimal division is never less
than 3. To this end, the precision and scale of the result are first calculated
using the rules shown in Table 21. The actual scale is then the calculated scale
or 3, whichever is greater. The actual precision is the calculated precision.

Arithmetic with floating-point operands
If either operand of an arithmetic operator is floating-point, the operation is
performed in floating-point. If necessary, the operands are first converted to double
precision floating-point numbers. Thus, if any element of an expression is a
floating-point number, the result of the expression is a double precision
floating-point number.

An operation involving a floating-point number and an integer is performed with a
temporary copy of the integer that has been converted to double precision
floating-point. An operation involving a floating-point number and a decimal number
is performed with a temporary copy of the decimal number that has been converted
to double precision floating-point. The result of a floating-point operation must be
within the range of floating-point numbers.

Expressions

116 SQL Reference

Datetime operands and durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. A duration is a number
representing an interval of time. There are four types of durations:

Labeled durations
The form a labeled duration is as follows:

A labeled duration represents a specific unit of time as expressed by a
number (which can be the result of an expression) followed by one of the
seven duration keywords:17 YEARS, MONTHS, DAYS, HOURS, MINUTES,
SECONDS, or MICROSECONDS. The number specified is converted as if it
were assigned to a DECIMAL(15,0) number.

A labeled duration can only be used as an operand of an arithmetic
operator, and the other operand must have a data type of DATE, TIME, or
TIMESTAMP. Thus, the expression HIREDATE + 2 MONTHS + 14 DAYS is
valid, whereas the expression HIREDATE + (2 MONTHS + 14 DAYS) is not.
In both of these expressions, the labeled durations are 2 MONTHS and 14
DAYS.

Date duration
A date duration represents a number of years, months, and days expressed
as a DECIMAL(8,0) number. To be properly interpreted, the number must
have the format yyyymmdd, where yyyy represents the number of years,
mm the number of months, and dd the number of days. The result of
subtracting one DATE value from another, as in the expression HIREDATE -
BIRTHDATE, is a date duration.

Time duration
A time duration represents a number of hours, minutes, and seconds
expressed as a DECIMAL(6,0) number. To be properly interpreted, the
number must have the format hhmmss, where hh represents the number of
hours, mm the number of minutes, and ss the number of seconds. The
result of subtracting one TIME value from another is a time duration.

17. The singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and MICROSECOND.

��
(1)

function
(expression)
constant
column-name
host-variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Notes:

1 Includes all functions except table functions.

Expressions

Chapter 2. Language elements 117

Timestamp duration
A timestamp duration represents a number of years, months, days, hours,
minutes, seconds, and microseconds expressed as a DECIMAL(20,6)
number. To be properly interpreted, the number must have the format
yyyyxxddhhmmsszzzzzz, where yyyy, xx, dd, hh, mm, ss and zzzzzz
represent, respectively, the number of years, months, days, hours, minutes,
seconds, and microseconds. The result of subtracting one TIMESTAMP
value from another is a timestamp duration.

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with datetime values follow.

v If one operand is a date, the other operand must be a date duration or labeled
duration of years, months, or days.

v If one operand is a time, the other operand must be a time duration or a labeled
duration of hours, minutes, or seconds.

v If one operand is a timestamp, the other operand must be a duration. Any type of
duration is valid.

v Neither operand of the addition operator can be a parameter marker. For a
discussion of parameter markers, see Parameter markers in “PREPARE” on
page 792 .

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow.

v If the first operand is a date, the second operand must be a date, a date
duration, a string representation of a date, or a labeled duration of years, months,
or days.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time duration,
a string representation of a time, or a labeled duration of hours, minutes, or
seconds.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or a
string representation of a timestamp.

v Neither operand of the subtraction operator can be a parameter marker.

When an operand in a datetime expression is a string, it may undergo character
conversion before it is interpreted and converted to a datetime value. When its
CCSID is not that of the default for mixed strings, a mixed string is converted to the
default mixed data representation. When its CCSID is not that of the default for
SBCS strings, an SBCS string is converted to the default SBCS representation.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

Expressions

118 SQL Reference

Subtracting dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less
than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result
is made negative. The following procedural description clarifies the steps involved in
the operation RESULT = DATE1 - DATE2.

Date subtraction: result = date1 - date2

v If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

v If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

v If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

v If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2)

and YEAR(DATE2) is incremented by 1.

v YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration of
0 years, 2 months, and 15 days). In this example, notice that the second operand
did not need to be converted to a date. According to one of the rules for
subtraction, described under “Datetime arithmetic in SQL” on page 118, the second
operand can be a string representation of a date if the first operand is a date.

Incrementing and decrementing dates: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this
operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which
the date appears.) The result must fall between the dates January 1, 0001 and
December 31, 9999 inclusive. If a duration of years is added or subtracted, only the
year portion of the date is affected. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. Here the day portion of the
result is set to 28, and the SQLWARN6 field of the SQLCA is set to W, indicating
that an end-of-month adjustment was made to correct an invalid date. Part 2 of DB2
Application Programming and SQL Guide also describes how SQLWARN6 is set.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case the day is set to
the last day of the month, and the SQLWARN6 field of the SQLCA is set to W to
indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the
date, and potentially the month and year.

Expressions

Chapter 2. Language elements 119

Date durations, whether positive or negative, can also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and SQLWARN6 is
set to W to indicate any necessary end-of-month adjustment.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus, DATE1+X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date duration
is added to a date, the date is decremented by the specified number of days,
months, and years, in that order. Thus, DATE1-X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Adding a month to a date gives the same day one month later unless that day does
not exist in the later month. In that case, the day in the result is set to the last day
of the later month. For example, January 28 plus one month gives February 28; one
month added to January 29, 30, or 31 results in either February 28 or, for a leap
year, February 29. If one or more months is added to a given date and then the
same number of months is subtracted from the result, the final date is not
necessarily the same as the original date.

The order in which labeled date durations are added to and subtracted from dates
can affect the results. When you add labeled date durations to a date, specify them
in the order of YEARS + MONTHS + DAYS. When you subtract labeled date
durations from a date, specify them in the order of DAYS - MONTHS - YEARS. For
example, to add one year and one day to a date, specify:

DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:
DATE1 - 1 DAY - 1 MONTH - 1 YEAR

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If
TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign
of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

Expressions

120 SQL Reference

Time subtraction: result = time1 - time2

v If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

v If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2)

and MINUTE(TIME2) is incremented by 1.

v If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

v If MINUTE(TIME2) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2)

and HOUR(TIME2) is incremented by 1.

v HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10
hours, 29 minutes, and 30 seconds). In this example, notice that the second
operand did not need to be converted to a time. According to one of the rules for
subtraction, described under “Datetime arithmetic in SQL” on page 118, the second
operand can be a string representation of a time if the first operand is a time.

Incrementing and decrementing times: The result of adding a duration to a time,
or of subtracting a duration from a time, is itself a time. Any overflow or underflow of
hours is discarded, thereby ensuring that the result is always a time. If a duration of
hours is added or subtracted, only the hours portion of the time is affected. Adding
24 hours to the time '00:00:00' results in the time '24:00:00'. However, adding 24
hours to any other time results in the same time; for example, adding 24 hours to
the time '00:00:59' results in the time '00:00:59'. The minutes and seconds are
unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds affects the seconds portion of the time
and may affect the minutes and hours.

Time durations, whether positive or negative, can also be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. Thus, TIME1 + X,
where X is a positive DECIMAL(6,0) number, is equivalent to the expression

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps.
The data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to
TS2, TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is

Expressions

Chapter 2. Language elements 121

subtracted from TS2 and the sign of the result is made negative. The following
procedural description clarifies the steps involved in the operation RESULT = TS1 -
TS2.

Timestamp subtraction: result = ts1 - ts2

v If MICROSECOND(TS2) <=
MICROSECOND(TS1)

then MICROSECOND(RESULT) = MICROSECOND(TS1) - MICROSECOND(TS2).

v If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 + MICROSECOND(TS1)

- MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

v The seconds and minutes part of the timestamps are subtracted as
specified in the rules for subtracting times.

v If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

v If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)

and DAY(TS2) is incremented by 1.

v The date part of the timestamps is subtracted as specified in the
rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp, is itself a timestamp. Date
and time arithmetic is performed as previously defined, except that an overflow or
underflow of hours is carried into the date part of the result, which must be within
the range of valid dates. When the result of an operation is midnight, the time
portion of the result can be '24.00.00' or '00.00.00'; a comparison of those two
values does not result in 'equal'.

Precedence of operations
Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and
division, and multiplication, division, and concatenation are applied before addition
and subtraction. Operators at the same precedence level are applied from left to
right.

Example 1:
1.10 * (SALARY + BONUS) + SALARY / :VAR3

(2) (1) (4) (3)

Example 2: In this example, the first operation (CONCAT) combines the character
strings in the variables YYYYMM and DD into a string representing a date. The
second operation (-) then subtracts that date from the date being processed in
DATECOL. The result is a date duration that indicates the time elapsed between the
two dates.

Expressions

122 SQL Reference

DATECOL - :YYYYMM CONCAT :DD

(2) (1)

CASE expressions

A CASE expression allows an expression to be selected based on the evaluation of
one or more conditions. In general, the value of the case-expression is the value of
the result-expression following the first (leftmost) case that evaluates to true. If no
case evaluates to true and the ELSE keyword is present, the result is the value of
the result-expression or NULL. If no case evaluates to true and the ELSE keyword
is not present, the result is NULL. When a case evaluates to unknown (because of
NULLs), the case is NOT true and hence is treated the same way as a case that
evaluates to false.

CASE
Begins a case-expression.

searched-when-clause
Specifies a search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true.

simple-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is
tested for equality with the value of each expression that follows the WHEN
keyword. It also specifies the result for when that condition is true.

The data type of the expression prior to the first WHEN keyword must be
comparable to the data types of each expression that follows the WHEN
keywords. The data type of any of the expressions cannot be a CLOB,
DBCLOB or BLOB. In addition, the expression prior to the first WHEN keyword
cannot include a user-defined function that is nondeterministic or has an
external action.

�� CASE searched-when-clause
simple-when-clause

ELSE NULL

ELSE result-expression
END ��

searched-when-clause:

�� � WHEN search-condition THEN result-expression
NULL

��

simple-when-clause:

�� �expression WHEN expression THEN result-expression
NULL

��

Expressions

Chapter 2. Language elements 123

result-expression
Specifies an expression that follows the THEN and ELSE keyword. It specifies
the result of a searched-when-clause or a simple-when-clause that is true, or
the result if no case is true. There must be at least one result-expression in the
CASE expression with a defined data type. NULL cannot be specified for every
case.

All result-expressions must be compatible. The attributes of the result are
determined according to the rules that are described in “Rules for result data
types” on page 77. When the result is a string, its attributes include a CCSID.
For the rules on how the CCSID is determined, see “System CCSIDs” on
page 23.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data. The search-condition cannot contain a subselect. If the CASE
expression is in a select list or an IN predicate, the search-condition cannot be
a quantified predicate, an IN predicate, or an EXISTS predicate.

END
Ends a case-expression.

Example 1 (simple-when-clause): Assume that in the EMPLOYEE table the first
character of a department number represents the division in the organization. Use a
CASE expression to list the full name of the division to which each employee
belongs.

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN 'A' THEN 'Administration'
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Design'
WHEN 'D' THEN 'Operations'
END

FROM EMPLOYEE;

Example 2 (searched-when-clause): You can also use a CASE expression to avoid
“division by zero” errors. From the EMPLOYEE table, find all employees who earn
more than 25 percent of their income from commission, but who are not fully paid
on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN 0

ELSE COMM/(SALARY+COMM)
END) > 0.25;

Example 3 (searched-when-clause): You can use a CASE expression to avoid
″division by zero″ errors in another way. The following queries show an
accumulation or summing operation. In the first query, DB2 performs the division
before performing the CASE statement and an error occurs along with the results.

SELECT REF_ID,PAYMT_PAST_DUE_CT,
CASE
WHEN PAYMT_PAST_DUE_CT=0 THEN 0
WHEN PAYMT_PAST_DUE_CT>0 THEN 1
END

FROM PAY_TABLE
GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

However, if the CASE expression is included in the SUM column function, the
CASE expression would prevent the errors. In the following query, the CASE
expression screens out the unwanted division because the CASE operation is
performed before the division.

Expressions

124 SQL Reference

SELECT REF_ID,PAYMT_PAST_DUE_CT,
SUM(CASE
WHEN PAYMT_PAST_DUE_CT=0 THEN 0
WHEN PAYMT_PAST_DUE_CT>0 THEN

SUM(BAL_AMT/PAYMT_PAST_DUE_CT)
END

FROM PAY_TABLE
GROUP BY REF_ID,PAYMT_PAST_DUE_CT;

Example 4: This example shows how to group the results of a query by a CASE
expression without having to re-type the expression. Using the sample employee
table, find the maximum, minimum, and average salary. Instead of finding these
values for each department, assume that you want to combine some departments
into the same group.

SELECT CASE_DEPT,MAX(SALARY),MIN(SALARY),AVG(SALARY)
FROM (SELECT SALARY,CASE WHEN WORKDEPT = 'A00' OR WORKDEPT = 'E21'

THEN 'A00_E21'
WHEN WORKDEPT = 'D11' OR WORKDEPT = 'E11'

THEN 'D11_E11'
ELSE WORKDEPT

END AS CASE_DEPT
FROM DSN8710.EMP) X
GROUP BY CASE_DEPT;

There are two scalar functions, NULLIF and COALESCE, that are specialized to
handle a subset of the functionality provided by CASE. Table 22 shows the
equivalent expressions using CASE or these functions.

Table 22. Equivalent case expressions

CASE expression Equivalent expression

CASE WHEN e1=e2
THEN NULL ELSE e1 END

NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL
THEN e1 ELSE e2 END

COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL
THEN e1 ELSE COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

CAST specification

The CAST specification returns the first operand (the cast operand) converted to
the data type that is specified by the second operand. If the data type of either
operand is a distinct type, the privilege set must implicitly include EXECUTE

�� CAST (expression AS data-type)
NULL
parameter-marker

��

data-type:

�� built-in-data-type
schema. distinct-type-name

��

Expressions

Chapter 2. Language elements 125

authority on the generated cast functions for the distinct type. If the data type of the
second operand is a distinct type, the privilege set must also include USAGE
authority on the distinct type.

expression
Specifies that the cast operand is an expression other than NULL or a
parameter marker. The result is the value of the operand value converted to the
specified data type.

Table 7 on page 63 and Table 8 on page 64 shows the supported casts between
data types. If you specify an unsupported cast, an error occurs.

When a character string is cast to a character string with a different length or a
graphic string is cast to a graphic string with a different length, a warning occurs
if any characters except trailing blanks are truncated. A warning also occurs if
any characters are truncated when a BLOB operand is cast.

NULL
Specifies that the cast operand is null. The result is a null value with the
specified data type.

parameter-marker
A parameter marker, which is normally considered an expression, has a special
meaning as a cast operand. When the cast operand is a parameter-marker, the
data type that is specified represents the “promise” that the replacement value
for the parameter marker will be assignable to that data type (using “store
assignment” rules for strings). Such a parameter marker is considered a typed
parameter marker. Typed parameter markers are treated like any other typed
value for the purpose of function resolution, a DESCRIBE of a select list, or
column assignment.

data type
The name of a built-in data type or a distinct type. If a data type has length,
precision, or scale attributes, specify the attributes. If the attributes are not
specified, the default values are used. For example, the default for CHAR is a
length of 1, and the default for DECIMAL is a precision of 5 and a scale of 0.
For the default values of the other data types, see the description of
“built-in-data-type” on page 606 for the CREATE TABLE statement. (For
portability across operating systems, when specifying a floating-point data type,
use REAL or DOUBLE instead of FLOAT.)

v If the cast operand is expression, see “Casting between data types” on
page 62 and use any of the target data types that are supported for the data
type of the cast operand.

v If the cast operand is NULL, you can use any data type.

v If the cast operand is a parameter-marker, you can use any data type. If the
data type is a distinct type, the application that uses the parameter marker
will use the source data type of the distinct type.

Resolution of cast functions: DB2 uses the schema name and the data type
name of the target data type to locate the function to use to convert the first
operand to the data type of the second operand. If an unqualified data type name is
specified for the second operand, DB2 first resolves the schema name of the data
type (by searching the SQL path and selecting the first schema such that the data
type exists in the schema and the user has authorization to use the data type). DB2
finds the appropriate cast function when all of the following conditions are true:

v The schema name of the function matches the schema name of the target data
type.

v The function name matches the name of the target data type.

Expressions

126 SQL Reference

v The data type of the expression matches or is promotable to the data type of the
function’s parameter.

This comparison of data types results in one best fit, which is the choice for
execution (see “Method of finding the best fit” on page 108). For information on
the promotion of data types, see “Promotion of data types” on page 61.

v The user has EXECUTE authority on the function.

v The create timestamp for the function is older than the bind timestamp for the
statement in which the CAST specification is used.

If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that contains a CAST specification, any cast functions that
were created after the original BIND or REBIND of the invoking plan or package
are not candidates for execution.

Result of the CAST: When numeric data is cast to character data, the data type of
the result is a fixed-length character string, which is similar to the result that the
CHAR function would give. (For more information, see “CHAR” on page 182.) When
character data is cast to numeric data, the data type of the result depends on the
data type of the specified number. For example, character data that is cast to an
integer becomes a large integer, which is similar to the result that the INT function
would give. (For more information see “INTEGER or INT” on page 223.)

If the data type of the result is character, the subtype of the result is determined as
follows:

v If the expression and data-type are both character, the subtype of the result is
the same as the subtype of expression.

v If the field MIXED DATA on installation panel DSNTPF is NO, the subtype of the
result is SBCS.

v If the expression is a row ID and data-type is character, the result has a subtype
of FOR BIT DATA, unless the data-type is CLOB.

v Otherwise, the subtype of the result is MIXED.

If the data type of the result is a string data type and not character FOR BIT DATA,
the encoding scheme of the result is determined as follows:

v If the expression and data-type are both character, the encoding scheme and
CCSID of the result are the same as expression. For example, assume
CHAR_COL is a character column in the following:
CAST(CHAR_COL AS VARCHAR(25))

The result of the CAST is a varying length string with the same encoding scheme
and CCSID as the input.

v If the expression and data-type are both graphic, the encoding scheme and
CCSID of the result are the same as expression.

v If the result is character, the encoding scheme of the result depends on the value
of the field DEF ENCODING SCHEME on installation panel DSNTIPF. The
CCSID of the result is the default CCSID for the encoding scheme and subtype
of the result.

v If the result is graphic, the encoding scheme of the result depends on the value
of the field DEF ENCODING SCHEME on installation panel DSNTIPF. The
CCSID of the result is the default CCSID for the encoding scheme of the result.

Expressions

Chapter 2. Language elements 127

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

Alternative syntax for casting distinct types: There is alternative syntax for
casting a distinct type to its source data type and vice versa. Assume that a distinct
type D_MONEY was defined with the following statement and column MONEY was
defined with that data type.
CREATE DISTINCT TYPE D_MONEY AS DECIMAL(9,2) WITH COMPARISONS;

DECIMAL(MONEY) is equivalent syntax to CAST(MONEY AS DECIMAL(9,2)). Both
forms of the syntax use the cast function that DB2 generated when the distinct type
D_MONEY was created to convert the distinct type to its source type of
DECIMAL(9,2).

However, it is possible that different cast functions may be chosen for the
equivalent syntax forms because of the difference in function resolution, particularly
the treatment on unqualified names. Although the process of function resolution is
similar for both, in the CAST specification as described above, DB2 uses the
schema name of the target data type to locate the function. Therefore, if an
unqualified data type name is specified as the target data type, DB2 uses the SQL
path to resolve the schema name of the distinct type and then searches for the
function in that schema. In function notation, when an unqualified function name is
specified, DB2 searches the schemas in the SQL path to find an appropriate
function match, as described under “Function resolution” on page 106. For example,
assume that you defined the following distinct types, which implicitly gives you both
USAGE authority on the distinct types and EXECUTE authority on the cast
functions that are generated for them:
CREATE DISTINCT TYPE SCHEMA1.AGE AS DECIMAL(2,0) WITH COMPARISONS;

one of the generated cast functions is:
FUNCTION SCHEMA1.AGE(SYSIBM.DECIMAL(2,0)) RETURNS SCHEMA1.AGE

CREATE DISTINCT TYPE SCHEMA2.AGE AS INTEGER WITH COMPARISONS;
one of the generated cast functions is:
FUNCTION SCHEMA2.AGE(SYSIBM.INTEGER) RETURNS SCHEMA2.AGE

If STU_AGE, an INTEGER host variable, is cast to the distinct type with either of
the following statements and the SQL path is SYSIBM, SCHEMA1, SCHEMA2:
Syntax 1: CAST(:STU_AGE AS AGE);
Syntax 2: AGE(:STU_AGE);

different cast functions are chosen. For syntax 1, DB2 first resolves the schema
name of distinct type AGE as SCHEMA1 (the first schema in the path that contains
a distinct type named AGE for which you have USAGE authority). Then it looks for
a suitable function in that schema and chooses SCHEMA1.AGE because the data
type of STU_AGE, which is INTEGER, is promotable to the data type of the
function argument, which is DECIMAL(2,0). For syntax 2, DB2 searches all the
schemas in the path for an appropriate function and chooses SCHEMA2.AGE. DB2
selects SCHEMA2.AGE over SCHEMA1.AGE because the data type of its
argument (INTEGER) is an exact match for STU_AGE (INTEGER) and, therefore, a
better match than the argument for SCHEMA1.AGE, which is DECIMAL(2,0).

Example 1: Assume that an application needs only the integer portion of the
SALARY column, which is defined as DECIMAL(9,2) from the EMPLOYEE table.
The following query for the employee number and the integer value of SALARY
could be prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE;

Example 2: Assume that two distinct types exist in schema SCHEMAX. Distinct type
D_AGE was sourced on SMALLINT and is the data type for the AGE column in the

Expressions

128 SQL Reference

PERSONNEL table. Distinct type D_YEAR was sourced on INTEGER and is the
data type for the RETIRE_YEAR column in the same table. The following UPDATE
statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST(? AS SCHEMAX.D_AGE);

The first parameter is an untyped parameter marker that has a data type of
RETIRE_YEAR. However, the application will use an integer for the parameter
marker. The parameter marker does not need to be cast because the SET is an
assignment.

The second parameter marker is a typed parameter marker that is cast to the
distinct type D_AGE. Casting the parameter marker satisfies the requirement that
comparisons must be performed with compatible data types. The application will
use the source data type, SMALLINT, to process the parameter marker.

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row or
group. The types of predicates are:

The following rules apply to predicates of any type:

v All values specified in a predicate must be compatible.

v Except for the first operand of LIKE, the operand of a predicate must not be a
character string with a maximum length greater than 255 or a graphic string with
a maximum length greater than 127.

v Except for EXISTS, a subquery in a predicate must specify a single column.

In addition to the examples of predicates in the following sections, see “Distinct type
comparisons” on page 75, which contains several examples of predicates that use
distinct types.

Basic predicate

18. The following forms of the comparison operators are also supported in basic and quantified predicates: !=, !<, and !>. In addition,
in code pages 437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported. All these product-specific forms of the comparison
operators are intended only to support existing SQL statements that use these operators and are not recommended for use when
writing new SQL statements.

A not sign (¬) or the character that must be used in its place in certain countries, can cause parsing errors in statements passed
from one DBMS to another. The problem occurs if the statement undergoes character conversion with certain combinations of
source and target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that includes a not sign. For
example, substitute '<>' for '¬=', '<=' for '¬>', and '>=' for '¬<'.

�� basic predicate
quantified predicate
BETWEEN predicate
EXISTS predicate
IN predicate
LIKE predicate
NULL predicate

��

Expressions

Chapter 2. Language elements 129

|

A basic predicate compares two values or compares a set of values with another
set of values. In the syntax diagram, when expression is specified with fullselect,
the fullselect returns a single result column. If the value of either operand is null or
the result of the fullselect is empty, the result of the predicate is unknown.
Otherwise, the result is either true or false.

A row-value-expression is a set of value expressions. Its form is (value-expression,
value expression,..., value expression). In the syntax diagram for a basic predicate,
when a row-value-expression is specified on the left side of the = or the <>
operator, another row-value-expression must be specified on the right side, as in
the following two cases:

v If the operator is =, the result is true if all pairs of expressions evaluate to true,
and false otherwise.

v If the operator is <>, the result is true if any pair of expressions evaluate to true,
and false otherwise.

The use of any other operators or combination of operators when a row value
expression appears on the left side of a basic predicate results in an error.

A fullselect in a basic predicate must not return more than one value, whether null
or not null.

For values x and y:

Predicate Is true if and only if...
x = y x is equal to y
x <> y x is not equal to y
x < y x is less than y
x > y x is greater than y
x <= y x is less than or equal to y
x >= y x is greater than or equal to y

Examples for values x and y:
EMPNO = '528671'
SALARY < 20000
PRSTAFF <> :VAR1
SALARY >=4 (SELECT AVG(SALARY) FROM DSN8710.EMP)

�� expression = expression
(1) (fullselect)

<>
<
>
<=
>=

(1)
(row-value-expression) = (row-value-expression)

<>

��

Notes:

1 Other comparison operators are also supported18.

Predicates

130 SQL Reference

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

Example: List the name, first name, and salary of the employee who is responsible
for the ’SECRET’ project. This employee may appear in either the PROJA1 or
PROJA2 tables. A UNION is used in case the employee appears in both tables to
eliminate duplicate RESEMP values.

SELECT LASTNAME, FIRSTNAME, SALARY
FROM DSN8710.EMP X
WHERE EMPNO = (
SELECT RESPEMP

FROM PROJA1 X
WHERE MAJPROJ = 'SECRET'

UNION
SELECT RESPEMP

FROM PROJA2 X
WHERE MAJPROJ = 'SECRET');

Quantified predicate

A quantified predicate compares a value or values with a collection of values. In the
syntax diagram, when an expression is specified, fullselect1 returns a single result
column and any number of values, whether null or not null. In the diagram, when
more than one row-value-expression is specified, fullselect2 returns a number of
result columns that is equal to the number of expressions on the left side of =
SOME, = ANY, or <> ALL. A fullselect1 refers to a single column result. A fullselect2
refers to the number of row-value expressions.

When ALL is specified, the result of the predicate is:

v True if the result of the fullselect is empty or if the specified relationship is true
for every value returned by the fullselect.

v False if the specified relationship is false for at least one value returned by the
fullselect.

v Unknown if the specified relationship is not false for any values returned by the
fullselect and at least one comparison is unknown because of a null value.

When SOME or ANY is specified, the result of the predicate is:

v True if the specified relationship is true for at least one value returned by the
fullselect.

v False if the result of the fullselect is empty or if the specified relationship is false
for every value returned by the fullselect.

�� expression = SOME (fullselect1)
(1) ANY

<> ALL
<
>
<=
>=

(row-value-expression) = SOME (fullselect2)
ANY
(1)

(row-value-expression) <> ALL (fullselect2)

��

Notes:

1 Other comparison operators are also supported18.

Predicates

Chapter 2. Language elements 131

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

|
|

v Unknown if the specified relationship is not true for any of the values returned by
the fullselect and at least one comparison is unknown because of a null value.

The use of any other operators or combination of operators when a
row-value-expression appears on the left side of a quantified predicate results in an
error.

Examples: Use the tables below when referring to the following examples. In all
examples, “row n of TBLA” refers to the row in TBLA for which COLA has the value
n.

COLA COLB COLBCOLC COLCTBLA: TBLB: TBLC:

1
2
3
4

2 22 2
3 --

Example 1: In the following predicate, the fullselect returns the values 2 and 3. The
predicate is false for rows 1, 2, and 3 of TBLA, and is true for row 4.

COLA > ALL(SELECT COLB FROM TBLB
UNION
SELECT COLB FROM TBLC)

Example 2: In the following predicate, the fullselect returns the values 2 and 3. The
predicate is false for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA > ANY(SELECT COLB FROM TBLB
UNION
SELECT COLB FROM TBLC)

Example 3: In the following predicate, the fullselect returns the values 2 and null.
The predicate is false for rows 1 and 2 of TBLA, and is unknown for rows 3 and 4.
The result is an empty table.

COLA > ALL(SELECT COLC FROM TBLB
UNION
SELECT COLC FROM TBLC)

Example 4: In the following predicate, the fullselect returns the values 2 and null.
The predicate is unknown for rows 1 and 2 of TBLA, and is true for rows 3 and 4.

COLA >SOME(SELECT COLC FROM TBLB
UNION
SELECT COLC FROM TBLC)

Example 5: In the following predicate, the fullselect returns an empty result column.
Hence, the predicate is true for all rows of TBLA.

COLA < ALL(SELECT COLB FROM TBLB WHERE COLB>3
UNION
SELECT COLB FROM TBLC WHERE COLB>3)

Example 6: In the following predicate, the fullselect returns an empty result column.
Hence, the predicate is false for all rows of TBLA.

COLA < ANY(SELECT COLB FROM TBLB WHERE COLB>3
UNION
SELECT COLB FROM TBLC WHERE COLB>3)

If COLA were null in one or more rows of TBLA, the predicate would still be false
for all rows of TBLA.

Predicates

132 SQL Reference

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

BETWEEN predicate

The BETWEEN predicate determines whether a given value lies between two other
given values specified in ascending order. Each of the predicate’s two forms has an
equivalent search condition, as shown below:

Table 23. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

value1 BETWEEN value2 AND value3 value1 >= value2 AND value1 <= value3

value1 NOT BETWEEN value2 AND value3
or, equivalently:

NOT(value1 BETWEEN value2 AND value3)

value1 < value2 OR value1 > value3

Search conditions are discussed in “Search conditions” on page 144.

If the operands include a mixture of datetime values and valid string representations
of datetime values, all values are converted to the data type of the datetime
operand.

Example: Consider predicate:
A BETWEEN B AND C

The following table shows the value of the predicate for various values of A, B, and
C.

Value of A Value of B Value of C Value of predicate

1,2, or 3 1 3 true

0 or 4 1 3 false

0 1 null false

4 null 3 false

null any any unknown

2 1 null unknown

3 null 4 unknown

EXISTS predicate

The EXISTS predicate tests for the existence of certain rows.

The result of the predicate is true if the result table returned by the fullselect
contains at least one row. Otherwise, the result is false.

�� expression BETWEEN expression AND expression
NOT

��

�� EXISTS (fullselect) ��

Predicates

Chapter 2. Language elements 133

|
|

The SELECT clause in the fullselect can specify any number of columns because
the values returned by the fullselect are ignored. For convenience, use:

SELECT *

Unlike the NULL, LIKE, and IN predicates, the EXISTS predicate has no form that
contains the word NOT. To negate an EXISTS predicate, precede it with the logical
operator NOT, as follows:

NOT EXISTS (fullselect)

The result is then false if the EXISTS predicate is true, and true if the predicate is
false. Here, NOT is a logical operator and not a part of the predicate. Logical
operators are discussed in “Search conditions” on page 144.

The result cannot be unknown.

Example 1: The following query lists the employee number of everyone represented
in DSN8710.EMP who works in a department where at least one employee has a
salary less than 20000. Like many EXISTS predicates, the one in this query
involves a correlated variable.

SELECT EMPNO
FROM DSN8710.EMP X
WHERE EXISTS (SELECT * FROM DSN8710.EMP

WHERE X.WORKDEPT=WORKDEPT AND SALARY<20000);

Example 2: List the subscribers (SNO) in the state of California who made at least
one call during the first quarter of 2000. Order the results according to SNO. Each
MONTHnn table has columns for SNO, CHARGES, and DATE. The CUST table
has columns for SNO and STATE.
SELECT C.SNO

FROM CUST C
WHERE C.STATE = 'CA'

AND EXISTS (
SELECT *
FROM MONTH1

WHERE DATE BETWEEN '01/01/2000 AND '01/31/2000'
AND C.SNO = SNO
UNION ALL
SELECT *
FROM MONTH2

WHERE DATE BETWEEN '02/01/2000 AND '02/29/2000'
AND C.SNO = SNO
UNION ALL
SELECT *
FROM MONTH3

WHERE DATE BETWEEN '03/01/2000 AND '03/31/2000'
AND C.SNO = SNO
)
ORDER BY C.SNO;

Predicates

134 SQL Reference

|
|

|

|
|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IN predicate

The IN predicate compares a value with a set of values.

When expression and fullselect1 are used the fullselect must specify a single result
column and can return any number of values, whether null or not null. The IN
predicate is equivalent to the quantified predicate as follows:

Table 24. IN predicate and equivalent quantified predicates

IN predicate Equivalent quantified predicate

expression IN (fullselect) expression = ANY (fullselect)

expression NOT IN (fullselect) expression <> ALL (fullselect)

When expression is used in the non-fullselect form of the IN predicate, the second
operand is a set of one or more values specified by any combination of
expressions. The values for expression1 and expression2 or the column of
fullselect1 in the IN predicate must be compatible. Each expression in
row-value-expression and its corresponding column of fullselect2 must be
compatible. To determine the attributes of the result type used in the comparison,
see “Rules for result data types” on page 77. For information on the types of
expressions, see “Expressions” on page 110. If expression is a single host variable,
the host variable can identify a structure. Any host variable or structure that is
specified must be described in the application program according to the rules for
declaring host structures and variables. An IN predicate of the form:
expression IN (value1, value2,..., valuen)

is logically equivalent to:
expression IN (SELECT * FROM R)

when T is a table with a single row and R is a result table formed by the following
fullselect:

SELECT value1 FROM T
UNION

SELECT value2 FROM T
UNION

.

.

.
UNION

SELECT valuen FROM T

When row-value-expression is used, fullselect2 returns a number of result columns
that is equal to the number of expressions on the left side of the IN predicate.

��

�

expression1 IN (fullselect1)
NOT ,

(expression2)
(row-value-expression) IN (fullselect2)

NOT

��

Predicates

Chapter 2. Language elements 135

|||

|
|
|

|

|
|
|

||

||

||

||
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

If the operands of the IN predicate are strings with different CCSIDs, the rules used
to determine which operands are converted are those for operations that combine
strings. See “String comparisons” on page 73.

Example 1: The following predicate is true for any row whose employee is in
department D11, B01, or C01.

WORKDEPT IN ('D11', 'B01', 'C01')

Example 2: The following predicate is true for any row whose employee works in
department E11.

EMPNO IN (SELECT EMPNO FROM DSN8710.EMP
WHERE WORKDEPT = 'E11')

Example 3: The following predicate is true if the date that a project is estimated to
start (PRENDATE) is within the next two years.

YEAR(PRENDATE) IN (YEAR(CURRENT DATE),
YEAR(CURRENT DATE + 1 YEAR),
YEAR(CURRENT DATE + 2 YEARS))

Example 4: The following example obtains the phone number of an employee in
DSN8710.EMP where the employee number (EMPNO) is a value specified within
the COBOL structure defined below.

77 PHNUM PIC X(6).
01 EMPNO-STRUCTURE.

05 CHAR-ELEMENT-1 PIC X(6) VALUE '000140'.
05 CHAR-ELEMENT-2 PIC X(6) VALUE '000340'.
05 CHAR-ELEMENT-3 PIC X(6) VALUE '000220'.
.
.
.

EXEC SQL DECLARE PHCURS CURSOR FOR
SELECT PHONENO FROM DSN8710.EMP

WHERE EMPNO IN
(:EMPNO-STRUCTURE.CHAR-ELEMENT-1,
:EMPNO-STRUCTURE.CHAR-ELEMENT-2,
:EMPNO-STRUCTURE.CHAR-ELEMENT-3)

END-EXEC.
EXEC SQL OPEN PHCURS
END-EXEC.
EXEC SQL FETCH PHCURS INTO :PHNUM
END-EXEC.

LIKE predicate

The LIKE predicate searches for strings that have a certain pattern. The
match-expression is the string to be tested for conformity to the pattern specified in
pattern-expression. Underscore and percent sign characters in the pattern have a
special meaning instead of their literal meanings unless escape-expression is
specified, as discussed under the description of pattern-expression.

The following rules summarize how a predicate in the form of “m LIKE p” is
evaluated:

�� match-expression
NOT

LIKE pattern-expression
ESCAPE escape-expression

��

Predicates

136 SQL Reference

|
|
|

v If m or p is null, the result of the predicate is unknown.

v If m and p are both empty, the result of the predicate is true.

v If m is empty and p is not, the result of the predicate is unknown unless p
consists of one or more percent signs.

v If m is not empty and p is empty, the result of the predicate is false.

v Otherwise, if m matches the pattern in p, the result of the predicate is true. The
description of pattern-expression provides a detailed explanation on how the
pattern is matched to evaluate the predicate to true or false. See the “rigorous
description of the pattern” for this information.

The values for match-expression, pattern-expression, and escape-expression must
all be character or graphic strings or a mixture of both or they must all be binary
strings (BLOBs). None of the expressions can yield a distinct type; however, an
expression can be a function that casts a distinct type to its source type.

There are slight differences in what expressions are supported for each argument.
The description of each argument lists the supported expressions:

match-expression
An expression that specifies the string to be tested for conformity to a certain
pattern of characters.

LIKE pattern-expression
An expression that specifies the pattern of characters to be matched.

The expression can be specified by any one of the following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

The expression must also meet these restrictions:

v The maximum length of pattern-expression must not be larger than 4000
bytes.

v If a host variable is used in pattern-expression, the host variable must be
defined in accordance with the rules for declaring string host variables and
must not be a structure.

v If escape-expression is specified, pattern-expression must not contain the
escape character identified by escape-expression except when immediately
followed by the escape character, '%', or '_'. For example, if '+' is the escape
character, any occurrences of '+' other than '++', '+_', or '+%' in the pattern is
an error.

When the pattern specified in a LIKE predicate is a parmeter marker and a
fixed-length character host variable is used to replace the parameter marker,
specify a value for the host variable that is the correct length. If you do not
specify the correct length, the select does not return the intended results. For
example, if the host variable is defined as CHAR(10) and the value WYSE% is
assigned to that host variable, the host variable is padded with blanks on
assignment. The pattern used is ’WYSE%,’ which requests DB2 to search for all
values that start with WYSE and end with five blank spaces. If you intended to
search for only the values that start with ’WYSE,’ you should assign the value
’WYSE%%%%%%’ to the host variable.

Predicates

Chapter 2. Language elements 137

|
|
|
|

|
|
|
|
|
|
|
|
|
|

If the pattern is specified in a fixed-length string variable, any trailing blanks are
interpreted as part of the pattern. Therefore, it is better to use a varying-length
string variable with an actual length that is the same as the length of the
pattern. If the host language does not allow varying-length string variables,
place the pattern in a fixed-length string variable whose length is the length of
the pattern.

For more on the use of host variables with specific programming languages,
see Part 2 of DB2 Application Programming and SQL Guide.

The pattern is used to specify the conformance criteria for values in the
match-expression where:

v The underscore character (_) represents any single character.

v The percent sign (%) represents a string of zero or more characters.

v Any other character represents a single occurrence of itself.

If the pattern-expression needs to include either the underscore or the percent
character, the escape-expression is used to specify a character to precede
either the underscore or percent character in the pattern. For character strings,
the terms character, percent sign, and underscore refer to SBCS characters.
For graphic strings, the terms refer to double-byte or UTF-16 characters.

Predicates

138 SQL Reference

|
|
|

A rigorous description of the pattern
This more rigorous description of the pattern ignores the use of the
escape-expression.

Let m denote the value of match-expression and let p denote the value of
pattern-expression. The string p is interpreted as a sequence of the
minimum number of substring specifiers so each character of p is part of
exactly one substring specifier. A substring specifier is an underscore, a
percent sign, or any non-empty sequence of characters other than an
underscore or a percent sign.

The result of the predicate is unknown if m or p is the null value.
Otherwise, the result is either true or false. The result is true if m and p
are both empty strings or there exists a partitioning of m into substrings
such that:

v A substring of m is a sequence of zero or more contiguous characters
and each character of m is part of exactly one substring.

v If the nth substring specifier is an underscore, the nth substring of m is
any single character.

v If the nth substring specifier is a percent sign, the nth substring of m is
any sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a percent
sign, the nth substring of m is equal to that substring specifier and has
the same length as that substring specifier.

v The number of substrings of m is the same as the number of substring
specifiers.

It follows that if p is an empty string and m is not an empty string, the
result is false. Similarly, if m is an empty string and p is not an empty
string, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m
LIKE p).

Mixed data patterns: If match-expression represents mixed data, the pattern is
assumed to be mixed data. For ASCII and EBCDIC, the special characters in
the pattern are interpreted as follows:

v An SBCS underscore refers to one SBCS character.

v A DBCS underscore refers to one MBCS character.

v A percent sign (either SBCS or DBCS) refers to a string of zero or more
SBCS or MBCS characters.

v Redundant shift bytes in match-expression or pattern-expression are ignored.

For Unicode, the special characters in the pattern are interpreted as follows:

v An SBCS or DBCS underscore refers to one character (either SBCS or
MBCS).

v A percent sign (either SBCS or DBCS) refers to a string of zero or more
SBCS or MBCS characters.

Predicates

Chapter 2. Language elements 139

|

|
|

|
|

When the LIKE predicate is used with Unicode data, the Unicode percent sign
and underscore use the code points indicated in the following table:

Character UTF-8 UTF-16

Half-width % X'25' X'0025'

Full-width % X'EFBC85' X'FF05'

Half-width_ X'5F' X'005F'

Full-width_ X'EFBCBF' X'FF3F'

The full-width or half-width % matches zero or more characters. The full-width
or half width _ character matches exactly one character. (For ASCII or EBCDIC
data, a full-width _ character matches one DBCS character.)

ESCAPE escape-expression
An expression that specifies the escape character to be used to modify the
special meaning of the underscore (_) and percent (%) characters in
pattern-expression. Specifying an expression, which is optional, allows values
that contain the actual percent and underscore characters to be matched. The
escape character consists of a single SBCS (1 byte) or DBCS (2 bytes)
character. An escape clause is allowed for Unicode mixed (UTF-8) data, but is
restricted for ASCII and EBCDIC mixed data.

The expression can be specified by any one of:
v A constant
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above (though nested

function invocations cannot be used)
v A CAST specification whose arguments are any of the above

The following rules also apply to the use of the ESCAPE clause and
escape-expression:

v The result of escape-expression must be one SBCS or DBCS character or a
binary string that contains exactly 1 byte.

v The ESCAPE clause cannot be used if match-expression is mixed data.

v If escape-expression is specified by a host variable, the host variable must
be defined in accordance with the rules for declaring fixed-length string host
variables.19 If the host variable has a negative indicator variable, the result of
the predicate is unknown.

v The pattern must not contain the escape character except when followed by
the escape character, '%' or '_'. For example, if '+' is the escape character,
any occurrences of '+' other than '++', '+_', or '+%' in the pattern is an error.

The following example shows the effect of successive occurrences of the
escape character, which in this case is the plus sign (+).

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more
arbitrary characters

+++% A plus sign followed by a percent sign

19. If it is NUL-terminated, a C character string variable of length 2 can be specified.

Predicates

140 SQL Reference

|
|

||||

|||

|||

|||

|||
|
|
|
|

|
|
|
|

Examples
Example 1: The following predicate is true when the string to be tested in NAME
has the value SMITH, NESMITH, SMITHSON, or NESMITHY. It is not true when
the string has the value SMYTHE:

NAME LIKE '%SMITH%'

Example 2: In the predicate below, a host variable named PATTERN holds the
string for the pattern:

NAME LIKE :PATTERN ESCAPE '+'

Assume that the string in PATTERN has the value:
AB+_C_%

Observe that in this string, the plus sign preceding the first underscore is an escape
character. The predicate is true when the string being tested in NAME has the value
AB_CD or AB_CDE. It is false when this string has the value AB, AB_, or AB_C.

Example 3: The following two predicates are equivalent; three of the four percent
signs in the first predicate are redundant.

NAME LIKE 'AB%%%%CD'
NAME LIKE 'AB%CD'

Example 4: Assume that a distinct type named ZIP_TYPE with a source data type
of CHAR(5) exists and an ADDRZIP column with data type ZIP_TYPE exists in
some table TABLEY. The following statement selects the row if the zip code
(ADDRZIP) begins with ’9555’.

SELECT * FROM TABLEY
WHERE CHAR(ADDRZIP) LIKE '9555%';

Example 5: The RESUME column in sample table
DSN8710.EMP_PHOTO_RESUME is defined as a CLOB. The following statement
selects the RESUME column when the string JONES appears anywhere in the
column.

SELECT RESUME FROM DSN8710.EMP_PHOTO_RESUME
WHERE RESUME LIKE '%JONES%';

Example 6: In the following table, assume COL1 is a column that contains mixed
EBCDIC data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

Predicates

Chapter 2. Language elements 141

Example 7: In the following table, assume COL1 is a column that contains mixed
ASCII data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

Example 8: In the following table, assume COL1 is a column that contains Unicode
data. The table shows the results when the predicate in the first column is
evaluated using the COL1 value in the second column:

Predicates

142 SQL Reference

|
|
|

NULL predicate

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression is
null, the result is true. If the value is not null, the result is false. If NOT is specified,
the result is reversed.

A parameter marker must not be specified for or within the expression.

Example: The following predicate is true whenever PHONENO has the null value,
and is false otherwise.

PHONENO IS NULL

Search conditions
A search condition specifies a condition that is true, false, or unknown about a
given row or group. When the condition is true, the row or group qualifies for the
results. When the condition is false or unknown, the row or group does not qualify.

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

AND and OR are defined in the following table, in which P and Q are any
predicates:

Table 25. Truth table for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false and NOT(false) is true, but NOT(unknown) is still unknown. The
NOT logical operator has no affect on an unknown condition. The result of
NOT(unknown) is still unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation is
not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Example 1: In the first of the search conditions below, AND is applied before OR. In
the second, OR is applied before AND.

SALARY>:SS AND COMM>:CC OR BONUS>:BB
SALARY>:SS AND (COMM>:CC OR BONUS>:BB)

Example 2: In the first of the search conditions below, NOT is applied before AND.
In the second, AND is applied before NOT.

NOT SALARY>:SS AND COMM>:CC
NOT (SALARY>:SS AND COMM>:CC)

�� predicate
NOT (search-condition)

�

AND predicate
OR NOT (search-condition)

��

Search Conditions

144 SQL Reference

|
|
|

Example 3: For the following search condition, AND is applied first. After the
application of AND, the ORs could be applied in either order without changing the
result. DB2 can therefore select the order of applying the ORs.

SALARY>:SS AND COMM>:CC OR BONUS>:BB OR SEX=:GG

Options affecting SQL
Certain DB2 precompiler options, DB2 subsystem parameters (set through the
installation panels), bind options, and special registers affect how SQL statements
can be composed or determine how SQL statements are processed.

Table 26 summarizes the effect of these options and shows where to find more
information. (Some of the items are described in detail following the table, while
other items are described elsewhere.)

Table 26. Summary of items affecting composition and processing of SQL statements

Precompiler option Other1 Affects

DYNAMICRULES bind option The rules that DB2 applies to dynamic SQL statements.
For details about authorization, see “Authorization IDs
and dynamic SQL” on page 43. The bind option can
also affect decimal point representation, string
delimiters, mixed data, and decimal arithmetic.

For details about how DB2 applies the precompiler
options to dynamic SQL statements when
DYNAMICRULES bind, define, or invoke behavior is in
effect, see “Precompiler options for dynamic
statements” on page 147.

USE FOR DYNAMICRULES Use of precompiler options for dynamic statements
when DYNAMICRULES bind, define, or, invoke
behavior is in effect. For details, see “Precompiler
options for dynamic statements” on page 147.

COMMA
PERIOD

DECIMAL POINT IS Representation of decimal points in SQL statements.

For details, see page 147.

APOSTSQL
QUOTESQL

SQL STRING DELIMITER Representation of string delimiters in SQL statements.

For details, see page 148.

ASCII CODED CHAR SET A numeric value that determines the CCSID of ASCII
string data.

For details, see page 149.

EBCDIC CODED CHAR SET A numeric value that determines the CCSID of EBCDIC
string data and whether Katakana characters can be
used in ordinary identifiers.

For details, see page 149.

UNICODE CCSID A numeric value that determines the CCSID of Unicode
string data.

For details, see page 149.

GRAPHIC
NOGRAPHIC

MIXED DATA Use of ASCII or EBCDIC character strings with a
mixture of SBCS and DBCS characters.

For details, see page 149.

Search Conditions

Chapter 2. Language elements 145

|||
|

|

Table 26. Summary of items affecting composition and processing of SQL statements (continued)

Precompiler option Other1 Affects

DATE
TIME

DATE FORMAT
TIME FORMAT
LOCAL DATE LENGTH
LOCAL TIME LENGTH

Formatting of datetime strings.

For details, see page 150.

STDSQL Conformance with the SQL standard.

For details, see page 150.

NOFOR or STDSQL Whether the FOR UPDATE OF clause must be
specified (in the SELECT statement of the DECLARE
CURSOR statement).

For details, see page 152.

CONNECT Whether the rules for a type 1 or a type 2 CONNECT
statement apply. See “CONNECT” on page 453 for a
description of the rules.

CURRENTSERVER bind option Establishing a server other than the local DB2
subsystem.

For details, see “Establishing a different server” on
page 455.

SQLRULES bind option Whether a type 2 CONNECT statement is processed
with DB2 rules or SQL standard rules.

CURRENT RULES special register Whether the statements ALTER TABLE, CREATE
TABLE, GRANT, and REVOKE are processed with DB2
rules or SQL standard rules. For details, see
“CURRENT RULES” on page 89.

Whether DB2 automatically creates the LOB table
space, auxiliary table, and index on the auxiliary table
for a LOB column in a base table. For details, see
“Creating a table with LOB columns” on page 623.

Whether DB2 automatically creates an index on a
ROWID column that is defined with GENERATED BY
DEFAULT. For details, see the description of the clause
for “CREATE TABLE” on page 601.

Whether a stored procedure runs as a main or
subprogram. For details, see “CREATE PROCEDURE
(external)” on page 566.

SQLRULES bind option or
CURRENT RULES special
register

Whether SQLCODE +236 is issued when the SQLDA
provided on DESCRIBE or PREPARE INTO is too small
and the result columns do not involve LOBs or distinct
types. For details, see “DESCRIBE (prepared statement
or table)” on page 695 and “Appendix C. SQLCA and
SQLDA” on page 923.

Whether the SELECT privilege is required in a
searched DELETE or UPDATE. For details, see
“DELETE” on page 688 or “UPDATE” on page 872.

Options affecting SQL

146 SQL Reference

Table 26. Summary of items affecting composition and processing of SQL statements (continued)

Precompiler option Other1 Affects

DEC DECIMAL ARITHMETIC or
CURRENT PRECISION special
register

Whether DEC15 or DEC31 rules are used when both
operands in a decimal operation have 15 digits or less.

For details, see “Arithmetic with two decimal operands”
on page 114.

Note: 1The entries in this column are fields on installation panels unless otherwise noted.

For further details on precompiler options, see Part 5 of DB2 Application
Programming and SQL Guide. For more details on bind options, see Chapter 2 of
DB2 Command Reference.

Precompiler options for dynamic statements
Generally, dynamic statements use the application programming defaults specified
on installation panel DSNTIPF. However, if the value of installation panel field USE
FOR DYNAMICRULES is NO and DYNAMICRULES bind, define, or invoke
behavior is in effect, the following precompiler options are used instead of the
application programming defaults:
v COMMA or PERIOD
v APOST or QUOTE
v APOSTSQL or QUOTESQL
v GRAPHIC or NOGRAPHIC
v DEC(15) or DEC(31)

For some languages, the precompiler option defaults to a value and no alternative
is allowed. If the value of installation panel field USE FOR DYNAMICRULES is
YES, dynamic statements use the application programming defaults regardless of
the value of bind option DYNAMICRULES.

For additional information on the effect of precompiler options and application
programming defaults on:
v Decimal point representation, see page 147.
v String delimiters, see page 148.
v Mixed data, see page 149.
v Decimal arithmetic, see “Arithmetic with two decimal operands” on page 114.

For a list of the DYNAMICRULES bind option values that specify run, bind, define,
or invoke behavior, see Table 2 on page 44.

Decimal point representation
Decimal points in SQL statements are represented with either periods or commas.
Two values control the representation:

v The value of field DECIMAL POINT IS on installation panel DSNTIPF, which can
be a comma (,) or period (.)

v COMMA or PERIOD, which are mutually exclusive DB2 precompiler options for
COBOL

These values apply to SQL statements as follows:

v For a distributed operation, the decimal point is the first of the following values
that applies:

– The decimal point value specified by the requester

Options affecting SQL

Chapter 2. Language elements 147

– The value of field DECIMAL POINT IS on panel DSNTIPF at the DB2 where
the package is bound

v Otherwise:
For static SQL statements:
- In a COBOL program, the DB2 precompiler option COMMA or PERIOD

determines the decimal point representation for every static SQL statement.
If neither precompiler option is specified, the value of DECIMAL POINT IS
at precompilation time determines the representation.

- In non-COBL programs, the decimal representation for static SQL
statements is always the period.

For dynamic SQL statements:
- If DYNAMICRULES run behavior applies, the decimal point is the value of

field DECIMAL POINT IS on installation panel DSNTIPF at the local DB2
when the statement is prepared.

For a list of the DYNAMICRULES bind option values that specify run, bind,
define, or invoke behavior, see Table 2 on page 44.

- If DYNAMICRULES bind, define, or invoke behavior applies, and the value
of install panel field USE FOR DYNAMICRULES is YES, the decimal point
is the value of field DECIMAL POINT IS.

If bind, define, or invoke behavior applies, and field USE FOR DYNAMIC
RULES is NO, the precompiler option determines the decimal point
representation. For COBOL programs, which supports precompiler option
COMMA or PERIOD, the decimal point representation is determined as
described above for static SQL statements in COBOL programs. For
programs written in other host languages, the default precompiler option,
which can only be PERIOD, is used.

If the comma is the decimal point, these rules apply:

v In any constant, a comma intended as a separator must be followed by space.
Such commas could appear, for example, in a VALUES clause, an IN predicate,
or an ORDER BY clause in which numbers are used to identify columns.

v In any context, a comma intended as a decimal point must not be followed by a
space.

v If the DECIMAL POINT IS field (and not the precompiler option) determines the
comma as the decimal point, DB2 will recognize either a comma or a period as
the decimal point in numbers in dynamic SQL.

Apostrophes and quotation marks in string delimiters
The following precompiler options control the representation of string delimiters:

v APOST and QUOTE are mutually exclusive DB2 precompiler options for COBOL.
Their meanings are exactly what they are for the COBOL compilers:

– APOST names the apostrophe (') as the string delimiter in COBOL
statements.

– QUOTE names the quotation mark (") as the string delimiter.

Neither option applies to SQL syntax. Do not confuse them with the APOSTSQL
and QUOTESQL options.

v APOSTSQL and QUOTESQL are mutually exclusive DB2 precompiler options for
COBOL. Their meanings are:

– APOSTSQL names the apostrophe (') as the string delimiter and the quotation
mark (") as the escape character in SQL statements.

Options affecting SQL

148 SQL Reference

– QUOTESQL names the quotation mark (") as the string delimiter and the
apostrophe (') as the escape character in SQL statements.

These values apply to SQL statements as follows:

v For a distributed operation, the string delimiter is the first of the following values
that applies:

– The SQL string delimiter value specified by the requester

– The value of the field SQL STRING DELIMITER on installation panel
DSNTIPF at the DB2 where the package is bound

v Otherwise:

– For static SQL statements:

In a COBOL program, the DB2 precompiler option APOSTSQL or QUOTESQL
determines the string delimiter and escape character. If neither precompiler
option is specified, the value of field SQL STRING DELIMITER on installation
panel DSNTIPF determines the string delimiter and escape character.

In a non-COBOL program, the string delimiter is the apostrophe, and the
escape character is the quotation mark.

– For dynamic SQL statements:

- If DYNAMICRULES run behavior applies, the string delimiter and escape
character is the value of field SQL STRING DELIMITER on installation
panel DSNTIPF at the local DB2 when the statement is prepared.

For a list of the DYNAMICRULES bind option values that specify run, bind,
define, or invoke behavior, see Table 2 on page 44.

- If DYNAMICRULES bind, define, or invoke behavior applies and the value
of install panel field USE FOR DYNAMICRULES is YES, the string delimiter
and escape character is the value of field SQL STRING DELIMITER.

If bind, define, or invoke behavior applies and USE FOR DYNAMICRULES
is NO, the precompiler option determines the string delimiter and escape
character. For COBOL programs, precompiler option APOSTSQL or
QUOTESQL determines the string delimiter and escape character. If neither
precompiler option is specified, the value of field SQL STRING DELIMITER
determines them. For programs written in other host languages, the default
precompiler option, which can only be APOSTSQL, determines the string
delimiter and escape character.

Katakana characters for EBCDIC
The field EBCDIC CODED CHAR SET on installation panel DSNTIPF determines
the system CCSIDs for EBCDIC-encoded data. Ordinary identifiers with an EBCDIC
encoding scheme can contain Katakana characters if the field contains the value
5026 or 930. There are no corresponding precompiler options. EBCDIC CODED
CHAR SET applies equally to static and dynamic statements. For dynamically
prepared statements, the applicable value is always the one at the local DB2.

Mixed data in character strings
The field MIXED DATA on installation panel DSNTIPF can have the value YES or
NO for ASCII or EBCDIC character strings. The value YES indicates that character
strings can contain a mixture of SBCS and DBCS characters. The value NO
indicates that they cannot. For Unicode, the default is always mixed. A
corresponding precompiler option (GRAPHIC or NOGRAPHIC) exists for every host
language supported.

Options affecting SQL

Chapter 2. Language elements 149

For static SQL statements, the value of the precompiler option determines whether
ASCII or EBCDIC character strings can contain mixed data. For dynamic SQL
statements, either the value of field MIXED DATA or the precompiler option is used,
depending on the value of bind option DYNAMICRULES in effect:

v If DYNAMICRULES run behavior applies, field MIXED DATA is used.

For a list of the DYNAMICRULES bind option values that specify run, bind,
define, or invoke behavior, see Table 2 on page 44.

v If bind, define, or invoke behavior applies and the value of install panel field USE
FOR DYNAMICRULES is YES, field MIXED DATA is used. If USE FOR
DYNAMICRULES is NO, the precompiler option is used.

The value of MIXED DATA and the precompiler option affects the parsing of SQL
character string constants, the execution of the LIKE predicate, and the assignment
of character strings to host variables when truncation is needed. It can also affect
concatenation, as explained in “With the concatenation operator” on page 111. A
value that applies to a statement executed at the local DB2 also applies to any
statement executed at another server. An exception is the LIKE predicate, for which
the applicable value of MIXED DATA is always the one at the statement’s server.

The value of MIXED DATA also affects the choice of system CCSIDs for the local
DB2 and the choice of data subtypes for character columns. When this value is
YES, multiple CCSIDs are available for ASCII and EBCDIC data (SBCS, DBCS,
and MIXED). The CCSID specified in the ASCII CODED CHAR SET or EBCDIC
CODED CHAR SET field is the MIXED CCSID. In this case, DB2 derives the SBCS
and MIXED CCSIDs from the DBCS CCSID specified installation panel DSNTIPF.
Moreover, a character column can have any one of the allowable data
subtypes—BIT, SBCS, or MIXED.

On the other hand, when MIXED DATA is NO, the only ASCII or EBCDIC system
CCSIDs are those for SBCS data. Therefore, only BIT and SBCS can be data
subtypes for character columns.

Formatting of datetime strings
Fields on installation panel DSNTIPF (DATE FORMAT, TIME FORMAT, LOCAL
DATE LENGTH, and LOCAL TIME LENGTH) and DB2 precompiler options affect
the formatting of datetime strings.

The formatting of datetime strings is described in “String representations of datetime
values” on page 57. Unlike the subsystem parameters and options previously
described, a value in effect for a statement executed at the local DB2 is not
necessarily in effect for a statement executed at a different server. See “Restrictions
on the use of local datetime formats” on page 59 for more information.

SQL standard language
DB2 SQL and the SQL standard are not identical. The STDSQL precompiler option
addresses some of the differences:

v STDSQL(NO) indicates that conformance with the SQL standard is not intended.
The default is the value of field STD SQL LANGUAGE on installation panel
DSNTIP4 (which has a default of NO).

v STDSQL(YES)20 indicates that conformance with the SQL standard is intended.

20. STDSQL(86) is a synonym, but STDSQL(YES) should be used.

Options affecting SQL

150 SQL Reference

When a program is precompiled with the STDSQL(YES) option, the following rules
apply:

Declaring host variables: All host variable declarations must lie between pairs of
BEGIN DECLARE SECTION and END DECLARE SECTION statements:

BEGIN DECLARE SECTION

(one or more host variable declarations)

END DECLARE SECTION

Separate pairs of these statements can bracket separate sets of host variable
declarations.

Declarations for SQLCODE and SQLSTATE: The programmer must declare host
variables for either SQLCODE or SQLSTATE, or both. SQLCODE should be defined
as a fullword integer and SQLSTATE should be defined as a 5-byte character string.
SQLCODE and SQLSTATE cannot be part of any structure. The variables must be
declared in the DECLARE SECTION of a program; however, SQLCODE can be
declared outside of the DECLARE SECTION when no host variable is defined for
SQLSTATE. For PL/I, an acceptable declaration can look like this:

DECLARE SQLCODE BIN FIXED(31);
DECLARE SQLSTATE CHAR(5);

In Fortran programs, the variable SQLCOD should be used for SQLCODE, and
either SQLSTATE or SQLSTA can be used for SQLSTATE.

Definitions for the SQLCA: An SQLCA must not be defined in your program,
either by coding its definition manually or by using the INCLUDE SQLCA statement.
When STDSQL(YES) is specified, the DB2 precompiler automatically generates an
SQLCA that includes the variable name SQLCADE instead of SQLCODE and
SQLSTAT instead of SQLSTATE. After each SQL statement executes, DB2 assigns
status information to SQLCODE and SQLSTATE, whose declarations are described
above, as follows:

v SQLCODE: DB2 assigns the value in SQLCADE to SQLCODE. In Fortran,
SQLCAD and SQLCOD are used for SQLCADE and SQLCODE, respectively.

v SQLSTATE: DB2 assigns the value in SQLSTAT to SQLSTATE. (In Fortran,
SQLSTT and SQLSTA are used for SQLSTAT and SQLSTATE, respectively.)

v No declaration for either SQLSTATE or SQLCODE: DB2 assigns the value in
SQLCADE to SQLCODE.

If the precompiler encounters an INCLUDE SQLCA statement, it ignores the
statement and issues a warning message. The precompiler also does not recognize
hand-coded definitions, and a hand-coded definition creates a compile-time conflict
with the precompiler-generated definition. A similar conflict arises if definitions of
SQLCADE or SQLSTAT, other than the ones generated by the DB2 precompiler,
appear in the program.

Comments in static SQL statements: Static SQL statements can include SQL
comments. Two consecutive hyphens (--) indicate that the characters after the
hyphens are a comment.

SQL comments are recognized only in a program that has been precompiled with
the STDSQL(YES) option. If STDSQL(YES) is not specified, the use of an SQL
comment might cause a syntax error. Host language comments can be used
instead.

Options affecting SQL

Chapter 2. Language elements 151

When allowed, SQL comments are subject to the following rules:

v The two hyphens must be on the same line, not separated by a space.

v Comments can be started wherever a space is valid (except within a delimiter
token or between EXEC and SQL).

v Comments are terminated by the end of the line.

v Comments are not allowed within statements that are dynamically prepared
(using PREPARE or EXECUTE IMMEDIATE).

v Within a statement embedded in a COBOL program, the two hyphens must be
preceded by a blank unless they begin a line.

This example shows how to include comments in a statement:
EXEC SQL CREATE VIEW PRJ_MAXPER -- projects with most support personnel

AS SELECT PROJNO, PROJNAME -- number and name of project
FROM DSN8710.PROJ
WHERE DEPTNO = 'E21' -- systems support dept code

AND PRSTAFF > 1
END-EXEC.

Positioned updates of columns
The NOFOR precompiler option affects the use of the FOR UPDATE OF clause.
The NOFOR option is in effect when either of the following are true:
v The NOFOR option is specified.
v The STDSQL(YES) option is in effect.

Otherwise, the NOFOR option is not in effect. The following table summarizes the
differences when the option is in effect and when the option is not in effect:

Table 27. The NOFOR precompiler option

When NOFOR is in effect When NOFOR is not in effect

The use of the FOR UPDATE OF clause in
the SELECT statement of the DECLARE
CURSOR statement is optional. This clause
restricts updates to the specified columns and
causes the acquisition of update locks when
the cursor is used to fetch a row. If no
columns are specified, positioned updates
can be made to any updatable columns in the
table or view that is identified in the first
FROM clause in the SELECT statement. If
the FOR UPDATE OF clause is not specified,
positioned updates can be made to any
columns that the program has DB2 authority
to update.

The FOR UPDATE OF clause must be
specified.

DBRMs must be built entirely in virtual
storage, which might possibly increase the
virtual storage requirements of the DB2
precompiler. However, creating DBRMs
entirely in virtual storage might ease
concurrency problems with DBRM libraries.

DBRMs can be built incrementally using the
DB2 precompiler.

Options affecting SQL

152 SQL Reference

|
|
|
|
|

Chapter 3. Built-in functions

A built-in function is a function that is supplied with DB2 for OS/390 and z/OS. A
built-in function is denoted by a function name followed by one or more operands
that are enclosed in parentheses. The operands are called arguments, and each
argument is specified by an expression. The result of a built-in function is a single
value derived by applying the operation of the function to the arguments.

The built-in functions are in schema SYSIBM. A built-in function can be invoked with
or without its schema name. Regardless of whether a schema name qualifies the
function name, DB2 uses function resolution to determine which function to use. For
more information on functions and the process of function resolution, see
“Functions” on page 104.

Built-in functions are classified as column functions or scalar functions. Although
both types of functions return a single value, their arguments differ. The argument of
a column function is a set of like values. Each argument of a scalar function is a
single value.

In the syntax of SQL, the term function is used only in the definition of an
expression. Thus, a function can be used only where an expression is
used.However, some restrictions apply to the use of column functions as specified
in “Column functions” on page 158 and in “Chapter 4. Queries” on page 299. Most
of the built-in functions can also be used as the source function for a user-defined
function as described under “CREATE FUNCTION (sourced)” on page 521.

Table 28 lists the built-in functions that DB2 supports.

Table 28. Supported functions

Function name Description Page

ABS or ABSVAL Returns the absolute value of its argument 171

ACOS Returns the arccosine of an argument as an angle, expressed in
radians

172

ADD_MONTHS Returns a date that represents the date argument plus the
number of months argument

173

ASIN Returns the arcsine of an argument as an angle, expressed in
radians

175

ATAN Returns the arctangent of an argument as an angle, expressed in
radians

176

ATANH Returns the hyperbolic arctangent of an argument as an angle,
expressed in radians

177

ATAN2 Returns the arctangent of x and y coordinates as an angle,
expressed in radians

178

AVG Returns the average of a set of numbers 159

BLOB Returns a BLOB representation of its argument 179

CCSID_ENCODING Returns the encoding scheme of a CCSID with a value of ASCII,
EBCDIC, UNICODE, or UNKNOWN

180

CEIL or CEILING Returns the smallest integer greater than or equal to the
argument

181

CHAR Returns a fixed-length character string representation of its
argument

182

© Copyright IBM Corp. 1982, 2001 153

|
|
|

||
|
|

||
|
|

Table 28. Supported functions (continued)

Function name Description Page

CLOB Returns a CLOB representation of its argument 188

COALESCE Returns the first argument in a set of arguments that is not null 189

CONCAT Returns the concatenation of two strings 191

COS Returns the cosine of an argument that is expressed as an angle
in radians

192

COSH Returns the hyperbolic cosine of an argument that is expressed
as an angle in radians

193

COUNT Returns the number of rows or values in a set of rows or values 160

COUNT_BIG Same as COUNT, except the result can be greater than the
maximum value of an integer

161

DATE Returns a date derived from its argument 194

DAY Returns the day part of its argument 195

DAYOFMONTH Similar to DAY 196

DAYOFWEEK Returns an integer in the range of 1 to 7, where 1 represents
Sunday

197

DAYOFWEEK_ISO Returns an integer in the range of 1 to 7, where 1 represents
Monday

198

DAYOFYEAR Returns an integer in the range of 1 to 366, where 1 represents
January 1

199

DAYS Returns an integer representation of a date 200

DBCLOB Returns a DBCLOB representation of its argument 201

DECIMAL or DEC Returns a decimal representation of its argument 202

DEGREES Returns the number of degrees for an argument that is expressed
in radians

204

DIGITS Returns a character string representation of a number 205

DOUBLE or
DOUBLE-PRECISION

Returns a double precision floating-point representation of its
argument

206

EXP Returns the exponential function of an argument 207

FLOAT Same as DOUBLE 206

FLOOR Returns the largest integer that is less than or equal to the
argument

209

GRAPHIC Returns a GRAPHIC representation of its argument 210

HEX Returns a hexadecimal representation of its argument 213

HOUR Returns the hour part of its argument 214

IDENTITY_VAL_LOCAL Returns the most recently assigned value for an identity column 215

IFNULL Returns the first argument in a set of two arguments that is not
null

219

INSERT Returns a string that is composed of an argument inserted into
another argument at the same position where some number of
bytes have been deleted

220

INTEGER or INT Returns an integer representation of its argument 223

JULIAN_DAY Returns an integer that represents the number of days from
January 1, 4712 B.C.

224

Built-in functions

154 SQL Reference

||
|
|

||
|
|

|||

|||

|||

Table 28. Supported functions (continued)

Function name Description Page

LAST_DAY Returns a date that represents the last day of the month of the
date argument

225

LCASE or LOWER Returns a string with the characters converted to lowercase 226

LEFT Returns a string that consists of the specified number of leftmost
bytes of a string

227

LENGTH Returns the length of its argument 229

LN Returns the natural logarithm of an argument 230

LOCATE Returns the position at which the first occurrence of an argument
starts within another argument

231

LOG10 Returns the base 10 logarithm of an argument 233

LTRIM Returns the characters of a string with the leading blanks
removed

234

MAX Returns the maximum value in a set of column values 163

MAX (scalar) Returns the maximum value in a set of values 235

MICROSECOND Returns the microsecond part of its argument 236

MIDNIGHT_SECONDS Returns an integer in the range of 0 to 86400 that represents the
number of seconds between midnight and the argument

237

MIN Returns the minimum value in a set of column values 164

MIN (scalar) Returns the minimum value in a set of values 238

MINUTE Returns the minute part of its argument 239

MOD Returns the remainder of one argument divided by a second
argument

240

MONTH Returns the month part of its argument 242

MULTIPLY_ALT Returns the product of the two arguments as a decimal value,
used when the sum of the argument precisions exceeds 31

243

NEXT_DAY Returns a timestamp that represents the first weekday, named by
the second argument, after the date argument

244

NULLIF Returns NULL if the arguments are equal; else the first argument 245

POSSTR Returns the position of the first occurrence of an argument within
another argument

246

POWER Returns the value of one argument raised to the power of a
second argument

248

QUARTER Returns an integer in the range of 1 to 4 that represents the
quarter of the year for the date specified in the argument

249

RADIANS Returns the number of radians for an argument that is expressed
in degrees

250

RAISE_ERROR Raises an error in the SQLCA with the specified SQLSTATE and
error description

251

RAND Returns a double precision floating-point random number 252

REAL Returns a single precision floating-point representation of its
argument

253

REPEAT Returns a character string composed of an argument repeated a
specified number of times

254

REPLACE Returns a string in which all occurrences of an argument within a
second argument are replaced with a third argument

256

Built-in functions

Chapter 3. Built-in functions 155

|||

|||

|||

||
|
|

||
|
|

Table 28. Supported functions (continued)

Function name Description Page

RIGHT Returns a string that consists of the specified number of rightmost
bytes of a string

258

ROUND Returns a number rounded to the specified number of places to
the right or left of the decimal place

260

ROUND_TIMESTAMP Returns a timestamp rounded to the unit specified by the
timestamp format string

262

ROWID Returns a row ID representation of its argument 264

RTRIM Returns the characters of an argument with the trailing blanks
removed

265

SECOND Returns the second part of its argument 266

SIGN Returns the sign of an argument 267

SIN Returns the sine of an argument that is expressed as an angle in
radians

268

SINH Returns the hyperbolic sine of an argument that is expressed as
an angle in radians

269

SMALLINT Returns a small integer representation of its argument 270

SPACE Returns a string that consists of the number of blanks the
argument specifies

271

SQRT Returns the square root of its argument 272

STDDEV or STDDEV_POP Returns the standard deviation (/n) of a set of numbers 165

STDDEV_SAMP Returns the sample standard deviation (/n-1) of a set of numbers 166

STRIP Returns the characters of a string with the blanks (or specified
character) at the beginning, end, or both beginning and end of the
string removed

273

SUBSTR Returns a substring of a string 275

SUM Returns the sum of a set of numbers 167

TAN Returns the tangent of an argument that is expressed as an angle
in radians

277

TANH Returns the hyperbolic tangent of an argument that is expressed
as an angle in radians

278

TIME Returns a time derived from its argument 279

TIMESTAMP Returns a timestamp derived from its arguments 280

TIMESTAMP_FORMAT Returns a timestamp for a character string expression, using a
specified format to interpret the string

281

TRANSLATE Returns a string with one or more characters translated 282

TRUNCATE or TRUNC Returns a number truncated to the specified number of places to
the right or left of the decimal point

285

TRUNC_TIMESTAMP Returns a timestamp truncated to the unit specified by the
timestamp format string

286

UCASE or UPPER Returns a string with the characters converted to uppercase 287

VARCHAR Returns the varying-length character string representation of its
argument

288

VARCHAR_FORMAT Returns a character string representation of a timestamp, with the
string in a specified format

292

VARGRAPHIC Returns a graphic string representation of its argument 293

Built-in functions

156 SQL Reference

||
|
|

|||

||
|
|

|||

||
|
|

|||

Table 28. Supported functions (continued)

Function name Description Page

VARIANCE, VAR, or VAR_POP Returns the variance of a set of numbers 168

VARIANCE_SAMP or
VAR_SAMP

Returns the sample variance of a set of numbers 169

WEEK Returns an integer that represents the week of the year with
Sunday as the first day of the week

296

WEEK_ISO Returns an integer that represents the week of the year with
Monday as first day of a week

297

YEAR Returns the year part of its argument 298

Built-in functions

Chapter 3. Built-in functions 157

|
|
||

||
|
|

Column functions
The following information applies to all built-in column functions, except for the
COUNT(*) and COUNT_BIG(*) variations of the COUNT and COUNT_BIG
functions.

The argument of a column function is a set of values derived from an expression.
The expression must include a column name and must not include another column
function. The scope of the set is a group or an intermediate result table as
explained in “Chapter 4. Queries” on page 299.

If a GROUP BY clause is specified in a query and the intermediate result from the
FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then the
column functions are not applied and the result of the query is the empty set.

If the GROUP BY clause is not specified in a query and the intermediate result set
of the FROM, WHERE, and HAVING clauses is the empty set, then the column
functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of distinct
values of JOB for employees in department D11:

SELECT COUNT(DISTINCT JOB)
FROM DSN8710.EMP
WHERE WORKDEPT = 'D11';

The keyword DISTINCT is not considered an argument of the function but rather a
specification of an operation that is performed before the function is applied. If
DISTINCT is specified, duplicate values are eliminated. If ALL is implicitly or
explicitly specified, duplicate values are not eliminated.

A column function can be used in a WHERE clause only if that clause is part of a
subquery of a HAVING clause and the column name specified in the expression is
a correlated reference to a group. If the expression includes more than one column
name, each column name must be a correlated reference to the same group.

The result of the COUNT and COUNT_BIG functions cannot be the null value. As
specified in the description of AVG, MAX, MIN, STDDEV, SUM, and VARIANCE, the
result is the null value when the function is applied to an empty set. However, the
result is also the null value when the function is specified in an outer select list, the
argument is given by an arithmetic expression, and any evaluation of the
expression causes an arithmetic exception (such as division by zero).

If the argument values of a column function are strings from a column with a field
procedure, the function is applied to the encoded form of the values and the result
of the function inherits the field procedure.

Following in alphabetic order is a definition of each of the built-in column functions.

Column functions

158 SQL Reference

|
|
|

|
|
|

AVG

The schema is SYSIBM.

The AVG function returns the average of a set of numbers.

The argument values must be of any built-in numeric data type, and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is a large integer if the argument values are small integers,
and the result is double precision floating-point if the argument values are single
precision floating-point. The result can be null.

If the data type of the argument values is decimal with precision p and scale s, the
precision (P) and scale (S) of the result depend on p and the decimal precision
option:

v If p is greater than 15 or the DEC31 option is in effect, P is 31 and S is
max(0,28-p+s).

v Otherwise, P is 15 and S is 15-p+s.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the
result is the average value of the set. If the type of the result is an integer, the
fractional part of the average is lost. The order in which the summation part of the
operation is performed is undefined but every intermediate result must be within the
range of the result data type.

Example: Assuming DEC15, set the DECIMAL(15,2) variable AVERAGE to the
average salary in department D11 of the employees in the sample table
DSN8710.EMP.

EXEC SQL SELECT AVG(SALARY)
INTO :AVERAGE
FROM DSN8710.EMP
WHERE WORKDEPT = 'D11';

��
ALL

AVG(expression)
DISTINCT

��

AVG

Chapter 3. Built-in functions 159

COUNT

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows or
values.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. If DISTINCT is used, the resulting expression cannot have a maximum
length greater than 255 for a character column and 127 for a graphic column.

The result is a large integer. The result cannot be null.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values.
The function is applied to the set of values derived from the argument values by the
elimination of null values. The result is the number of non-null values in the set,
including duplicates.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of
null values and duplicate values. The result is the number of values in the set.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the
set. Any row that includes only null values is included in the count.

Example 1: Set the integer host variable FEMALE to the number of females
represented in the sample table DSN8710.EMP.

EXEC SQL SELECT COUNT(*)
INTO :FEMALE
FROM DSN8710.EMP
WHERE SEX = 'F';

Example 2: Set the integer host variable FEMALE_IN_DEPT to the number of
departments that have at least one female as a member.

EXEC SQL SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM DSN8710.EMP
WHERE SEX = 'F';

��
ALL

COUNT(expression)
DISTINCT

*

��

COUNT

160 SQL Reference

|
|
|
|

COUNT_BIG

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of rows or
values. It is similar to COUNT except that the result can be greater than the
maximum value of an integer.

The argument values can be of any built-in data type other than a BLOB, CLOB, or
DBCLOB. If DISTINCT is used, the resulting expression must not have a maximum
length greater than 255 for a character column or 127 for a graphic column.

The result of the function is a decimal number with precision 31 and scale 0. The
result cannot be null.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set
of values. The function is applied to the set of values derived from the argument
values by the elimination of null values. The result is the number of non-null values
in the set, including duplicates.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
function is applied to the set of values derived from the argument values by the
elimination of null and duplicate values. The result is the number of different nonnull
values in the set.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows
in the set. A row that includes only null values is included in the count.

Example 1: The examples for COUNT are also applicable for COUNT_BIG. Refer to
the COUNT examples and substitute COUNT_BIG for the occurrences of COUNT.
The results are the same except for the data type of the result.

Example 2: To create a sourced function that is similar to the built-in COUNT_BIG
function, the definition of the sourced function must include the type of the column
that can be specified when the new function is invoked. In this example, the
CREATE FUNCTION statement creates a sourced function that takes a CHAR
column as input and uses COUNT_BIG to perform the counting. The result is
returned as a double precision floating-point number. The query shown counts the
number of unique departments in the sample employee table.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE SYSIBM.COUNT_BIG(CHAR());

SET PATH RICK, SYSTEM PATH;

SELECT COUNT(DISTINCT WORKDEPT) FROM DSN8710.EMP;

The empty parenthesis in the parameter list for the new function (RICK.COUNT)
means that the input parameter for the new function is the same type as the input
parameter for the function named in the SOURCE clause. The empty parenthesis in

��
ALL

COUNT_BIG(expression)
DISTINCT

*

��

COUNT_BIG

Chapter 3. Built-in functions 161

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

the parameter list in the SOURCE clause (SYSIBM.COUNT_BIG) means that when
DB2 uses function resolution to identify the source function, the attribute (in this
example the length) is ignored for determining whether the data types match.

COUNT_BIG

162 SQL Reference

|
|
|

MAX

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in data type other than a BLOB, CLOB,
DBCLOB, or row ID. Character string arguments cannot have a maximum length
greater than 255, and graphic string arguments cannot have a maximum length
greater than 127.

The data type of the result and its other attributes (for example, the length and
CCSID of a string) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is the null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(8,2) variable MAX_SALARY to the maximum monthly
salary of the employees represented in the sample table DSN8710.EMP.

EXEC SQL SELECT MAX(SALARY) / 12
INTO :MAX_SALARY
FROM DSN8710.EMP;

Example 2: Find the surname that comes last in the collating sequence for the
employees represented in the sample table DSN8710.EMP. Set the VARCHAR(15)
variable LAST_NAME to that surname.

EXEC SQL SELECT MAX(LASTNAME)
INTO :LAST_NAME
FROM DSN8710.EMP;

��
ALL

MAX(expression)
DISTINCT

��

MAX

Chapter 3. Built-in functions 163

MIN

The schema is SYSIBM.

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in data type other than a BLOB, CLOB,
DBCLOB, or row ID. Character string arguments cannot have a maximum length
greater than 255, and graphic string arguments cannot have a maximum length
greater than 127.

The data type of the result and its other attributes (for example, the length and
CCSID of a string) are the same as the data type and attributes of the argument
values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is the null value. Otherwise, the
result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Example 1: Set the DECIMAL(15,2) variable MIN_SALARY to the minimum monthly
salary of the employees represented in the sample table DSN8710.EMP.

EXEC SQL SELECT MIN(SALARY) / 12
INTO :MIN_SALARY
FROM DSN8710.EMP;

Example 2: Find the surname that comes first in the collating sequence for the
employees represented in the sample table DSN8710.EMP. Set the VARCHAR(15)
variable FIRST_NAME to that surname.

EXEC SQL SELECT MIN(LASTNAME)
INTO :FIRST_NAME
FROM DSN8710.EMP;

��
ALL

MIN(expression)
DISTINCT

��

MIN

164 SQL Reference

STDDEV or STDDEV_POP

The schema is SYSIBM.

The STDDEV function returns the standard deviation (/n) of a set of numbers. The
formula that is used to calculate STDDEV is:

STDDEV = SQRT(VAR)

where SQRT(VAR) is the square root of the variance.

The argument values must each be the value of any built-in numeric data type, and
their sum must be within the range of the data type of the result.

The result of the function is double precision floating-point number. The result can
be null.

Before the function is applied to the set of values derived from the argument values,
null values are eliminated. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the
result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example: Using sample table DSN8710.EMP, set the host variable DEV, which is
defined as double precision floating-point, to the standard deviation of the salaries
for the employees in department 'A00' (WORKDEPT='A00').

SELECT STDDEV(SALARY)
INTO :DEV
FROM DSN8710.EMP
WHERE WORKDEPT = 'A00';

For this example, host variable DEV is set to a double precision float-pointing
number with an approximate value of 9742.43.

��
ALL (1)

STDDEV(expression)
DISTINCT

��

Notes:

1 STDDEV_POP can be specified as an alternative to STDDEV.

STDDEV

Chapter 3. Built-in functions 165

STDDEV_SAMP

The schema is SYSIBM.

The STDDEV_SAMP function returns the standard deviation (/n-1) of a set of
numbers. The formula that is used to calculate STDDEV_SAMP is:

STDDEV_SAMP = SQRT(VAR_SAMP)

where SQRT(VAR_SAMP) is the square root of the sample variance.

The argument values must each be the value of any built-in numeric data type, and
their sum must be within the range of the data type of the result.

The result of the function is a double precision floating-point number. The result can
be null.

Before the function is applied to the set of values derived from the argument values,
null values are eliminated. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, or a set with only one row, the result is
the null value. Otherwise, the result is the sample standard deviation of the values
in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example: Using sample table DSN8710.EMP, set the host variable DEV, which is
defined as double precision floating-point, to the sample standard deviation of the
salaries for the employees in department 'A00' (WORKDEPT='A00').

SELECT STDDEV_SAMP(SALARY)
INTO :DEV
FROM DSN8710.EMP
WHERE WORKDEPT = ’A00’;

For this example, host variable DEV is set to a double precision float-pointing
number with an approximate value of +1.08923711835394E+004.

��
ALL

STDDEV_SAMP(expression)
DISTINCT

��

STDDEV_SAMP

166 SQL Reference

|

|

|

|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|

SUM

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be of any built-in numeric data type, and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that the result is a large integer if the argument values are small integers,

VARIANCE, VAR, or VAR_POP

The schema is SYSIBM.

The VARIANCE or VAR function returns the variance of a set of numbers. The
result is the biased variance (/n) of the set of numbers. The formula used to
calculate VARIANCE is:

VARIANCE = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

The argument values must be of any built-in numeric type, and their sum must be
within the range of the data type of the result.

The result of the function is a double precision floating-point number. The result can
be null.

Before the function is applied to the set of values derived from the argument values,
null values are limited. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, the result is the null value. Otherwise, the
result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result
must be within the range of the result data type.

Example: Using sample table DSN8710.EMP, set host variable VARNCE, which is
defined as double precision floating-point, to the variance of the salaries (SALARY)
for those employees in department (WORKDEPT) 'A00'.

SELECT VARIANCE(SALARY)
INTO :VARNCE
FROM DSN8710.EMP
WHERE WORKDEPT = 'A00';

The result in VARNCE is set to a double precision-floating point number with an
approximate value of 94915000.00.

��
ALL (1)

VARIANCE (expression)
VAR DISTINCT

��

Notes:

1 VAR_POP can be specified as an alternative to VARIANCE or VAR.

VARIANCE or VAR

168 SQL Reference

VARIANCE_SAMP or VAR_SAMP

The schema is SYSIBM.

The VARIANCE_SAMP or VAR_SAMP function returns the sample variance of a set
of numbers. The result is the sample variance (/n-1) of the set of numbers. The
formula used to calculate VARIANCE is:
VAR_SAMP = (SUM(X**2) - ((SUM(X)**2) / (COUNT(*)))) / (COUNT(*) - 1)

The argument values must be of any built-in numeric type, and their sum must be
within the range of the data type of the result.

The result of the function is a double precision floating-point number. The result can
be null.

Before the function is applied to the set of values derived from the argument values,
null values are limited. If DISTINCT is specified, duplicate values are also
eliminated.

If the function is applied to an empty set, or a set with only one row, the result is
the null value. Otherwise, the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result
must be within the range of the result data type.

Example: Using sample table DSN8710.EMP, set host variable VARNCE, which is
defined as double precision floating-point, to the sample variance of the salaries
(SALARY) for those employees in department (WORKDEPT) 'A00'.

SELECT VARIANCE_SAMP(SALARY)
INTO :VARNCE
FROM DSN8710.EMP
WHERE WORKDEPT = ’A00’;

The result in VARNCE is set to a double precision-floating point number with an
approximate value of 118643750.

��
ALL

VARIANCE_SAMP (expression)
VAR_SAMP DISTINCT

��

VARIANCE_SAMP or VAR_SAMP

Chapter 3. Built-in functions 169

|

|

|

|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

Scalar functions
A built-in scalar function can be used wherever an expression can be used.
However, the restrictions that apply to the use of expressions and column functions
also apply when an expression or column function is used within a scalar function.
For example, the argument of a scalar function can be a column function only if a
column function is allowed in the context in which the scalar function is used.

If the argument of a scalar function is a string from a column with a field procedure,
the function applies to the decoded form of the value and the result of the function
does not inherit the field procedure.

Example: The following SELECT statement calls for the employee number, last
name, and age of each employee in department D11 in the sample table
DSN8710.EMP. To obtain the ages, the scalar function YEAR is applied to the
expression:

CURRENT DATE - BIRTHDATE

in each row of DSN8710.EMP for which the employee represented is in department
D11:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
FROM DSN8710.EMP
WHERE WORKDEPT = 'D11';

Following in alphabetic order is the definition of each of the built-in scalar functions.

Scalar functions

170 SQL Reference

ABS or ABSVAL

The schema is SYSIBM.

The ABS function returns the absolute value of the argument.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute as the
argument. The result can be null. If the argument is null, the result is the null value.

Example: Assume that host variable PROFIT is a large integer with a value of
-50000. The following statement returns a large integer with a value of 50000.

SELECT ABS(:PROFIT)
FROM SYSIBM.SYSDUMMY1;

�� ABS (expression)
ABSVAL

��

ABS

Chapter 3. Built-in functions 171

ACOS

The schema is SYSIBM.

The ACOS function returns the arccosine of the argument as an angle expressed in
radians. The ACOS and COS functions are inverse operations.

The argument is an expression whose value is a number in the range of -1 to 1,
and has any built-in numeric data type. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable ACOSINE is DECIMAL(10,9) with a value of
0.070737202. The following statement:

SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.49.

�� ACOS(expression) ��

ACOS

172 SQL Reference

ADD_MONTHS

The schema is SYSIBM.

The ADD_MONTHS function returns a date that represents date-expression plus
expression months.

date-expression must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or
DBCLOB, and must have an actual length that is not greater than 255 bytes. For
the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a DATE. The result can be null; if any argument is null,
the result is the null value.

If date-expression is the last day of the month or if the resulting month has fewer
days than the day component of date-expression, then the result is the last day of
the resulting month. Otherwise, the result has the same day component as
date-expression.

expression can be any zero-scale numeric value.

Example 1: Assume today is January 31, 2000. Set the host variable ADD_MONTH
with the last day of January plus 1 month.

SET :ADD_MONTH = ADD_MONTHS(LAST_DAY(CURRENT_DATE), 1);

The host variable ADD_MONTH is set with the value representing the end of
February, 2000-02-29.

Example 2: Assume DATE is a host variable with the value July 27, 1965. Set the
host variable ADD_MONTH with the value of that day plus 3 months.

SET :ADD_MONTH = ADD_MONTHS(:DATE,3);

The host variable ADD_MONTH is set with the value representing the day plus 3
months, 1965-10-27.

Example 3: It is possible to achieve similar results with the ADD_MONTHS function
and date arithmetic. The following examples demonstrate the similarities and
contrasts.

SET :DATEHV = DATE('2000-2-28') + 4 MONTHS;

SET :DATEHV = ADD_MONTHS('2000-2-28', 4);

In both cases, the host variable DATEHV is set with the value ’2000–06–28’.

Now consider the same examples but with the date ’2000–2–29’ as the argument.
SET :DATEHV = DATE('2000-2-29') + 4 MONTHS;

The host variable DATEHV is set with the value ’2000–06–29’.
SET :DATEHV = ADD_MONTHS('2000-2-29', 4);

�� ADD_MONTHS(date-expression,expression) ��

ADD_MONTHS

Chapter 3. Built-in functions 173

|

|

|

|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|

|
|

|

|
|

|
|
|

|

|

|

|

|

|

|

The host variable DATEHV is set with the value ’2000–06–30’.

In this case, the ADD_MONTHS function returns the last day of the month, which is
June 30, 2000, instead of June 29, 2000. The reason is that February 29 is the last
day of the month. So, the ADD_MONTHS function returns the last day of June.

ADD_MONTHS

174 SQL Reference

|

|
|
|

ASIN

The schema is SYSIBM.

The ASIN function returns the arcsine of the argument as an angle expressed in
radians. The ASIN and SIN functions are inverse operations.

The argument is an expression whose value is a number in the range of -1 to 1,
and has any built-in numeric data type. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable ASINE is DECIMAL(10,9) with a value of
0.997494987. The following statement:

SELECT ASIN(:ASINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.50.

�� ASIN(expression) ��

ASIN

Chapter 3. Built-in functions 175

ATAN

The schema is SYSIBM.

The ATAN function returns the arctangent of the argument as an angle expressed in
radians. The ATAN and TAN functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable ATANGENT is DECIMAL(10,8) with a value of
14.10141995. The following statement:

SELECT ATAN(:ATANGENT)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.50.

�� ATAN(expression) ��

ATAN

176 SQL Reference

ATANH

The schema is SYSIBM.

The ATANH function returns the hyperbolic arc tangent of the argument as an angle
expressed in radians. The ATANH and TANH functions are inverse operations.

The argument is an expression whose value is a number in the range of -1 to 1,
and has any built-in numeric data type. If the argument is not a double precision
floating-point number, it is converted to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HATAN is DECIMAL(10,9) with a value of
0.905148254. The following statement:

SELECT ATANH(:HATAN)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 1.50.

�� ATANH(expression) ��

ATANH

Chapter 3. Built-in functions 177

ATAN2

The schema is SYSIBM.

The ATAN2 function returns the arctangent of x and y coordinates as an angle
expressed in radians. The first and second arguments specify the x and y
coordinates, respectively.

Each argument is an expression that returns the value of any built-in numeric data
type. Both arguments must not be 0. Any argument that is not a double precision
floating-point number is converted to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if any argument is null, the result is the null value.

Example: Assume that host variables HATAN2A and HATAN2B are DOUBLE host
variables with values of 1 and 2, respectively. The following statement:

SELECT ATAN2(:HATAN2A,:HATAN2B)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
1.1071487.

�� ATAN2(expression1,expression2) ��

ATAN2

178 SQL Reference

BLOB

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type or a row
ID type.

expression
An expression whose value is a character string, graphic string, binary string, or
a row ID type.

integer
An integer value specifying the length attribute of the resulting BLOB data type.
The value must be an integer between 0 and the maximum length of a BLOB.

Do not specify integer if expression is a row ID type.

If you do not specify integer, the length attribute of the result is the same as the
length attribute of expression, except when the input is graphic data. In this
case, the length attribute of the result is twice the length of expression.

The result of the function is a BLOB. If the first argument can be null, the result can
be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of expression (or twice the length of expression when the
input is graphic data). If the length of expression is greater than the length
specified, truncation is performed. A warning is returned unless the first input
argument is a character string and all the truncated characters are blanks, or the
first input argument is a graphic string and all the truncated characters are
double-byte blanks.

Example 1: The following function returns a BLOB for the string 'This is a BLOB'.
SELECT BLOB('This is a BLOB')

FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a BLOB for the large object that is
identified by locator myclob_locator.

SELECT BLOB(:myclob_locator)
FROM SYSIBM.SYSDUMMY1;

Example 3: Assume that a table has a BLOB column named TOPOGRAPHIC_MAP
and a VARCHAR column named MAP_NAME. Locate any maps that contain the
string 'Engles Island' and return a single binary string with the map name
concatenated in front of the actual map.

SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE BLOB('%Engles Island%')

�� BLOB(expression)
, integer

��

BLOB

Chapter 3. Built-in functions 179

CCSID_ENCODING

The schema is SYSIBM.

The CCSID_ENCODING function returns the encoding scheme of a CCSID in the
form of a character string with a value of one of the following: ASCII, EBCDIC,
UNICODE, or UNKNOWN.

The argument can be of any built-in data type other than a character string with a
maximum length greater than 255 or a graphic string with a length greater than 127.
It cannot be a BLOB, CLOB, or DBCLOB.

The result of the function is a fixed-length character string of length 8, which is
padded on the right if necessary. If the argument can be null, the result can be null.
If the argument is null, the result is the null value.

If another string data from a table or view is selected by a query, the encoding
scheme of that string determines the resulting encoding scheme. The resulting
CCSID for string data is the appropriate CCSID for the encoding scheme of the
statement. If there is no other string data from a table or a view in the query, the
default encoding scheme is used.

Example 1: The following function returns a CCSID with a value for EBCDIC data.
SELECT CCSID_ENCODING(37) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 2: The following function returns a CCSID with a value for ASCII data.
SELECT CCSID_ENCODING(850) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 3: The following function returns a CCSID with a value for Unicode data.
SELECT CCSID_ENCODING(1208) AS CCSID

FROM SYSIBM.SYSDUMMY1;

Example 4: The following function returns a CCSID with a value of UNKNOWN.
SELECT CCSID_ENCODING(1) AS CCSID

FROM SYSIBM.SYSDUMMY1;

�� CCSID_ENCODING(expression) ��

CCSID_ENCODING

180 SQL Reference

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

CEIL or CEILING

The schema is SYSIBM.

The CEIL or CEILING function returns the smallest integer value that is greater than
or equal to the argument.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute as the
argument except that the scale is 0 if the argument is DECIMAL. For example, an
argument with a data type of DECIMAL(5,5) results in DECIMAL(05,0). The result
can be null. If the argument is null, the result is the null value.

Example 1: The following statement shows the use of CEILING on positive and
negative values:

SELECT CEILING(3.5), CEILING(3.1), CEILING(-3.1), CEILING(-3.5)
FROM FROM SYSIBM.SYSDUMMY1;

This example returns: 04., 04., -03., -03.

Example 2: Using sample table DSN8710.EMP, find the highest monthly salary for
all the employees. Round the result up to the next integer. The SALARY column
has a decimal data type.

SELECT CEIL(MAX(SALARY)/12)
FROM DSN8710.EMP;

This example returns 04396. because the highest paid employee is Christine Haas
who earns $52750.00 per year. Her average monthly salary before applying the
CEIL function is 4395.83.

�� CEIL (expression)
CEILING

��

CEIL or CEILING

Chapter 3. Built-in functions 181

CHAR

The schema is SYSIBM.

The CHAR function returns a fixed-length character string representation of one of
the following values:

v Datetime value if the first argument is a date, time, or timestamp

v Character string value if the first argument is any type of character string

v Integer number if the first argument is a small or large integer

v Decimal number if the first argument is a decimal number

v Floating-point number if the first argument is a single or double precision
floating-point number

v Row ID value if the first argument is a row ID

The result of the function is a fixed-length character string (CHAR).

Datetime to Character:

�� CHAR(datetime-expression)
, ISO

USA
EUR
JIS
LOCAL

��

Character to Character:

�� CHAR(character-expression)
, integer

��

Integer to Character:

�� CHAR(integer-expression) ��

Decimal to Character:

�� CHAR(decimal-expression)
, decimal-character

��

Floating-Point to Character:

�� CHAR(floating-point-expression) ��

Row ID to Character:

�� CHAR(row-ID-expression) ��

CHAR

182 SQL Reference

If the first argument can be null, the result can be null. If the first argument is null,
the result is the null value.

Datetime to Character

datetime-expression
An expression whose value has one of the following three data types:

date The result is the character string representation of the date in the
format that is specified by the second argument. If the second argument
is omitted, the DATE precompiler option, if one is provided, or else field
DATE FORMAT on installation panel DSNTIP4 specifies the format. If
the format is to be LOCAL, field LOCAL DATE LENGTH on installation
panel DSNTIP4 specifies the length of the result. Otherwise, the length
of the result is 10.

LOCAL denotes the local format at the DB2 that executes the SQL
statement. If LOCAL is used for the format, a date exit routine must be
installed at that DB2.

An error occurs if the second argument is specified and is not a valid
value.

time The result is the character string representation of the time in the format
specified by the second argument. If the second argument is omitted,
the TIME precompiler option, if one is provided, or else field TIME
FORMAT on installation panel DSNTIP4 specifies the format. If the
format is to be LOCAL, the field LOCAL TIME LENGTH on installation
panel DSNTIP4 specifies the length of the result. Otherwise, the length
of the result is 8.

LOCAL denotes the local format at the DB2 that executes the SQL
statement. If LOCAL is used for the format, a time exit routine must be
installed at that DB2.

An error occurs if the second argument is specified and is not a valid
value.

timestamp
The result is the character string representation of the timestamp. The
length of the result is 26. The second argument must not be specified.

The CCSID of the result is the SBCS CCSID of the appropriate encoding
scheme.

Character to Character

character-expression
An expression whose value is any type of character string.

string-expression
An expression whose value is any type of string, except BLOB.

integer
The length attribute for the resulting fixed-length character string. The value
must be between 1 and 255. If the length is not specified, the length of the
result is the same as the length of string-expression, which must be 255 bytes
or less but must not be an empty string. If the string-expression is a graphic
string, the length of the result is (3 * length(string-expression)).

CHAR

Chapter 3. Built-in functions 183

|
|

|
|
|

If the length of string-expression is less than the length attribute of the result, the
result is padded with blanks to the length of the result. If the length of
string-expression is greater than the length attribute of the result, the result is
truncated. Unless all of the truncated characters are blanks, a warning is returned.

If string-expression is an empty string, an error occurs.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of
the result is the same as the CCSID of character-expression.

Integer to Character

integer-expression
An expression whose value is an integer data type (SMALLINT or INTEGER).

The result is the fixed-length character string representation of the argument in the
form of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding minus
sign if the argument is negative. The result is left justified, and its length depends
on whether the argument is a small or large integer:

v For a small integer, the length of the result is 6. If the number of characters in
the result is less than 6, the result is padded on the right with blanks to a length
of 6.

v For a large integer, the length of the result is 11; if the number of characters in
the result is less than 11, the result is padded on right with blanks to a length of
11.

A positive value always includes one trailing blank.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Decimal to Character

decimal-expression
An expression whose value is a decimal data type. To specify a different
precision and scale, you can use the DECIMAL scalar function first to make the
change.

decimal-character
Specifies the single-byte character constant (CHAR or VARCHAR only) that is
used to delimit the decimal digits in the resulting character string. Do not specify
a digit, plus ('+'), minus ('−') or blank. The default is a period ('.') or comma (,).
For information on what factors govern the choice, see “Options affecting SQL”
on page 145.

The result is the fixed-length character string representation of the argument in the
form of an SQL decimal constant. The result includes a decimal-character and p
digits, where p is the precision of the decimal-expression. If the argument is
negative, the first character of the result is a minus sign. Otherwise, the first
character is a blank, which means that a positive value always has one leading
blank.

The length of the result is 2+p, where p is the precision of the decimal-expression.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Floating-Point to Character

CHAR

184 SQL Reference

floating-point-expression
An expression whose value is a floating-point data type (DOUBLE or REAL).

The result is the fixed-length character string representation of the argument in the
form of a floating-point constant. The length of the result is 24 bytes.

If the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit. If the value of the argument is zero, the
result is 0E0. Otherwise, the result includes the smallest number of characters that
can represent the value of the argument such that the mantissa consists of a single
digit, other than zero, followed by a period and a sequence of digits.

If the number of characters in the result is less than 24, the result is padded on the
right with blanks to length of 24.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Row ID to Character

row-ID-expression
An expression whose value is a row ID data type.

The result is the fixed-length character string representation of the argument. It is
bit data and does not have an associated CCSID.

The length of the result is 40. If the length of row-ID-expression is less than 40, the
result is padded on the right with hexadecimal zeroes to length of 40.

Example 1: HIREDATE is a DATE column in sample table DSN8710.EMP. When it
represents 15 December 1976 (as it does for employee 140):

EXEC SQL SELECT CHAR(HIREDATE, USA)
INTO :DATESTRING
FROM DSN8710.EMP
WHERE EMPNO = '000140';

returns the string value '12/15/1976' in character-string variable DATESTRING.

Example 2: Host variable HOUR has a data type of DECIMAL(6,0) and contains a
value of 50000. Interpreted as a time duration, this value is 5 hours. Assume that
STARTING is a TIME column in some table. Then, when STARTING represents 17
hours, 30 minutes, and 12 seconds after midnight:

CHAR(STARTING+:HOURS, USA)

returns the value '10:30 PM'.

Example 3: Assume that RECEIVED is defined as a TIMESTAMP column in table
TABLEY. When the value of the date portion of RECEIVED represents 10 March
1997 and the time portion represents 6 hours and 15 seconds after midnight, this
example:

SELECT CHAR(RECEIVED)
FROM TABLEY
WHERE INTCOL = 1234;

returns the string value '1997-03-10-06.00.15.000000'.

CHAR

Chapter 3. Built-in functions 185

Example 4: For sample table DSN8710.EMP, the following SQL statement sets the
host variable AVERAGE, which is defined as CHAR(33), to the character string
representation of the average employee salary.

EXEC SQL SELECT CHAR(AVG(SALARY))
INTO :AVERAGE
FROM DSN8710.EMP;

With DEC31, the result of AVG applied to a decimal number is a decimal number
with a precision of 31 digits. The only host languages in which such a large decimal
variable can be defined are Assembler and C. For host languages that do not
support such large decimal numbers, use the method shown in this example.

Example 5: For the rows in sample table DSN8710.EMP, return the values in
column LASTNAME, which is defined as VARCHAR(15), as a fixed-length character
string and limit the length of the results to 10 characters.

SELECT CHAR(LASTNAME,10)
FROM DSN8710.EMP;

For rows that have a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning that the value is truncated is returned.

Example 6: For the rows in sample table DSN8710.EMP, return the values in
column EDLEVEL, which is defined as SMALLINT, as a fixed-length character
string.

SELECT CHAR(EDLEVEL)
FROM DSN8710.EMP;

An EDLEVEL of 18 is returned as CHAR(6) value '18 ' (18 followed by four
blanks).

Example 7: In sample table DSN8710.EMP, the SALARY column is defined as
DECIMAL(9,2). For those employees who have a salary of 18357.50, return the hire
date and the salary, using a comma as the decimal character in the salary
(18357,50).

SELECT HIREDATE, CHAR(SALARY, ',')
FROM DSN8710.EMP
WHERE SALARY = 18357.50;

The salary is returned as the string value '00018357,50'.

Example 8: Repeat the scenario in Example 7 except subtract the SALARY column
from 20000.25 and return the salary with the default decimal character.

SELECT HIREDATE, CHAR (20000.25 - SALARY)
FROM DSN8710.EMP
WHERE SALARY = 18357.50;

The salary is returned as the string value '0001642.75'.

Example 9: Assume that host variable SEASONS_TICKETS is defined as INTEGER
and has a value of 10000. Use the DECIMAL and CHAR functions to change the
value into the character string '10000.00'.

SELECT CHAR(DECIMAL(:SEASONS_TICKETS,7,2))
FROM SYSIBM.SYSDUMMY1;

CHAR

186 SQL Reference

Example 10: Assume that columns COL1 and COL2 in table T1 are both defined as
REAL and that T1 contains a single row with the values 7.1E+1 and 7.2E+2 for the
two columns. Add the two columns and represent the result as a character string.

SELECT CHAR(COL1 + COL2)
FROM T1;

The result is the character value '1.43E2 '.

CHAR

Chapter 3. Built-in functions 187

CLOB

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a string.

string-expression
An expression whose value is a string. If string-expression is bit data, an error
occurs. Use a BLOB data type for bit data.

integer
The length attribute for the resulting fixed-length string. An integer value
specifying the length attribute of the resulting CLOB data type. The value must
be between 0 and the maximum length of a CLOB.

If you do not specify integer, the length attribute of the result is the same as the
length attribute of string-expression. If the string-expression is a graphic string,
the length of the result is (3 * length(string-expression)).

The result of the function is a CLOB. If the first argument can be null, the result can
be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of string-expression. If the length of string-expression is
greater than the length specified, the result is truncated. Unless all of the truncated
characters are blanks, a warning is returned.

The subtype and CCSID of the result are determined as follows:

v If string-expression is character SBCS data, the result is SBCS data and the
CCSID is CCSID for the encoding scheme of the SQL statement.

v If the first argument is mixed data, the result is mixed data and the CCSID is the
CCSID for the encoding scheme of the SQL statement.

Example: The following function returns a CLOB for the string 'This is a CLOB'.
SELECT CLOB('This is a CLOB')

FROM SYSIBM.SYSDUMMY1;

�� CLOB(string-expression)
, integer

��

CLOB

188 SQL Reference

|

|
|
|

|
|
|

|

|
|

|
|

COALESCE

The schema is SYSIBM.

The COALESCE function returns the first argument that is not null. VALUE can be
used as a synonym for COALESCE. Use COALESCE to conform to the SQL
standard.

The arguments must be compatible. For more information on compatibility, refer to
the compatibility matrix in Table 9 on page 65. The arguments can be of either a
built-in or user-defined data type.21

The arguments are evaluated in the order in which they are specified, and the result
of the function is the first argument that is not null. The result can be null only if all
arguments can be null. The result is null only if all arguments are null.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined using the “Rules for result data types” on
page 77. If the COALESCE function has more than two arguments, the rules are
applied to the first two arguments to determine a candidate result type. The rules
are then applied to that candidate result type and the third argument to determine
another candidate result type. This process continues until all arguments are
analyzed and the final result type is determined.

The COALESCE function can also handle a subset of the functions provided by
CASE expressions. The result of using COALESCE(e1,e2) is the same as using the
expression:

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END

Example 1: Assume that SCORE1 and SCORE2 are SMALLINT columns in table
GRADES, and that nulls are allowed in SCORE1 but not in SCORE2. Select all the
rows in GRADES for which SCORE1 + SCORE2 > 100, assuming a value of 0 for
SCORE1 when SCORE1 is null.

SELECT * FROM GRADES
WHERE COALESCE(SCORE1,0) + SCORE2 > 100;

Example 2: Assume that a table named DSN8710.EMP contains a DATE column
named HIREDATE, and that nulls are allowed for this column. The following query
selects all rows in DSN8710.EMP for which the date in HIREDATE is either
unknown (null) or earlier than 1 January 1960.

SELECT * FROM DSN8710.EMP
WHERE COALESCE(HIREDATE,DATE('1959-12-31')) < '1960-01-01';

21. This function cannot be used as a source function when creating a user-defined function. Because it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support user-defined distinct types.

�� �COALESCE (expression ,expression)
VALUE

��

COALESCE

Chapter 3. Built-in functions 189

The predicate could also be coded as VALUE(HIREDATE,'1959-12-31') because for
comparison purposes, a string representation of a date can be compared to a date.

Example 3: Assume that for the years 1993 and 1994 there is a table that records
the sales results of each department. Each table, S1993 and S1994, consists of a
DEPTNO column and a SALES column, neither of which can be null. The following
query provides the sales information for both years.

SELECT COALESCE(S1993.DEPTNO,S1994.DEPTNO) AS DEPT, S1993.SALES, S1994.SALES
FROM S1993 FULL JOIN S1994 ON S1993.DEPTNO = S1994.DEPTNO
ORDER BY DEPT;

The full outer join ensures that the results include all departments, regardless of
whether they had sales or existed in both years. The COALESCE function allows
the two join columns to be combined into a single column, which enables the
results to be ordered.

COALESCE

190 SQL Reference

COS

The schema is SYSIBM.

The COS function returns the cosine of the argument, where the argument is an
angle expressed in radians. The COS and ACOS functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable COSINE is DECIMAL(2,1) with a value of 1.5.
The following statement:

SELECT COS(:COSINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 0.07.

�� COS(expression) ��

COS

192 SQL Reference

COSH

The schema is SYSIBM.

The COSH function returns the hyperbolic cosine of the argument, where the
argument is an angle expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HCOS is DECIMAL(2,1) with a value of 1.5.
The following statement:

SELECT COSH(:HCOS)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 2.35.

�� COSH(expression) ��

COSH

Chapter 3. Built-in functions 193

DATE

The schema is SYSIBM.

The DATE function returns a date derived from its argument.

The argument must be a date, a timestamp, a valid string representation of a date
or timestamp, a positive number with a built-in data type that is less than or equal
to 3652059, or a string of length 7. An argument with a string data type must not be
a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 57.

If the argument is a string, the result is the date represented by the string. If the
CCSID of the string is not the same as the corresponding default CCSID at the
server, the string is first converted to that CCSID.

The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a timestamp, the result is the date part of the timestamp.

If the argument is a date, the result is that date.

If the argument is a number, the result is the date that is n-1 days after
January 1, 0001, where n is the integral part of the number.

If the argument is a string, the result is the date represented by the string. If
the CCSID of the string is not the same as the corresponding default CCSID at
the server, the string is first converted to that CCSID.

Example 1: Assume that RECEIVED is a TIMESTAMP column in some table, and
that one of its values is equivalent to the timestamp '1988-12-25-17.12.30.000000'.
Then, for this value:

DATE(RECEIVED)

returns the internal representation of 25 December 1988.

Example 2: Assume that DATCOL is a CHAR(7) column in some table, and that one
of its values is the character string '1989061'. Then, for this value:

DATE(DATCOL)

returns the internal representation of 2 March 1989.

Example 3: DB2 recognizes '1989-03-02' as the ISO representation of 2 March
1989. Therefore:

DATE('1989-03-02')

returns the internal representation of 2 March 1989.

�� DATE(expression) ��

DATE

194 SQL Reference

|
|
|
|
|
|

|
|
|

DAY

The schema is SYSIBM.

The DAY function returns the day part of its argument.

The argument must be a date, timestamp, date duration, timestamp duration, or
valid string representation of a date or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules for the function depend on the data type of the argument:

If the argument is a date, timestamp, or string representation of either, the
result is the day part of the value, which is an integer between 1 and 31.

If the argument is a date duration or timestamp duration, the result is the
day part of the value, which is an integer between -99 and 99. A nonzero result
has the same sign as the argument.

Example 1: Set the INTEGER host variable DAYVAR to the day of the month on
which employee 140 in the sample table DSN8710.EMP was hired.

EXEC SQL SELECT DAY(HIREDATE)
INTO :DAYVAR
FROM DSN8710.EMP
WHERE EMPNO = '000140';

Example 2: Assume that DATE1 and DATE2 are DATE columns in the same table.
Assume also that for a given row in this table, DATE1 and DATE2 represent the
dates 15 January 2000 and 31 December 1999, respectively. Then, for the given
row:

DAY(DATE1 - DATE2)

returns the value 15.

�� DAY(expression) ��

DAY

Chapter 3. Built-in functions 195

|
|
|
|
|

DAYOFMONTH

The schema is SYSIBM.

The DAYOFMONTH function returns the day part of its argument. The function is
similar to the DAY function, except DAYOFMONTH does not support a date or
timestamp duration as an argument.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer between 1 and 31, which represents the
day part of the value. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example: Set the INTEGER variable DAYVAR to the day of the month on which
employee 140 in sample table DSN8710.EMP was hired.

SELECT DAYOFMONTH(HIREDATE)
INTO :DAYVAR
FROM DSN8710.EMP
WHERE EMPNO = '000140';

�� DAYOFMONTH(expression) ��

DAYOFMONTH

196 SQL Reference

|
|
|
|
|

DAYOFWEEK

The schema is SYSIBM.

The DAYOFWEEK function returns an integer in the range of 1 to 7 that represents
the day of the week where 1 is Sunday and 7 is Saturday.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8710.EMP, set the integer host variable
DAY_OF_WEEK to the day of the week that Christine Haas (EMPNO = '000010')
was hired (HIREDATE).

SELECT DAYOFWEEK(HIREDATE)
INTO :DAY_OF_WEEK
FROM DSN8710.EMP
WHERE EMPNO = '000010';

The result is that DAY_OF_WEEK is set to 6, which represents Friday.

Example 2: The following query returns four values: 1, 2, 1, and 2.
SELECT DAYOFWEEK(CAST('10/11/1998' AS DATE)),

DAYOFWEEK(TIMESTAMP('10/12/1998', '01.02')),
DAYOFWEEK(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
DAYOFWEEK(CAST(TIMESTAMP('10/12/1998', '01.02') AS CHAR(20)))

FROM SYSIBM.SYSDUMMY1;

�� DAYOFWEEK(expression) ��

DAYOFWEEK

Chapter 3. Built-in functions 197

|
|
|
|
|

DAYOFWEEK_ISO

The schema is SYSIBM.

The DAYOFWEEK_ISO function returns an integer in the range of 1 to 7 that
represents the day of the week, where 1 is Monday and 7 is Sunday.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8710.EMP, set the integer host variable
DAY_OF_WEEK to the day of the week that Christine Haas (EMPNO = '000010')
was hired (HIREDATE).

SELECT DAYOFWEEK_ISO(HIREDATE)
INTO :DAY_OF_WEEK
FROM DSN8710.EMP
WHERE EMPNO = '000010';

The result is that DAY_OF_WEEK is set to 5, which represents Friday.

Example 2: The following query returns four values: 7, 1, 7, and 1.
SELECT DAYOFWEEK_ISO(CAST('10/11/1998' AS DATE)),

DAYOFWEEK_ISO(TIMESTAMP('10/12/1998', '01.02')),
DAYOFWEEK_ISO(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
DAYOFWEEK_ISO(CAST(TIMESTAMP('10/12/1998', '01.02') AS CHAR(20)))

FROM SYSIBM.SYSDUMMY1;

Example 3: The following list shows what is returned by the DAYOFWEEK_ISO
function for various dates.

DATE DAYOFWEEK_ISO

1997-12-28 '7'
1997-12-31 '3'
1998-01-01 '4'
1999-01-01 '5'
1999-01-04 '1'
1999-12-31 '5'
2000-01-01 '6'
2000-01-03 '1'

�� DAYOFWEEK_ISO(expression) ��

DAYOFWEEK_ISO

198 SQL Reference

|

|

|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

DAYOFYEAR

The schema is SYSIBM.

The DAYOFYEAR function returns an integer in the range of 1 to 366 that
represents the day of the year where 1 is January 1.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example: Using sample table DSN8710.EMP, set the integer host variable
AVG_DAY_OF_YEAR to the average of the day of the year on which employees
were hired (HIREDATE):

SELECT AVG(DAYOFYEAR(HIREDATE))
INTO :AVG_DAY_OF_YEAR
FROM DSN8710.EMP;

The result is that AVG_DAY_OF_YEAR is set to 202.

�� DAYOFYEAR(expression) ��

DAYOFYEAR

Chapter 3. Built-in functions 199

|
|
|
|
|

DAYS

The schema is SYSIBM.

The DAYS function returns an integer representation of a date.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null. If the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Example: Set the INTEGER host variable DAYSVAR to the number of days that
employee 140 had been with the company on the last day of 1997.

EXEC SQL SELECT DAYS('1997-12-31') - DAYS(HIREDATE) + 1
INTO :DAYSVAR
FROM DSN8710.EMP
WHERE EMPNO = '000140';

�� DAYS(expression) ��

DAYS

200 SQL Reference

|
|
|
|
|

DBCLOB

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a string type.

The length of the result is measured in double-byte characters.

string-expression
An expression whose value is a string. The expression cannot be character
FOR BIT DATA. The value must not be an empty string constant.

integer
An integer value specifying the length attribute of the resulting DBCLOB. The
value must be between 0 and the maximum length of a DBCLOB.

If you do not specify integer, the length attribute of the result is the same as the
length attribute of string-expression.

The result of the function is a DBCLOB. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of string-expression. If the length of string-expression is
greater than the length specified, the result is truncated. Unless all of the truncated
characters are double-byte blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of string-expression.

Example: Assume that the application encoding scheme is Unicode. The following
statement returns a graphic (UTF-16) host variable.

VALUES DBCLOB('123')
INTO :GHV1;

�� DBCLOB(string-expression)
, integer

��

DBCLOB

Chapter 3. Built-in functions 201

|

|
|
#

|

DECIMAL or DEC

The schema is SYSIBM.

The DECIMAL or DEC function returns a decimal representation of a number or
character string in the form of a numeric constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result of the function is a decimal number. The result is the same number
that would occur if the argument were assigned to a decimal column or variable
with precision p and scale s, where p and s are specified by the second and
third arguments.

string-expression
An expression that returns any type of string (except a BLOB, CLOB, or
DBCLOB) with a maximum length that is not greater than 255 bytes. Leading
and trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a string representation of an SQL integer or
decimal constant.

The result of the function is a decimal number. The result is the same number
that would occur if the corresponding integer or decimal constant were assigned
to a decimal column or variable with precision p and scale s, where p and s are
specified by the second and third arguments.

precision-integer
An integer constant with a value in the range of 1 to 31. The value of this
second argument specifies the precision of the result.

The default value depends on the data type of the first argument as follows:
v 5 if the first argument is a small integer
v 11 if the first argument is a large integer
v 15 in all other cases

scale-integer
An integer constant with a value in the range of 1 to p, where p is the value of
the second argument. The value of this third argument specifies the scale of the
result. The default value is 0.

decimal-character
A single-byte character constant used to delimit the decimal digits in

Numeric to Decimal:

�� DECIMAL (numeric-expression)
DEC ,precision-integer

,scale-integer

��

Character to Decimal:

�� DECIMAL (string-expression)
DEC ,precision-integer

,scale-integer
,decimal-character

��

DECIMAL or DEC

202 SQL Reference

|
|

|
|

string-expression from the whole part of the number. The character cannot be a
digit, plus (+), minus (-), or blank. The default value is period (.) or comma (,);
the default value cannot be used in string-expression if a different value for
decimal-character is specified.

The data type of the result is DECIMAL(p,s), where p and s are the second and
third arguments. If the first argument can be null, the result can be null; if the first
argument is null, the result is null.

An error occurs if the number of significant digits required to represent the whole
part of the number is greater than p-s.

Example 1: Represent the average salary of the employees in DSN8710.EMP as an
8-digit decimal number with two of these digits to the right of the decimal point.

SELECT DECIMAL(AVG(SALARY),8,2)
FROM DSN8710.EMP;

Example 2: Assume that updates to the SALARY column are input as a character
string that uses comma as the decimal character. For example, the user inputs
21400,50. The input value is assigned to the host variable NEWSALARY that is
defined as CHAR(10), and the host variable is used in the following UPDATE
statement:

UPDATE DSN8710.EMP
SET SALARY = DECIMAL (:NEWSALARY,9,2,',')
WHERE EMPNO = :EMPID;

DECIMAL or DEC

Chapter 3. Built-in functions 203

|
|
|
|

|
|
|
|
|

|
|
|

|

DEGREES

The schema is SYSIBM.

The DEGREES function returns the number of degrees converted from the
argument expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HRAD is a DOUBLE with a value of
3.1415926536. The following statement:

SELECT DEGREES(:HRAD)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
180.0.

�� DEGREES(expression) ��

DEGREES

204 SQL Reference

DIGITS

The schema is SYSIBM.

The DIGITS function returns a character string representation of its argument.

The argument must be a built-in exact numeric data type of SMALLINT, INTEGER,
or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

The result of the function is a fixed-length character string representing the absolute
value of the argument without regard to its scale. The result does not include a sign
or a decimal point. Instead, it consists exclusively of digits, including, if necessary,
leading zeros to fill out the string. The length of the string is:
v 5 if the argument is a small integer
v 10 if the argument is a large integer
v p if the argument is a decimal number with a precision of p

Example 1: Assume that an INTEGER column called INTCOL containing a 10-digit
number is in a table called TABLEX. INTCOL has the data type INTEGER instead
of CHAR(10) to save space. List all combinations of the first four digits in column
INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX;

Example 2: Assume that COLUMNX has the data type DECIMAL(6,2), and that one
of its values is -6.28. Then, for this value:

DIGITS(COLUMNX)

the value '000628' is returned.

The result is a string of length six (the precision of the column) with leading zeros
padding the string out to this length. Neither sign nor decimal point appear in the
result.

�� DIGITS(expression) ��

DIGITS

Chapter 3. Built-in functions 205

#
#

DOUBLE or DOUBLE_PRECISION

The schema is SYSIBM.

The DOUBLE or DOUBLE_PRECISION function returns a double precision
floating-point representation of a number or character string in the form of a
numeric constant. FLOAT is a synonym for DOUBLE or DOUBLE_PRECISION.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result of the function is a double precision floating-point number. The result
is the same number that would occur if the expression were assigned to a
double precision floating-point column or variable.

string-expression
An expression that returns any type of string (except a BLOB, CLOB, or
DBCLOB) with an actual length that is not greater than 255 bytes. Leading and
trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a string representation of an SQL floating-point
constant.

The result of the function is a double precision floating-point number. The result
is the same number that would occur if the corresponding numeric constant
were assigned to a double precision floating-point column or variable.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: Using sample table DSN8710.EMP, find the ratio of salary to commission
for employees whose commission is not zero. The columns involved in the
calculation, SALARY and COMM, have decimal data types. To eliminate the
possibility of out-of-range results, apply the DOUBLE function to SALARY so that
the division is carried out in floating-point.

SELECT EMPNO, DOUBLE(SALARY)/COMM
FROM DSN8710.EMP
WHERE COMM > 0;

�� DOUBLE (numeric-expression)
DOUBLE_PRECISION string-expression
FLOAT

��

DOUBLE or DOUBLE_PRECISION

206 SQL Reference

|
|

EXP

The schema is SYSIBM.

The EXP function returns the exponential function of the argument (a value that is
the base of the natural logarithm (e) raised to a power specified by the argument).
The EXP and LOG functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable E is DECIMAL(10,9) with a value of
3.453789832. The following statement:

SELECT EXP(:E)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
31.62.

�� EXP(expression) ��

EXP

Chapter 3. Built-in functions 207

FLOAT

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of its argument.

FLOAT is a synonym for the DOUBLE function. See “DOUBLE or
DOUBLE_PRECISION” on page 206 for details.

�� FLOAT(expression) ��

FLOAT

208 SQL Reference

FLOOR

The schema is SYSIBM.

The FLOOR function returns the largest integer value that is less than or equal to
the argument.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute as the
argument. The result can be null. If the argument is null, the result is the null value.
When the argument is DECIMAL, the scale of the result is 0 and not the scale of
the input argument.

Example: Using sample table DSN8710.EMP, find the highest monthly salary,
rounding the result down to the next integer. The SALARY column has a decimal
data type.

SELECT FLOOR(MAX(SALARY)/12)
FROM DSN8710.EMP;

This example returns 04395 because the highest paid employee is Christine Haas
who earns $52750.00 per year. Her average monthly salary before applying the
FLOOR function is 4395.83.

�� FLOOR(expression) ��

FLOOR

Chapter 3. Built-in functions 209

|
|

GRAPHIC

The schema is SYSIBM.

The GRAPHIC function returns a graphic representation of a character string value,
with the single-byte characters converted to double-byte characters, or a graphic
string value if the first argument is a graphic string.

The result of the function is a fixed-length graphic string (GRAPHIC).

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

The length attribute of the result is measured in double-byte characters because it
is a graphic string.

Character to Graphic

character-expression
An expression whose value must be an EBCDIC-encoded or Unicode-encoded
character string. The GRAPHIC function is not allowed for ASCII data. The
argument does not need to be mixed data, but any occurrences of X'0E' and
X'0F' in the string must conform to the rules for EBCDIC mixed data. (See
“Character strings” on page 49 for these rules.)

The value of the expression must not be an empty string or have the value
X'0E0F' if the string is an EBCDIC string.

integer
The length of the resulting fixed-length graphic string. The value must be an
integer between 1 and 127. If the length of character-expression is less than the
length specified, the result is padded with double-byte blanks to the length of
the result.

If integer is not specified, the length of the result for an EBCDIC string is the
minimum of 127 and the length attribute of character-expression, excluding shift
characters. For a Unicode (UTF-8) string, the length is data dependent, but
does not exceed 127.

The CCSID of the result is the system CCSID for EBCDIC or Unicode GRAPHIC
data. If the input is EBCDIC and there is no system CCSID for EBCDIC GRAPHIC
data, the CCSID of the result is X'FFFE'.

Character to Graphic:

�� GRAPHIC(character-expression)
, integer

��

Graphic to Graphic:

�� GRAPHIC(graphic-expression)
, integer

��

GRAPHIC

210 SQL Reference

|

|

|
|
|
|

|

For EBCDIC data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M be the system CCSID for mixed data. The argument is not
converted if any of the following conditions is true:

v The argument is mixed data and its CCSID is M.

v The argument is SBCS data and its CCSID is the same as the system CCSID for
SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

v The argument cannot be BIT data.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M. If there is no system CCSID for EBCDIC
mixed data, conversion is to the coded character set that the system EBCDIC
CCSID for SBCS data identifies.

The result is derived from S using the following steps:
v Each shift character (X'0E' or X'0F') is removed.
v Each double-byte character remains as is.
v Each single-byte character is replaced by a double-byte character.

The replacement for an SBCS character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. The existence of an
equivalent character depends on M. If there is no system CCSID for mixed data,
the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40', whose DBCS
equivalent is X'4040'.

For Unicode data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M be the system CCSID for mixed data. The argument is not
converted if any of the following conditions is true:

v The argument is mixed data, and its CCSID is M.

v The argument is SBCS data, and its CCSID is the same as the system CCSID
for SBCS data. In this case, the operation proceeds as if the CCSID of the
argument is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M.

The result is derived from S by using the following steps:
v Each non-surrogate character is replaced by a Unicode double-byte character (a

UTF-16 code point). A non-surrogate character in UTF-8 is between 1 and 3
bytes.

v Each surrogate character is replaced by a pair of Unicode double-byte characters
(a pair of UTF-16 code points).

The replacement for a single-byte character is the Unicode equivalent character if
an equivalent exists. Otherwise, the replacement is X'FEFE'.

Graphic to Graphic

GRAPHIC

Chapter 3. Built-in functions 211

|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

graphic-expression
An expression whose value is a graphic string. The graphic string must not be
an empty string.

integer
The length of the resulting fixed-length graphic string. The value must be an
integer between 1 and 127. If the length of graphic-expression is less than the
length specified, the result is padded with double-byte blanks to the length of
the result.

If integer is not specified, the length of the result is the minimum of 127 and the
length attribute of graphic-expression.

If the length of the graphic-expression is greater than the specified length of the
result, the result is truncated. Unless all the truncated characters are blanks, a
warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

Example: Assume that MYCOL is a VARCHAR column in TABLEY. The following
function returns the string in MYCOL as a fixed-length graphic string.

SELECT GRAPHIC(MYCOL)
FROM TABLEY;

GRAPHIC

212 SQL Reference

HEX

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of its argument.

The argument can be of any built-in data type other than a character or binary
string with a maximum length greater than 255 or a graphic string with a maximum
length greater than 127.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits. The first two represent the first byte of
the argument, the next two represent the second byte of the argument, and so
forth. If the argument is a datetime value, the result is the hexadecimal
representation of the internal form of the argument.

If the argument is a graphic string, the length of the result is four times the
maximum length of the argument. Otherwise, the length of the result is twice the
(maximum) length of the argument.

If the argument is not a varying-length string, and the length of the result is less
than 255, the result is a fixed-length string. Otherwise, the result is a varying-length
string whose maximum length depends on the following considerations:

If the argument is not a varying-length string, the maximum length of the
result string is the same as the length of the result.

If the argument is a varying-length character or binary string, the maximum
length of the result string is twice the maximum length of the argument.

If the argument is a varying-length graphic string, the maximum length of
the result string is four times the maximum length of the argument.

If the maximum length of the result is greater than 254 bytes, the result is subject to
the restrictions that apply to long strings.

Example: Return the hexadecimal representation of START_RBA in the
SYSIBM.SYSCOPY catalog table.

SELECT HEX(START_RBA) FROM SYSIBM.SYSCOPY;

�� HEX(expression) ��

HEX

Chapter 3. Built-in functions 213

HOUR

The schema is SYSIBM.

The HOUR function returns the hour part of its argument.

The argument must be a time, timestamp, time duration, timestamp duration, or
valid string representation of a time or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. For the valid formats of string representations of times and
timestamps, see “String representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of either, the
result is the hour part of the value, which is an integer between 1 and 24.

If the argument is a time duration or timestamp duration, the result is the
hour part of the value, which is an integer between -99 and +99. A nonzero
result has the same sign as the argument.

Example: Assume that a table named CLASSES contains a row for each scheduled
class. Also assume that the class starting times are in a TIME column named
STARTTM. Select those rows in CLASSES that represent classes that start after
the noon hour.

SELECT *
FROM CLASSES
WHERE HOUR(STARTTM) > 12;

�� HOUR(expression) ��

HOUR

214 SQL Reference

|
|
|
|
|

IDENTITY_VAL_LOCAL

The schema is SYSIBM.

The IDENTITY_VAL_LOCAL function is a nondeterministic function 22 that returns
the most recently assigned value for an identity column. The function has no input
parameters.

The result is DECIMAL(31,0), regardless of the actual data type of the identity
column that the result value corresponds to.

The value returned is the value that was assigned to the identity column of the table
identified in the most recent row INSERT statement with a VALUES clause for a
table with an identity column. The INSERT statement has to be issued at the same
level; that is, the value has to be available locally within the level at which it was
assigned until replaced by the next assigned value. A new level is initiated when a
trigger, function, or stored procedure is invoked. A trigger condition is at the same
level as the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is
defined as GENERATED BY DEFAULT) or an identity value that was generated by
DB2.

The function returns the null value in the following situations:

v When a single row INSERT statement with a VALUES clause has not been
issued for a table containing an identity column at the current processing level

v When a COMMIT or ROLLBACK of a unit of work occurred since the most recent
INSERT statement that assigned a value

The result of the function is not affected by the following statements:

v An INSERT statement with a VALUES clause for a table that does not contain an
identity column

v An INSERT statement with a subselect

v A ROLLBACK TO SAVEPOINT statement

Notes
The following notes explain the behavior of the function when it is invoked in
various situations:

Invoking the function within the VALUES clause of an INSERT statement
Expressions in the VALUES clause of an INSERT statement are evaluated
before values are assigned to the target columns of the INSERT statement.
Thus, when you invoke IDENTITY_VAL_LOCAL in a VALUES clause of an
INSERT statement, the value that is used is the most recently assigned
value for an identity column from a previous INSERT statement. The

22. Being nondeterministic affects what optimization (such as view processing and parallel processing) can be done when this
function is used and in what contexts the function can be invoked. For example, the RAND function is another built-in scalar that
is not deterministic. Using nondeterministic functions within a predicate can cause unpredictable results.

�� IDENTITY_VAL_LOCAL() ��

IDENTITY_VAL_LOCAL

Chapter 3. Built-in functions 215

|

|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|

|
|

|

|

|
|
|

|
|
|
|
|
|

function returns the null value if no such INSERT statement had been
executed within the same level as the invocation of the
IDENTITY_VAL_LOCAL function.

Invoking the function following a failed INSERT statement
The function returns an unpredictable result when it is invoked after the
unsuccessful execution of a single row INSERT with a VALUES clause for a
table with an identity column. The value might be the value that would have
been returned from the function had it been invoked before the failed
INSERT or the value that would have been assigned had the INSERT
succeeded. The actual value returned depends on the point of failure and is
therefore unpredictable.

Invoking the function within the SELECT statement of a cursor
Because the results of the IDENTITY_VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function from within the SELECT statement of a cursor can vary for each
FETCH statement.

Invoking the function within the trigger condition of an insert trigger
The result of invoking the IDENTITY_VAL_LOCAL function from within the
condition of an insert trigger is the null value.

Invoking the function within a triggered action of an insert trigger
Multiple before or after insert triggers can exist for a table. In such cases,
each trigger is processed separately, and identity values generated by SQL
statements issued within a triggered action are not available to other
triggered actions using the IDENTITY_VAL_LOCAL function. This is the
case even though the multiple triggered actions are conceptually defined at
the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of a
before insert trigger. The result of invoking the IDENTITY_VAL_LOCAL
function from within the triggered action of a before insert trigger is the null
value.The value for the identity column of the table for which the trigger is
defined cannot be obtained by invoking the IDENTITY_VAL_LOCAL
function within the triggered action of a before insert trigger. However, the
value for the identity column can be obtained in the triggered action by
referencing the trigger transition variable for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the triggered
action of an after insert trigger is the value assigned to an identity column
of the table identified in the most recent single row INSERT statement. That
statement is the one invoked in the same triggered action that had a
VALUES clause for a table containing an identity column. If a single row
INSERT statement with a VALUES clause for a table containing an identity
column was not executed within the same triggered action before invoking
the IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an INSERT with triggered actions
The result of invoking the function after an INSERT that activates triggers is
the value actually assigned to the identity column (that is, the value that
would be returned on a subsequent SELECT statement). This value is not
necessarily the value provided in the VALUES clause of the INSERT
statement or a value generated by DB2. The assigned value could be a
value that was specified in a SET transition variable statement within the
triggered action of a before insert trigger for a trigger transition variable
associated with the identity column.

IDENTITY_VAL_LOCAL

216 SQL Reference

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Examples

Example 1: Set the variable IVAR to the value assigned to the identity column in
the EMPLOYEE table. The value returned from the function in the VALUES
statement should be 1.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT);

INSERT INTO EMPLOYEE
(NAME, SALARY, DEPTNO)
VALUES ('Rupert', 989.99, 50);

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

Example 2: Assume two tables, T1 and T2, have an identity column named C1.
DB2 generates values 1, 2, 3, . . . for the C1 column in table T1, and values 10, 11,
12, . . . for the C1 column in table T2.

CREATE TABLE T1 (C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
C2 SMALLINT);

CREATE TABLE T2 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY
(START WITH 10),

C2 SMALLINT);

INSERT INTO T1 (C2) VALUES (5);

INSERT INTO T1 (C2) VALUES (5);

SELECT * FROM T1;

C1 C2
----------- ----------

1 5
2 5

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in IVAR.
The following INSERT statement inserts a single row into T2 where column C2 gets
a value of 2 from the IDENTITY_VAL_LOCAL function

INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL());

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(),15,0);

C1 C2
---------------------------------- ----------

10 2

Invoking the IDENTITY_VAL_LOCAL function after this insert would result in a value
of 10, which is the value generated by DB2 for column C1 of T2. Assume another
single row is inserted into T2. For the following INSERT statement, DB2 assigns a
value of 13 to identity column C1 and gives C2 a value of 10 from
IDENTITY_VAL_LOCAL. Thus, C2 is given the last identity value that was inserted
into T2.

INSERT INTO T2 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 13);

IDENTITY_VAL_LOCAL

Chapter 3. Built-in functions 217

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

Example 3: The IDENTITY_VAL_LOCAL function can also be invoked in an
INSERT statement that both invokes the IDENTITY_VAL_LOCAL function and
causes a new value for an identity column to be assigned. The next value to be
returned is thus established when the IDENTITY_VAL_LOCAL function is invoked
after the INSERT statement completes. For example, consider the following table
definition:

CREATE TABLE T1 (C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
C2 SMALLINT);

For the following INSERT statement, specify a value of 25 for the C2 column, and
DB2 generates a value of 1 for C1, the identity column. This establishes 1 as the
value that will be returned on the next invocation of the IDENTITY_VAL_LOCAL
function.

INSERT INTO T1 (C2) VALUES (25);

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is invoked
to provide a value for the C2 column. A value of 1 (the identity value assigned to
the C1 column of the first row) is assigned to the C2 column, and DB2 generates a
value of 2 for C1, the identity column. This establishes 2 as the value that will be
returned on the next invocation of the IDENTITY_VAL_LOCAL function.

INSERT INTO T1 (C2) VALUES (IDENTITY_VAL_LOCAL());

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is again
invoked to provide a value for the C2 column, and the user provides a value of 11
for C1, the identity column. A value of 2 (the identity value assigned to the C1
column of the second row) is assigned to the C2 column. The assignment of 11 to
C1 establishes 11 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T1 (C2, C1) VALUES (IDENTITY_VAL_LOCAL(), 11);

After the 3 INSERT statements have been processed, table T1 contains the
following:

SELECT * FROM T1;

C1 C2
----------- -----------

1 25
2 1
11 2

The contents of T1 illustrate that the expressions in the VALUES clause are
evaluated before the assignments for the columns of the INSERT statement. Thus,
an invocation of an IDENTITY_VAL_LOCAL function invoked from a VALUES
clause of an INSERT statement uses the most recently assigned value for an
identity column in a previous INSERT statement.

IDENTITY_VAL_LOCAL

218 SQL Reference

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

IFNULL

The schema is SYSIBM.

The IFNULL function returns the first argument that is not null.

IFNULL is identical to the COALESCE and VALUE scalar functions except that
IFNULL is limited to two arguments instead of multiple arguments. For a description,
see “COALESCE” on page 189.

Example: For all the rows in sample table DSN8710.EMP, select the employee
number and salary. If the salary is missing (is null), have the value 0 returned.

SELECT EMPNO, IFNULL(SALARY,0)
FROM DSN8710.EMP;

�� IFNULL(expression,expression) ��

IFNULL

Chapter 3. Built-in functions 219

INSERT

The schema is SYSIBM.

The INSERT function returns a string where, beginning at expression2 in
expression1, expression3 bytes have been deleted and expression4 has been
inserted.

expression1
An expression that specifies the source string. The source string can be any
type of character string except a CLOB or any type of graphic string except a
DBCLOB. The actual length of the string must be greater than zero.

expression2
An expression that returns an integer. The integer specifies the starting point
within the source string where the deletion of bytes and the insertion of another
string is to begin. The value of the integer must be in the range of 1 to the
length of expression1 plus one.

expression3
An expression that returns an integer. The integer specifies the number of bytes
that are to be deleted from the source string, starting at the position identified
by expression2. The value of the integer must be in the range of 0 to the length
of expression1.

expression4
An expression that specifies the string to be inserted into the source string,
starting at the position identified by expression2. The string to be inserted can
be any type of character string except a CLOB or any type of graphic string
except a DBCLOB.

expression1 and expression4 must have compatible string types. For more
information on compatibility, see “Conversion rules for string comparison” on
page 73. Neither expression1 nor expression4 can be a CLOB or DBCLOB.

The result of the function depends on the data type of the first and fourth
arguments:
v VARCHAR if expression1 and expression4 are character strings
v VARGRAPHIC if expression1 and expression4 are graphic strings

The length attribute of the result depends on the arguments:

v If expression2 and expression3 are constants, the length attribute of the result is:
L1 - MIN((L1 - V2 + 1), V3) + L4

where:
L1 is the length attribute of expression1
V2 is the value of expression2
V3 is the value of expression3
L4 is the length attribute of expression4

v Otherwise, the length attribute of the result is the length attribute of expression1
plus the length attribute of expression4. In this case, the length attribute of

�� INSERT(expression1,expression2,expression3,expression4) ��

INSERT

220 SQL Reference

|
|
|

expression1 plus the length attribute of expression4 must not exceed 4000 for a
VARCHAR result or 2000 for a VARGRAPHIC result.

The actual length of the result is:
A1 - MIN((A1 - V2 + 1), V3) + A4

where:
A1 is the actual length of expression1
V2 is the value of expression2
V3 is the value of expression3
A4 is the actual length of expression4

If the actual length of the result string exceeds the maximum for the return data
type, an error occurs.

If any argument can be null, the result can be null; if any argument is null, the result
is the null value.

The subtype and CCSID of the result are determined as follows:

v If either expression1 and expression4 is character bit data, the result is bit data
and does not have an associated CCSID.

v If expression1 and expression4 are both character SBCS data, the result is
SBCS data and the CCSID is the CCSID for ASCII, EBCDIC, or Unicode SBCS
data, depending on the encoding scheme of the SQL statement.

v If expression1 and expression4 are both graphic data, the result is graphic data
and the CCSID is the CCSID for ASCII, EBCDIC, Unicode graphic data,
depending on the encoding scheme of the SQL statement.

v Otherwise, the result is mixed data. The CCSID is the CCSID for ASCII, EBCDIC
or Unicode mixed data, depending on the encoding scheme of the SQL
statement.

Example 1: The following example shows how the string 'INSERTING' can be
changed into other strings. The use of the CHAR function limits the length of the
resulting string to 10 bytes.

SELECT CHAR(INSERT('INSERTING',4,2,'IS'),10),
CHAR(INSERT('INSERTING',4,0,'IS'),10),
CHAR(INSERT('INSERTING',4,2,''),10)

FROM SYSIBM.SYSDUMMY1;

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '

Example 2: The previous example demonstrated how to insert text into the middle
of some text. This example shows how to insert text before some text by using 1 as
the starting point (expression2).

SELECT CHAR(INSERT('INSERTING',1,0,'XX'),10),
CHAR(INSERT('INSERTING',1,1,'XX'),10),
CHAR(INSERT('INSERTING',1,2,'XX'),10),
CHAR(INSERT('INSERTING',1,3,'XX'),10)

FROM SYSIBM.SYSDUMMY1;

This example returns 'XXINSERTIN', 'XXNSERTING', 'XXSERTING ', and
'XXERTING '

Example 3: The following example shows how to insert text after some text. Add
'XX' at the end of string 'ABCABC'. Because the source string is 6 characters long,
set the starting position to 7 (one plus the length of the source string).

INSERT

Chapter 3. Built-in functions 221

|

|

|

SELECT CHAR(INSERT('ABCABC',7,0,'XX'),10)
FROM SYSIBM.SYSDUMMY1;

This example returns 'ABCABCXX '.

INSERT

222 SQL Reference

INTEGER or INT

The schema is SYSIBM.

The INTEGER or INT function returns an integer representation of a number or
character string in the form of a numeric constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result of the function is a large integer. The result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of integers, an
error occurs. If present, the decimal part of the argument is truncated.

string-expression
An expression that returns any type of string (except a BLOB, CLOB, or
DBCLOB) with an actual length that is not greater than 255 bytes. Leading and
trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a string representation of an SQL integer
constant.

The result of the function is a large integer. The result is the same number that
would occur if the corresponding numeric constant were assigned to a large
integer column or variable.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example 1: Using sample table DSN8710.EMP, find the average salary of the
employees in department A00, rounding the result to the nearest dollar.

SELECT INTEGER(AVG(SALARY)+.5)
FROM DSN8710.EMP
WHERE WORKDEPT = 'A00';

Example 2: Using sample table DSN8710.EMP, select the EMPNO column, which is
defined as CHAR(6), in integer form.

SELECT INTEGER(EMPNO)
FROM DSN8710.EMP;

�� INTEGER (numeric-expression)
INT string-expression

��

INTEGER or INT

Chapter 3. Built-in functions 223

|
|

JULIAN_DAY

The schema is SYSIBM.

The JULIAN_DAY function returns an integer value representing a number of days
from January 1, 4712 B.C. (the start of the Julian date calendar) to the date
specified in the argument.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. (For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8710.EMP, set the integer host variable JDAY
to the Julian day of the day that Christine Haas (EMPNO = '000010') was employed
(HIREDATE = '1965-01-01').

SELECT JULIAN_DAY(HIREDATE)
INTO :JDAY
FROM DSN8710.EMP
WHERE EMPNO = '000010';

The result is that JDAY is set to 2438762.

Example 2: Set integer host variable JDAY to the Julian day for January 1, 1998.
SELECT JULIAN_DAY('1998-01-01')

INTO :JDAY
FROM SYSIBM.SYSDUMMY1;

The result is that JDAY is set to 2450815.

�� JULIAN_DAY(expression) ��

JULIAN_DAY

224 SQL Reference

|
|
|
|
|

LAST_DAY

The schema is SYSIBM.

The LAST_DAY scalar function returns a date that represents the last day of the
month indicated by date-expression.

date-expression must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or
DBCLOB, and must have an actual length that is not greater than 255 bytes. For
the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a DATE. The result can be null; if the value of
date-expression is null, the result is the null value.

Example 1: Set the host variable END_OF_MONTH with the last day of the current
month.

SET :END_OF_MONTH = LAST_DAY(CURRENT_DATE);

The host variable END_OF_MONTH is set with the value representing the end of
the current month. If the current day is 2000-02-10, then END_OF_MONTH is set to
2000-02-29.

Example 2: Set the host variable END_OF_MONTH with the last day of the month
in EUR format for the given date.

SET :END_OF_MONTH = CHAR(LAST_DAY('1965-07-07'), EUR);

The host variable END_OF_MONTH is set with the value ’31.07.1965’.

�� LAST_DAY(date-expression) ��

LAST_DAY

Chapter 3. Built-in functions 225

|

|

|

|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|

|

|

LCASE or LOWER

The schema is SYSIBM.

The LCASE or LOWER function returns a string in which all the characters have
been converted to lowercase characters.

string-expression
An expression that specifies the string to be converted. The string must be a
character or graphic string. A character string argument must not be a CLOB
and must have an actual length that is not greater than 255. A graphic string
argument must not be a DBCLOB and must have an actual length that is not
greater than 127.

The alphabetic characters of the argument are translated to lowercase characters
based on the value of the LC_CTYPE locale in effect for the statement. For
example, characters A-Z are translated to a-z, and characters with diacritical marks
are translated to their lowercase equivalent, if any. The locale is determined by
special register CURRENT LOCALE LC_CTYPE. For information about the special
register, see “CURRENT LOCALE LC_CTYPE” on page 86.

If the LC_CTYPE locale is blank when the function is executed, the result of the
function depends on the data type of string-expression.

v For ASCII and EBCDIC, if string-expression specifies a graphic string expression,
then an error occurs. For a character string expression, characters A-Z are
translated to a-z and characters with diacritical marks are not translated.

v For Unicode, string-expression can be either a character string expression or a
graphic string expression. The characters A-Z are translated to a-z and all other
characters, including characters with diacritic marks, are left unchanged. If
LOCALE LC_CTYPE is not blank, an error occurs.

The length attribute, data type, subtype, and CCSID of the result are the same as
the argument. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Example: Return the characters in the value of host variable NAME in lowercase.
NAME has a data type of VARCHAR(30) and a value of 'Christine Smith'. Assume
that the locale in effect is blank.
SELECT LCASE(:NAME)

FROM SYSIBM.SYSDUMMY1;

The result is the value 'christine smith'.

�� LCASE (string-expression)
LOWER

��

LCASE or LOWER

226 SQL Reference

|

|
|
|

|
|

|
|
|

|
|
|
|

LEFT

The schema is SYSIBM.

The LEFT function returns a string consisting of the specified number of leftmost
integer characters of string-expression. If string-expression is a character or binary
string, a character is a byte. If string-expression is a graphic string, a character is a
DBCS character.

The CCSID of the result is the same as that of the string-expression.

string-expression
An expression that specifies the string from which the result is derived. The
string must be a character, graphic, or binary string. A substring of
string-expression is zero or more contiguous bytes of string-expression.

The string can contain mixed data. However, because the function operates on
a strict byte-count basis, the result is not necessarily a properly formed mixed
data character string.

integer
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of string-expression.

The string-expression is effectively padded on the right with the necessary number
of characters so that the specified substring of string-expression always exists. The
encoding scheme of the data determines the padding character:

v For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.

v For ASCII DBCS data, the padding character depends on the CCSID; for
example, for Japan (CCSID 301) the padding character is X'8140', while for
simplified Chinese it is X'A1A1'.

v For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.

v For EBCDIC DBCS data, the padding character is X'4040'.

v For Unicode SBCS data or UTF-8 (Unicode mixed data), the padding character is
X'20'.

v For UTF-16 (Unicode DBCS) data, the padding character is X'0020'.

v For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is the
same as the length attribute of string-expression and a data type that depends on
the data type of string:
v VARCHAR if string-expression is CHAR or VARCHAR
v CLOB if string-expression is CLOB
v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
v DBCLOB if string-expression is DBCLOB
v BLOB if string-expression is BLOB

If any argument of the function can be null, the result can be null; if any argument is
null, the result is the null value.

�� LEFT(string-expression,integer) ��

LEFT

Chapter 3. Built-in functions 227

|
|
|
|

|
|

|

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The
following statement:

SELECT LEFT(:ALPHA,3)
FROM SYSIBM.SYSDUMMY1;

returns 'ABC', which are the three leftmost characters in ALPHA.

Example 2: Assume that host variable NAME, which is defined as VARCHAR(50),
has a value of 'KATIE AUSTIN' and the integer host variable FIRSTNAME_LEN has
a value of 5. The following statement:

SELECT LEFT(:NAME, :FIRSTNAME_LEN)
FROM SYSIBM.SYSDUMMY1;

returns the value 'KATIE'.

Example 3: The following statement returns a zero length string.
SELECT LEFT('ABCABC',0)

FROM SYSIBM.SYSDUMMY1;

Example 4: The FIRSTNME column in sample EMP table is defined as
VARCHAR(12). Find the first name for an employee whose last name is ’BROWN’
and return the first name in a 10-byte string.

SELECT LEFT(FIRSTNME,10)
FROM DSN8710.EMP
WHERE LASTNAME='BROWN';

This function returns a VARCHAR(10) string that has the value of ’DAVID’ followed
by 5 blank characters.

LEFT

228 SQL Reference

LENGTH

The schema is SYSIBM.

The LENGTH function returns the length of its argument.

The argument is an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null
indicator byte of column arguments that allow null values. The length of strings
includes blanks but does not include the length control field of varying-length
strings. The length of a varying-length string is the actual length, not the maximum
length.

The length of a graphic string is the number of double-byte characters. Unicode
UTF-16 data is treated as graphic data; a UTF-surrogate character takes two DBCS
characters to represent and as such is counted as two DBCS characters.

The length of all other values is the number of bytes used to represent the value:
v 2 for small integer
v 4 for large integer
v 4 for single precision floating-point
v 8 for double precision floating-point
v INTEGER(p/2)+1 for decimal numbers with precision p
v 4 for date
v 3 for time
v 10 for timestamp
v The length of the string for character strings
v The length of the row ID

Example 1: Assume that FIRSTNME is a VARCHAR(12) column that contains
'ETHEL' for employee 280. The following query:

SELECT LENGTH(FIRSTNME)
FROM DSN8710.EMP
WHERE EMPNO = '000280';

returns the value 5.

Example 2: Assume that HIREDATE is a column of data type DATE. Then,
regardless of value:

LENGTH(HIREDATE)

returns the value 4, and
LENGTH(CHAR(HIREDATE, EUR))

returns the value 10.

�� LENGTH(expression) ��

LENGTH

Chapter 3. Built-in functions 229

|
|
|

LN

The schema is SYSIBM.

The LN function returns the natural logarithm of the argument. The LN and EXP
functions are inverse operations. LOG is a synonym for LN.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable NATLOG is DECIMAL(4,2) with a value of
31.62. The following statement:

SELECT LN(:NATLOG)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 3.45.

�� LN(expression) ��

LN

230 SQL Reference

|

|

|

|
|

|
|
|

|
|

|
|

|
|

|

LOCATE

The schema is SYSIBM.

The LOCATE function returns the starting position of the first occurrence of one
string (the search-string) within another string (the source-string). Numbers for the
starting position begin at 1 and not 0. If search-string is not found in source-string,
the function returns 0.

search-string
An expression that specifies the string that is to be searched for. The search
string can be a character, graphic, or binary string with an actual length that is
no greater than 4000 bytes. The expression can be specified by any of the
following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above
v A column name

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

source-string
An expression that specifies the source string that is to be searched. The
source string can be a character, graphic, or binary string. The expression can
be specified by any of the following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above
v A CAST specification whose arguments are any of the above
v A column name
v An expression that concatenates (using CONCAT or ||) any of the above

start
An expression whose value is a positive integer. The integer specifies the
position in the source string at which the search begins. If start is specified, the
LOCATE function is equivalent to:

POSSTR(SUBSTR(source-string, integer), search-string) + integer - 1

If start is not specified, the search begins at the first character of the source
string and the LOCATE function is equivalent to:

POSSTR(source-string, search-string)

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for string comparison” on
page 73.

�� LOCATE(search-string,source-string)
, start

��

LOCATE

Chapter 3. Built-in functions 231

|
|
|

The result of the function is a large integer. If any argument can be null, the result
can be null; if any argument is null, the result is the null value.

For more information about LOCATE, see the description of “POSSTR” on
page 246.

Example 1: Find the location of the first occurrence of the character 'N' in the string
'DINING'.

SELECT LOCATE('N', 'DINING')
FROM SYSIBM.SYSDUMMY1;

The result is the value 3.

Example 2: For all the rows in the table named IN_TRAY, select the RECEIVED
column, the SUBJECT column, and the starting position of the string 'GOOD' within
the NOTE_TEXT column.

SELECT RECEIVED, SUBJECT, LOCATE('GOOD', NOTE_TEXT)
FROM IN_TRAY
WHERE LOCATE('GOOD', NOTE_TEXT) <> 0;

LOCATE

232 SQL Reference

LOG10

The schema is SYSIBM.

The LOG10 function returns the base 10 logarithm of the argument.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HLOG is an INTEGER with a value of 100. The
following statement:

SELECT LOG10(:HLOG)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 2.

�� LOG10(expression) ��

LOG10

Chapter 3. Built-in functions 233

LTRIM

The schema is SYSIBM.

The LTRIM function removes blanks from the beginning of a string expression. The
LTRIM function returns the same results as the STRIP function with LEADING
specified:

STRIP(string-expression,LEADING)

string-expression must be any character string expression other than a CLOB or
any graphic string expression other than a DBCLOB. The characters that are
interpreted as leading blanks depend on the encoding scheme of the data and the
data type:

v If the argument is a graphic string, the leading DBCS blanks are removed. For
data that is encoded in ASCII, the ASCII CCSID determines the hex value that
represents a double-byte blank. For example, for Japan (CCSID 301), X'8140'
represents a double-byte blank, while it is X'A1A1' for Simplified Chinese. For
EBCDIC-encoded data, X'4040' represents a double-byte blank. For
Unicode-encoded data, X'0020' represents a UTF-16 blank.

v Otherwise, leading SBCS blanks are removed. For data that is encoded in ASCII,
X'20' represents a blank. For EBCDIC-encoded data, X'40' represents a blank.
For Unicode-encoded data, X'20' represents a single-byte blank.

The result of the function depends on the data type of its argument:
v VARCHAR if the argument is a character string
v VARGRAPHIC if the argument is a graphic string

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of characters removed. If all of the characters are removed, the
result is an empty string.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value. The CCSID of the result is the same as that of string-expression.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a value
of ' Hello'.

SELECT LTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1;

The result is 'Hello'.

�� LTRIM(string-expression) ��

LTRIM

234 SQL Reference

|
|

|

MICROSECOND

The schema is SYSIBM.

The MICROSECOND function returns the microsecond part of its argument.

The argument must be a time, timestamp, a timestamp duration, or a valid string
representation of a timestamp. A string representation must not be a BLOB, CLOB,
or DBCLOB and must have an actual length that is not greater than 255 bytes. (For
the valid formats of string representations of times and timestamps, see “String
representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp or string representation of either, the
result is the microsecond part of the value, which is an integer between 0 and
999999.

If the argument is a duration, the result is the microsecond part of the value,
which is an integer between -999999 and 999999. A nonzero result has the
same sign as the argument.

Example: Assume that table TABLEX contains a TIMESTAMP column named
TSTMPCOL and a SMALLINT column named INTCOL. Select the microseconds
part of the TSTMPCOL column of the rows where the INTCOL value is 1234:

SELECT MICROSECOND(TSTMPCOL) FROM TABLEX
WHERE INTCOL = 1234;

�� MICROSECOND(expression) ��

MICROSECOND

236 SQL Reference

|
|
|
|
|

|
|
|

MIDNIGHT_SECONDS

The schema is SYSIBM.

The MIDNIGHT_SECONDS function returns an integer value in the range of 0 to
86400 that represents the number of seconds between midnight and the time
specified by the argument.

The argument must be a time, a timestamp, or a valid string representation of a
time or timestamp. A string representation must not be a BLOB, CLOB,or DBCLOB,
and must have an actual length that is not greater than 255 bytes. (For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: Find the number of seconds between midnight and 00:01:00, and
midnight and 13:10:10. Assume that host variable XTIME1 has a value of '00:01:00',
and that XTIME2 has a value of '13:10:10'.

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
FROM SYSIBM.SYSDUMMY1;

This example returns 60 and 47410. Because there are 60 seconds in a minute and
3600 seconds in an hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0), and
13:10:10 is 47410 seconds ((3600 * 13) + (60 * 10) + 10).

Example 2: Find the number of seconds between midnight and 24:00:00, and
midnight and 00:00:00.

SELECT MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00')
FROM SYSIBM.SYSDUMMY1;

This example returns 86400 and 0. Although these two values represent the same
point in time, different values are returned.

�� MIDNIGHT_SECONDS(expression) ��

MIDNIGHT_SECONDS

Chapter 3. Built-in functions 237

|
|
|
|
|

MIN

The schema is SYSIBM.

The MIN scalar function returns the minimum value in a set of values. The
arguments must be compatible. For more information on compatibility, refer to the
compatibility matrix in Table 9 on page 65. All but the first argument can be
parameter markers. There must be two or more arguments.

The argument values can be of any built-in data type other than a CLOB, DBCLOB,
BLOB, or row ID. Character string arguments cannot have an actual length greater
than 255, and graphic string arguments cannot have an actual length greater than
127.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined using the “Rules for result data types” on
page 77. If the MIN function has more than two arguments, the rules are applied to
the first two arguments to determine a candidate result type. The rules are then
applied to that candidate result type and the third argument to determine another
candidate result type. This process continues until all arguments are analyzed and
the final result type is determined.

The result can be null if at least one argument can be null; the result is the null
value if one of the arguments is null.

Example 1: Assume the host variable M1 is a DECIMAL(2,1) host variable with a
value of 5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5,
and host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25. The
function

MIN(:M1,:M2,:M3)

returns the value 4.5.

Example 2: Assume the host variable M1 is a CHAR(2) host variable with a value of
’AA’, host variable M2 is a CHAR(3) host variable with a value of ’AAA’, and host
variable M3 is a CHAR(4) host variable with a value of ’AAAA’. The function

MIN(:M1,:M2,:M3)

returns the value ’AA’ .

�� �
(1)

MIN(expression ,expression) ��

Notes:

1 LEAST can be specified as an alternative to MIN.

MIN

238 SQL Reference

|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|
|

|

|

MINUTE

The schema is SYSIBM.

The MINUTE function returns the minute part of its argument.

The argument must be a time, a timestamp, time duration, timestamp duration, or a
valid string representation of a time or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. (For the valid formats of string representations of times and
timestamps, see “String representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of either, the
result is the minute part of the value, which is an integer between 0 and 59.

If the argument is a time duration or timestamp duration, the result is the
minute part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start on the hour.

SELECT * FROM CLASSES
WHERE MINUTE(STARTTM) = 0;

�� MINUTE(expression) ��

MINUTE

Chapter 3. Built-in functions 239

|
|
|
|
|

MOD

The schema is SYSIBM.

The MOD function divides the first argument by the second argument and returns
the remainder.

The formula used to calculate the remainder is:
MOD(x,y) = x - (x/y) * y

where x/y is the truncated integer result of the division.

The arguments must each be an expression that returns a value of any built-in
numeric data type. The second argument cannot be zero.

If an argument can be null, the result can be null; if an argument is null, the result is
the null value.

The attributes of the result are based on the arguments as follows:

v If both arguments are integers, the data type of the result is a large integer.

v If one argument is an integer and the other is a decimal, the data type of the
result is decimal with the same precision and scale as the decimal argument.

v If both arguments are decimal, the data type of the result is decimal. The
precision of the result is min(p-s,p’-s’) + max(s,s’), and the scale of the result is
max(s,s’), where the symbols p and s denote the precision and scale of the first
operand, and the symbols p’ and s’ denote the precision and scale of the second
operand.

v If either argument is a floating-point number, the data type of the result is double
precision floating-point.

The operation is performed in floating-point. If necessary, the operands are first
converted to double precision floating-point numbers. For example, an operation
that involves a floating-point number and either an integer or a decimal number is
performed with a temporary copy of the integer or decimal number that has been
converted to double precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

Example: Assume that M1 and M2 are two host variables. Find the remainder of
dividing M1 by M2.

SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1;

The following table shows the result for this function for various values of M1 and
M2.

M1 data type M1 value M2 data type M2 value
Result of
MOD(:M1,:M2)

INTEGER 5 INTEGER 2 1

INTEGER 5 DECIMAL(3,1) 2.2 0.6

�� MOD(expression,expression) ��

MOD

240 SQL Reference

M1 data type M1 value M2 data type M2 value
Result of
MOD(:M1,:M2)

INTEGER 5 DECIMAL(3,2) 2.20 0.60

DECIMAL(4,2) 5.50 DECIMAL(4,1) 2.0 1.50

MOD

Chapter 3. Built-in functions 241

MONTH

The schema is SYSIBM.

The MONTH function returns the month part of its argument.

The argument must be a date, a timestamp, date duration, timestamp duration, or a
valid string representation of a date or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. (For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a date, timestamp, or string representation of either, the
result is the month part of the value, which is an integer between 1 and 12.

If the argument is a date duration or timestamp duration, the result is the
month part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example: Select all rows in the sample table DSN8710.EMP for employees who
were born in May:

SELECT * FROM DSN8710.EMP
WHERE MONTH(BIRTHDATE) = 5;

�� MONTH(expression) ��

MONTH

242 SQL Reference

|
|
|
|
|

|
|

MULTIPLY_ALT

The schema is SYSIBM.

The MULTIPLY_ALT scalar function returns the product of the two arguments as a
decimal value. It is provided as an alternative to the multiplication operator,
especially when the sum of the precisions of the arguments exceeds 31.

The arguments can be any built-in exact numeric data type (DECIMAL, INTEGER,
or SMALLINT).

The result of the function is a DECIMAL. The precision and scale of the result are
determined as follows, using the symbols p and s to denote the precision and scale
of the first argument, and the symbols p’ and s’ to denote the precision and scale of
the second argument.

v The precision is MIN(31, p+p’)

v The scale is:

– 0 if the scale of both arguments is 0

– MIN(31, s+s’) if p+p’ is less than or equal to 31

– MAX(MIN(3, s+s’), 31-(p-s+p’-s’)) if p+p’ is greater than 31.

The result can be null if at least one argument can be null; the result is the null
value if one of the arguments is null.

The MULTIPLY_ALT function is a better choice than the multiplication operator
when performing decimal arithmetic where a scale of at least 3 is desired and the
sum of the precisions exceeds 31. In these cases, the internal computation is
performed so that overflows are avoided and then assigned to the result type value
using truncation for any loss of scale in the final result. Note that the possibility of
overflow of the final result is still possible when the scale is 3.

The following table compares the result types using MULTIPLY_ALT and the
multiplication operator:

Type of Argument1 Type of Argument2 Result using
MULTIPLY_ALT

Result using
multiplication
operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

�� MULTIPLY_ALT(exact-numeric-expression,exact-numeric-expression) ��

MULTIPLY_ALT

Chapter 3. Built-in functions 243

|

|

|

|
|
|

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

||||
|
|
|
|

||||

||||

||||

||||

||||

||||
|

NEXT_DAY

The schema is SYSIBM.

The NEXT_DAY scalar function returns a timestamp that represents the first
weekday, named by expression, that is later than the date date-expression. If
expression is a timestamp or valid string representation of a timestamp, the
timestamp value has the same hours, minutes, seconds, and microseconds as
expression. If expression is a date, or a valid string representation of a date, then
the hours, minutes, seconds, and microseconds value of the result is 0.

The result of the function is a TIMESTAMP. The result can be null; if any argument
is null, the result is the null value.

date-expression must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or
DBCLOB, and must have an actual length that is not greater than 255 bytes. For
the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

expression is the day of the week specified as follows:

Day of week Abbreviation
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
SUNDAY

MON
TUE
WED
THU
FRI
SAT
SUN

expression can be specified as either the full name or the abbreviation. The
minimum length of the input is the length of the abbreviated version. Any characters
immediately following a valid abbreviation are ignored.

Example 1: Set the host variable NEXTDAY with the date of the Tuesday following
April 24, 2000.

SET :NEXTDAY = NEXT_DAY(CURRENT_DATE, 'TUESDAY');

The host variable NEXTDAY is set with the value of
’2000–04–25–00.00.00.000000’, assuming that the value of the CURRENT_DATE
special register is ’2000–04–24’.

Example 2: Set the host variable NEXTDAY with the date of the first Monday in
May, 2000. Assume the host variable DAYHV = ’MON’.

SET :NEXTDAY = NEXT_DAY(LAST_DAY(CURRENT_TIMESTAMP),:DAYHV);

The host variable NEXTDAY is set with the value of ’2000-05-01-12.01.01.123456’,
assuming that the value of the CURRENT_TIMESTAMP special register is
’2000-04-24-12.01.01.123456’.

�� NEXT_DAY(date-expression,expression) ��

NEXT_DAY

244 SQL Reference

|||||||
|
|
|

|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|

|

|
|
|

NULLIF

The schema is SYSIBM.

The NULLIF function returns null if the two arguments are equal; otherwise, it
returns the value of the first argument.

The two arguments must be compatible. (See the compatibility matrix in Table 9 on
page 65.) Neither argument can be a BLOB, CLOB, or DBCLOB. The attributes of
the result are the attributes of the first argument. Any numbers specified must be of
a built-in numeric data type.

For example, if the result of the first argument is a character string, the result of the
other must also be a character string; if the result of the first argument is number,
the result of the other must also be a number.

The result of using NULLIF(e1,e2) is the same as using the CASE expression:
CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown because one or both arguments is null, CASE
expressions consider the evaluation not true. In this case, NULLIF returns the value
of the first argument.

Example: Assume that host variables PROFIT, CASH, and LOSSES have decimal
data types with the values of 4500.00, 500.00, and 5000.00 respectively. The
following function returns a null value:

NULLIF (:PROFIT + :CASH , :LOSSES)

�� NULLIF(expression,expression) ��

NULLIF

Chapter 3. Built-in functions 245

POSSTR

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of one
string (the search-string) within another string (the source-string). Numbers for the
starting position begin at 1 and not 0.

source-string
An expression that specifies the source string that is to be searched. The
source string can be a character, graphic, or binary string. The expression can
be specified by any of the following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above
v A column name
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

search-string
An expression that specifies the string that is to be searched for. The search
string can be a character, graphic, or binary string with an actual length that is
no greater than 4000 bytes. The expression can be specified by any of the
following:
v A constant
v A special register
v A host variable (including a LOB locator variable)
v A scalar function whose arguments are any of the above
v A column name
v A CAST specification whose arguments are any of the above
v An expression that concatenates (using CONCAT or ||) any of the above

These rules are similar to those that are described for pattern-expression for the
LIKE predicate.

The first and second arguments must have compatible string types. For more
information on compatibility, see “Conversion rules for string comparison” on
page 73.

Both search-string and source-string have zero or more contiguous positions. For
character strings and binary strings, a position is a byte. For graphic strings, a
position is a DBCS character. Graphic Unicode data is treated as UTF-16 data; a
UTF-surrogate character takes two DBCS characters to represent and as such is
counted as two DBCS characters.

The strings can contain mixed data.

v For ASCII data, if the search string or source string contains mixed data, the
search string is found only if the same combination of single-byte and
double-byte characters are found in the source string in exactly the same
positions.

�� POSSTR(source-string,search-string) ��

POSSTR

246 SQL Reference

|
|
|

|
|
|

v For EBCDIC data, if the search string or source string contains mixed data, the
search string is found only if any shift-in or shift-out characters are found in the
source string in exactly the same positions, ignoring any redundant shift
characters.

v For UTF-8 data, if the search string or source string contains mixed data, the
search string is found only if the same combination of single-byte and multi-byte
characters are found in the source string in exactly the same position.

The result of the function is a large integer. If either of the arguments can be null,
the result can be null; if either of the arguments are null, the result is the null value.
The value of the result is determined by applying these rules in the order in which
they appear:

v If the length of the search string is zero, the result is 1.

v If the length of the source string is zero, the result is 0.

v If the value of the search string is equal to an identical length substring of
contiguous positions from the value of the source string, the result is the starting
position of the first such substring within the value of the source string.

v If none of the above conditions are met, the result is 0.

Example: Select the RECEIVED column, the SUBJECT column, and the starting
position of the string 'GOOD BEER' within the NOTE_TEXT column for all rows in
the IN_TRAY table that contain that string.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0;

POSSTR

Chapter 3. Built-in functions 247

|
|
|

POWER

The schema is SYSIBM.

The POWER function returns the value of expression1 to the power of expression2.

Each argument is an expression that returns the value of any built-in numeric data
type. If either argument includes a DECIMAL or REAL data type, the arguments are
converted to a double precision floating-point number for processing by the function.

The result of the function depends on the data type of the arguments:
v If both arguments are SMALLINT or INTEGER, the result is INTEGER.
v Otherwise, the result is DOUBLE.

The result can be null; if any argument is null, the result is the null value.

Example 1: Assume that host variable HPOWER is INTEGER with a value of 3. The
following statement:

SELECT POWER(2,:HPOWER)
FROM SYSIBM.SYSDUMMY1;

returns the value 8.

Example 2: The following statement:
SELECT POWER(0,0)

FROM SYSIBM.SYSDUMMY1;

returns the value 1.

�� POWER(expression1,expression2) ��

POWER

248 SQL Reference

QUARTER

The schema is SYSIBM.

The QUARTER function returns an integer in the range of 1 to 4 that represents the
quarter of the year in which the date occurs. For example, the function returns a 1
for any dates in January, February, or March.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. (For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: The following function returns 3 because August is in the third quarter
of the year.

SELECT QUARTER('1996-08-25')
FROM SYSIBM.SYSDUMMY1

Example 2: Using sample table DSN8710.PROJ, set the integer host variable
QUART to the quarter of the year in which activity number 70 for project 'AD3111'
occurred. Activity completion dates are recorded in column ACENDATE.

SELECT QUARTER(ACENDATE)
INTO :QUART
FROM DSN8710.PROJ
WHERE PROJNO = 'AD3111' AND ACTNO = 70;

QUART is set to 4.

�� QUARTER(expression) ��

QUARTER

Chapter 3. Built-in functions 249

|
|
|
|
|

RADIANS

The schema is SYSIBM.

The RADIANS function returns the number of radians for an argument that is
expressed in degrees.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HDEG is an INTEGER with a value of 180.
The following statement:

SELECT RADIANS(:HDEG)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
3.1415926536.

�� RADIANS(expression) ��

RADIANS

250 SQL Reference

RAISE_ERROR

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to
return an error with the specified SQLSTATE (along with SQLCODE -438) and error
condition. The RAISE_ERROR function always returns NULL with an undefined
data type.

sqlstate
An expression that returns a character string (CHAR or VARCHAR) of exactly 5
characters. The sqlstate value must follow these rules for application-defined
SQLSTATEs:

v Each character must be from the set of digits ('0' through '9') or non-accented
upper case letters ('A' through 'Z').

v The SQLSTATE class (first two characters) cannot be '00', '01', or '02'
because these are not error classes.

v If the SQLSTATE class (first two characters) starts with the character '0'
through '6' or 'A' through 'H', the subclass (last three characters) must start
with a letter in the range 'I' through 'Z'.

v If the SQLSTATE class (first two characters) starts with the character '7', '8',
'9', or 'I' though 'Z', the subclass (last three characters) can be any of '0'
through '9' or 'A through 'Z'.

diagnostic-string
An expression that returns a character string with a data type of CHAR or
VARCHAR and a length of up to 70 bytes. The string contains EBCDIC data
that describes the error condition. If the string is longer than 70 bytes, it is
truncated.

To use this function in a context where “Rules for result data types” on page 77 do
not apply, such as alone in a select list, you must use a cast specification to give a
data type to the null value that is returned. The RAISE_ERROR function is most
useful with CASE expressions.

Example: For each employee in sample table DSN8710.EMP, list the employee
number and education level. List the education level as Post Graduate, Graduate
and Diploma instead of the integer that it is stored as in the table. If an education
level is greater than 20, raise an error ('70001') with a description.

SELECT EMPNO,
CASE WHEN EDLEVEL < 16 THEN 'Diploma'

WHEN EDLEVEL < 18 THEN 'Graduate'
WHEN EDLEVEL < 21 THEN 'Post Graduate'
ELSE RAISE_ERROR('70001',

'EDUCLVL has a value greater than 20')
END
FROM DSN8710.EMP;

�� RAISE_ERROR(sqlstate,diagnostic-string) ��

RAISE_ERROR

Chapter 3. Built-in functions 251

RAND

The schema is SYSIBM.

The RAND function returns a random floating-point value between 0 and 1. An
argument can be used as an optional seed value.

If an argument is specified, it must be an integer (SMALLINT or INTEGER) between
0 and 2 147 483 646.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HRAND is an INTEGER with a value of 100.
The following statement:

SELECT RAND(:HRAND)
FROM SYSIBM.SYSDUMMY1;

returns a random floating-point number between 0 and 1, such as the approximate
value .0121398.

To generate values in a numeric interval other than 0 to 1, multiply the RAND
function by the size of the desired interval. For example, to get a random number
between 0 and 10, such as the approximate value 5.8731398, multiply the function
by 10:

SELECT (RAND(:HRAND) * 10)
FROM SYSIBM.SYSDUMMY1;

�� RAND()
expression

��

RAND

252 SQL Reference

REAL

The schema is SYSIBM.

The REAL function returns a single precision floating-point representation of a
number or string in the form of a numeric constant.

numeric-expression
The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function is a single precision floating-point number. The result
is the same number that would occur if the argument were assigned to a single
precision floating-point column or variable. If the numeric value of the argument
is not within the range of single precision floating-point, an error occurs.

string-expression
An expression that returns any type of string (except a BLOB, CLOB, or
DBCLOB) with an actual length that is not greater than 255 bytes. Leading and
trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a string representation of an SQL floating-point
constant.

The result of the function is a single precision floating-point number. The result
is the same number that would occur if the corresponding numeric constant
were assigned to a single precision floating-point column or variable.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: Using sample table DSN8710.EMP, find the ratio of salary to commission
for employees whose commission is not zero. The columns involved, SALARY and
COMM, have decimal data types. To express the result in single precision
floating-point, apply REAL to SALARY so that the division is carried out in
floating-point (actually double precision) and then apply REAL to the complete
expression so that the results are returned in single precision floating-point.

SELECT EMPNO, REAL(REAL(SALARY)/COMM)
FROM DSN8710.EMP
WHERE COMM > 0;

�� REAL(numeric-expression)
string-expression

��

REAL

Chapter 3. Built-in functions 253

|
|

REPEAT

The schema is SYSIBM.

The REPEAT function returns a string composed of expression repeated integer
times.

expression
An expression that specifies the string to be repeated. The string must be any
type of character string except a CLOB, or any type of graphic string except a
DBCLOB. The actual length of the string must be 32767 bytes or less.

integer
An expression whose value is a positive integer. The integer specifies the
number of times to repeat the string.

The result of the function depends on the data type of the first argument:
v VARCHAR if expression is a character string
v VARGRAPHIC if expression is graphic string

If integer is a constant, the length attribute of the result is the length attribute of
expression times integer. Otherwise, the length attriubte depends on the data type
of the result:
v 4000 for VARCHAR
v 2000 for VARGRAPHIC

The actual length of the result is the actual length of expression times integer. If the
actual length of the result string exceeds the maximum for the return type, an error
occurs.

If any argument can be null, the result can be null; if any argument is null, the result
is the null value.

The subtype and CCSID of the result are determined as follows:

v If expression is character bit data, the result is bit data and does not have an
associated CCSID.

v If expression is character SBCS data, the result is SBCS data and the CCSID is
the CCSID for ASCII, EBCDIC, or Unicode SBCS data, depending on the
encoding scheme of the SQL statement.

v If expression is graphic data, the result is graphic data and the CCSID is the
CCSID for ASCII, EBCDIC, or Unicode graphic data, depending on the encoding
scheme of the SQL statement.

v Otherwise, the result is mixed data. The CCSID is the CCSID for ASCII,
EBCDIC, or Unicode mixed data, depending on the encoding scheme of the SQL
statement.

Example 1: Repeat 'abc' two times to create 'abcabc'.
SELECT REPEAT('abc',2)

FROM SYSIBM.SYSDUMMY1;

�� REPEAT(expression,integer) ��

REPEAT

254 SQL Reference

|

|

|

Example 2: List the phrase 'REPEAT THIS' five times. Use the CHAR function to
limit the output to 60 bytes.

SELECT CHAR(REPEAT('REPEAT THIS',5), 60)
FROM SYSIBM.SYSDUMMY1;

This example results in 'REPEAT THISREPEAT THISREPEAT THISREPEAT
THISREPEAT THIS '.

Example 3: For the following query, the LENGTH function returns a value of 0
because the result of repeating a string zero times is an empty string, which is a
zero-length string.

SELECT LENGTH(REPEAT('REPEAT THIS',0))
FROM SYSIBM.SYSDUMMY1;

Example 4: For the following query, the LENGTH function returns a value of 0
because the result of repeating an empty string any number of times is an empty
string, which is a zero-length string.

SELECT LENGTH(REPEAT('', 5))
FROM SYSIBM.SYSDUMMY1;

REPEAT

Chapter 3. Built-in functions 255

REPLACE

The schema is SYSIBM.

The REPLACE function replaces all occurrences of expression2 in expression1 with
expression3. If expression2 is not found in expression1, expression1 is returned
unchanged.

expression1
An expression that specifies the source string. The expression cannot be an
empty string.

expression2
An expression that specifies the string to be removed from the source string.
The expression cannot be an empty string.

expression3
An expression that specifies the replacement string.

The arguments must have compatible string types. For more information on
compatibility, see “Conversion rules for string comparison” on page 73. If the
arguments are character strings, none must be a CLOB. If the arguments are
graphic strings, none must be a DBCLOB. The actual length of each string must be
32767 bytes or less.

The result of the function depends on the data type of the arguments:
v VARCHAR if the arguments are character strings
v VARGRAPHIC if the arguments are graphic strings

The length attribute of the result depends on the arguments:

v If the length attribute of expression3 is less than or equal to the length attribute
of expression2, the length attribute of the result is the length attribute of
expression1.

v Otherwise, the length attribute of the result is:
(L3 * (L1/L2)) + MOD(L1,L2)

where:
L1 is the length attribute of expression1
L2 is the length attribute of expression2
L3 is the length attribute of expression3

If the result is a character string, the length attribute of the result must not
exceed 4000. If the result is a graphic string, the length attribute of the result
must not exceed 2000.

The actual length of the result is the actual length of expression1 plus the number
of occurrences of expression2 that exist in expression1 multiplied by the actual
length of expression3 minus the actual length of expression2. If the actual length of
the result string exceeds the maximum for the return data type, an error occurs.

If any argument can be null, the result can be null; if any argument is null, the result
is the null value.

�� REPLACE(expression1,expression2,expression3) ��

REPLACE

256 SQL Reference

|
|
|
|
|

The subtype and CCSID of the result are determined as follows:

v If expression1, expression2, or expression3 is bit data, the result is bit data and
does not have an associated CCSID.

v If all three expressions are character SBCS data, the result is SBCS data and
the CCSID is the CCSID for ASCII, EBCDIC, or Unicode SBCS data, depending
on the encoding scheme of the SQL statement.

v If all three expressions are graphic data, the result is graphic data and the
CCSID is the CCSID for ASCII, EBCDIC, or Unicode graphic data, depending on
the encoding scheme of the SQL statement.

v Otherwise, the result is mixed data. The CCSID is the CCSID for ASCII,
EBCDIC, or Unicode mixed data, depending on the encoding scheme of the SQL
statement.

Example 1: Replace all occurrences of the character 'N' in the string 'DINING' with
'VID'. Use the CHAR function to limit the output to 10 bytes.

SELECT CHAR(REPLACE('DINING','N','VID'),10)
FROM SYSIBM.SYSDUMMY1:

The result is the string 'DIVIDIVIDG'.

Example 2: Replace string 'ABC' in the string 'ABCXYZ' with nothing, which is the
same as removing'ABC' from the string.

SELECT REPLACE('ABCXYZ','ABC','')
FROM SYSIBM.SYSDUMMY1:

The result is the string 'XYZ'.

Example 3: Replace string 'ABC' in the string 'ABCCABCC' with 'AB'. This example
illustrates that the result can still contain the string that is to be replaced (in this
case, 'ABC') because all occurrences of the string to be replaced are identified prior
to any replacement.

SELECT REPLACE('ABCCABCC','ABC','AB')
FROM SYSIBM.SYSDUMMY1:

The result is the string 'ABCABC'.

REPLACE

Chapter 3. Built-in functions 257

|

|

|

RIGHT

The schema is SYSIBM.

The RIGHT function returns a string consisting of the specified number of rightmost
integer characters of string-expression. If string-expression is a character or binary
string, a character is a byte. If string-expression is a graphic string, a character is a
DBCS character.

The CCSID of the result is the same as that of the string-expression.

string-expression
An expression that specifies the string from which the result is derived. The
string must be a character, graphic, or binary string. A substring of
string-expression is zero or more contiguous bytes of string-expression.

The string can contain mixed data. However, because the function operates on
a strict byte-count basis, the result is not necessarily a properly formed mixed
data character string.

integer
An expression that specifies the length of the result. The value must be an
integer between 0 and n, where n is the length attribute of string-expression.

The string-expression is effectively padded on the right with the necessary number
of blank characters so that the specified substring of string-expression always
exists. The encoding scheme of the data determines the padding character:

v For ASCII SBCS data or ASCII mixed data, the padding character is X'20'.

v For ASCII DBCS data, the padding character depends on the CCSID; for
example, for Japan (CCSID 301) the padding character is X'8140', while for
simplified Chinese it is X'A1A1'.

v For EBCDIC SBCS data or EBCDIC mixed data, the padding character is X'40'.

v For EBCDIC DBCS data, the padding character is X'4040'.

v For Unicode SBCS data or UTF-8 data (Unicode mixed data), the padding
character is X'20'.

v For UTF-16 data (Unicode DBCS data), the padding character is X'0020'.

v For binary data, the padding character is X'00'.

The result of the function is a varying-length string with a length attribute that is the
same as the length attribute of string-expression and a data type that depends on
the data type of string-expression:
v VARCHAR if string-expression is CHAR or VARCHAR
v CLOB if string-expression is CLOB
v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
v DBCLOB if string-expression is DBCLOB
v BLOB if string-expression is BLOB

If any argument of the function can be null, the result can be null; if any argument is
null, the result is the null value. The CCSID of the result is the same as that of
string-expression.

�� RIGHT(string-expression,integer) ��

RIGHT

258 SQL Reference

|
|
|
|

|
|

|

|
|

Example 1: Assume that host variable ALPHA has a value of 'ABCDEF'. The
following statement:

SELECT RIGHT(ALPHA,3)
FROM SYSIBM.SYSDUMMY1;

returns the value 'DEF', which are the three rightmost characters in ALPHA.

Example 2: The following statement returns a zero length string.
SELECT RIGHT('ABCABC',0)

FROM SYSIBM.SYSDUMMY1;

RIGHT

Chapter 3. Built-in functions 259

ROUND

The schema is SYSIBM.

The ROUND function returns expression1 rounded to expression2 places to the
right of the decimal point if expression2 is positive or to the left of the decimal point
if expression2 is zero or negative. For example, ROUND(748.58,-3) returns 700.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a small or large integer. The value of integer
specifies the number of places to the right of the decimal point for the result if
expression2 is not negative. If expression2 is negative, expression1 is rounded
to the sum of the absolute value of expression2+1 number of places to the left
of the decimal point.

If the absolute value of expression2 is larger than the number of digits to the
left of the decimal point, the result is 0. (For example, ROUND(748.58,-4)
returns 0.)

If expression1 is positive, a value of 5 is rounded to the next higher positive
number. If expression1 is negative, a value of 5 is rounded to the next lower
negative number.

The result of the function has the same data type and length attribute as the first
argument except that the precision is increased by one if the argument is DECIMAL
and the precision is less than 31. For example, an argument with a data type of
DECIMAL(5,2) results in DECIMAL(06,2). An argument with a data type of
DECIMAL(31,2) results in DECIMAL(031,2).

The result can be null. If any argument is null, the result is the null value.

Example 1: Calculate the number 873.726 rounded to 2, 1, 0, -1, -2, -3, and -4
decimal places respectively.

SELECT ROUND(873.726,2),
ROUND(873.726,1),
ROUND(873.726,0),
ROUND(873.726,-1),
ROUND(873.726,-2)
ROUND(873.726,-3),
ROUND(873.726,-4),

FROM SYSIBM.SYSDUMMY1;

This example returns the values 0873.730, 0873.700, 0874.000, 0870.000,
0900.000, 1000.000, and 0000.000.

Example 2: To demonstrate how numbers are rounded in positive and negative
values, calculate the numbers 3.5, 3.1, -3.1, -3.5 rounded to 0 decimal places.

�� ROUND(expression1,expression2) ��

ROUND

260 SQL Reference

#
#
#

SELECT ROUND(3.5,0),
ROUND(3.1,0),
ROUND(-3.1,0),
ROUND(-3.5,0)

FROM SYSIBM.SYSDUMMY1;

This example returns the values 04.0, 03.0, -03.0, and -04.0. (Notice that in the
positive value 3.5, 5 is rounded up to the next higher number while in the negative
value -3.5, 5 is rounded down to the next lower negative number.)

ROUND

Chapter 3. Built-in functions 261

ROUND_TIMESTAMP

The schema is SYSIBM.

The ROUND_TIMESTAMP scalar function returns a timestamp that is the
timestamp-expression rounded to the unit specified by the format-string. If
format-string is not specified, timestamp-expression is rounded to the nearest day,
as if ’DD’ is specified for format-string.

timestamp-expression must be a timestamp, or a valid string representation of a
timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB, and
must have an actual length that is not greater than 255 bytes. For the valid formats
of string representations of dates and timestamps, see “String representations of
datetime values” on page 57.

Allowable values for format-string are listed in Table 29.

The result of the function is a TIMESTAMP. The result can be null; if any argument
is null, the result is the null value.

Notes
The following format models are used with the ROUND_TIMESTAMP and
TRUNC_TIMESTAMP functions.

Table 29. ROUND_TIMESTAMP and TRUNC_TIMESTAMP Format Models

Format Model Rounding or Truncating
Unit

ROUND_TIMESTAMP
Example

TRUNC_TIMESTAMP
Example

CC
SCC

One greater than the first
two digits of a four digit
year. (Rounds up on the
50th year of the century)

Input Value:
1897-12-04-12.22.22.000000
Result:
1900-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1800-01-01-00.00.00.000000

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (Rounds up on July
1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

IYYY
IYY
IY
I

ISO Year (Rounds up on
July 1st)

Input Value:
1897-12-04-12.22.22.000000
Result:
1898-01-01-00.00.00.000000

Input Value:
1897-12-04-12.22.22.000000
Result:
1897-01-01-00.00.00.000000

Q Quarter (Rounds up on the
sixteenth day of the second
month of the quarter)

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-04-12.12.30.000000
Result:
1999-04-01-00.00.00.000000

MONTH
MON
MM
RM

Month (Rounds up on the
sixteenth day of the month)

Input Value:
1999-06-18-12.12.30.000000
Result:
1999-07-01-00.00.00.000000

Input Value:
1999-06-18-12.15.00.000000
Result:
1999-06-01-00.00.00.000000

�� ROUND_TIMESTAMP(timestamp-expression)
,format-string

��

ROUND_TIMESTAMP

262 SQL Reference

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

||

||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Table 29. ROUND_TIMESTAMP and TRUNC_TIMESTAMP Format Models (continued)

Format Model Rounding or Truncating
Unit

ROUND_TIMESTAMP
Example

TRUNC_TIMESTAMP
Example

WW Same day of the week as
the first day of the year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-06-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-04-29-00.00.00.000000

IW Same day of the week as
the first day of the ISO year
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the ISO year)

Input Value:
2000-05-05-12.12.30.000000
Result:
2000-05-08-00.00.00.000000

Input Value:
2000-05-05-12.15.00.000000
Result:
2000-05-01-00.00.00.000000

W Same day of the week as
the first day of the month
(Rounds up on the 12th
hour of the 3rd day of the
week, with respect to the
first day of the month)

Input Value:
2000-05-17-12.12.30.000000
Result:
2000-05-15-00.00.00.000000

Input Value:
2000-05-17-12.15.00.000000
Result:
2000-05-15-00.00.00.000000

DDD
DD
J

Day (Rounds up on the 12th
hour of the day)

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-17-00.00.00.000000

DAY
DY
D

Starting day of the week
(Rounds up with respect to
the 12th hour of the third
day of the week. The first
day of the week is always
Sunday).

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

Input Value:
2000-05-17-12.59.59.000000
Result:
2000-05-14-00.00.00.000000

HH
HH12
HH24

Hour (Rounds up at 30
minutes)

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-18-00.00.00.000000

Input Value:
2000-05-17-23.59.59.000000
Result:
2000-05-17-23.00.00.000000

MI Minute (Rounds up at 30
seconds)

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.59.00.000000

Input Value:
2000-05-17-23.58.45.000000
Result:
2000-05-17-23.58.00.000000

SS Second (Rounds up at
500000 microseconds)

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.46.000000

Input Value:
2000-05-17-23.58.45.500000
Result:
2000-05-17-23.58.45.000000

Example
Set the host variable RND_TMSTMP with the input timestamp rounded to the
nearest year value.

SET :RND_TMSTMP = ROUND_TIMESTAMP(TIMESTAMP_FMT('2000-08-14 17:30:00',
'YYYY-MM-DD HH24:MM:SS', 'YEAR');

The value set is 2001-01-01-00.00.00.000000.

ROUND_TIMESTAMP

Chapter 3. Built-in functions 263

|

||
|
|
|
|
|

||
|
|
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

ROWID

The schema is SYSIBM.

The ROWID function casts the input argument to a row ID.

The argument can be any type of character string, except a CLOB, with a maximum
length that is no greater than 255 bytes. Although the character string can contain
any value, it is recommended that the character string contain a row ID value that
was previously generated by DB2 to ensure a valid row ID value is returned. For
example, the function can be used to convert a ROWID value that was cast to a
CHAR value back to a ROWID value.

If the actual length of expression is less than 40, the result is not padded. If the
actual length of expression is greater than 40, the result is truncated. If non-blank
characters are truncated, a warning is returned.

The result of the function is a row ID.

The length attribute of the result is 40. The actual length of the result is the length
of expression.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value. However, a null row ID value cannot be used as the value for a
row ID column in the database.

Example: Assume that table EMPLOYEE contains a ROWID column EMP_ROWID.
Also assume that the table contains a row that is identified by a row ID value that is
equivalent to X'F0DFD230E3C0D80D81C201AA0A280100000000000203'. Using
direct row access, select the employee number for that row.

SELECT EMPNO
FROM EMPLOYEE
WHERE EMP_ROWID=ROWID(X'F0DFD230E3C0D80D81C201AA0A280100000000000203');

�� ROWID(expression) ��

ROWID

264 SQL Reference

RTRIM

The schema is SYSIBM.

The RTRIM function removes blanks from the end of a string expression. The
RTRIM function returns the same results as the STRIP function with TRAILING
specified:

STRIP(string-expression,TRAILING)

string-expression must be any character string expression other than a CLOB or
any graphic string expression other than a DBCLOB. The characters that are
interpreted as trailing blanks depend on the encoding scheme of the data and the
data type:

v If the argument is a graphic string, then the trailing DBCS blanks are removed. If
the data is encoded in ASCII, the ASCII CCSID determines the hex value that
represents a double-byte blank. For example, for Japan (CCSID 301), X'8140'
represents a double-byte blank, while it is X'A1A1' for Simplified Chinese. For
EBCDIC-encoded data, X'4040' represents a double-byte blank. For
Unicode-encoded data, X'0020' represents a double-byte blank.

v Otherwise, the trailing SBCS blanks are removed. For data that is encoded in
ASCII, X'20' represents a blank. For EBCDIC-encoded data, X'40' represents a
blank. For Unicode-encoded data, X'20' represents an SBCS or UTF-8 blank.

The result of the function depends on the data type of its argument:
v VARCHAR if the argument is a character string
v VARGRAPHIC if the argument is a graphic string

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of characters removed. If all of the characters are removed, the
result is an empty string.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value. The CCSID of the result is the same as that of string-expression.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a value
of 'Hello '.

SELECT RTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1;

This example removes the trailing blanks and results in 'Hello'.

�� RTRIM(string-expression) ��

RTRIM

Chapter 3. Built-in functions 265

|
|

|

|

SECOND

The schema is SYSIBM.

The SECOND function returns the seconds part of its argument.

The argument must be a time, a timestamp, time duration, timestamp duration, or a
valid string representation of a date or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. (For the valid formats of string representations of times and
timestamps, see “String representations of datetime values” on page 57.)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, timestamp, or string representation of either, the
result is the seconds part of the value, which is an integer between 0 and 59.

If the argument is a time duration or timestamp duration, the result is the
seconds part of the value, which is an integer between -99 and 99. A nonzero
result has the same sign as the argument.

Example 1: Assume that the variable TIME_DUR is declared in a PL/I program as
DECIMAL(6,0) and can therefore be interpreted as a time duration. Then, when
TIME_DUR has the value 153045:

SECOND(:TIME_DUR)

returns the value 45.

Example 2: Assume that RECEIVED is a TIMESTAMP column and that one of its
values is the internal equivalent of '1988-12-25-17.12.30.000000'. Then, for this
value:

SECOND(RECEIVED)

returns the value 30.

�� SECOND(expression) ��

SECOND

266 SQL Reference

|
|
|
|
|

|
|

SIGN

The schema is SYSIBM.

The SIGN function returns an indicator of the sign of the argument. The returned
value is:
-1 if the argument is less than zero
0 if the argument is zero
1 if the argument is greater than zero

The argument is an expression that returns a value of any built-in numeric data
type, except DECIMAL(31,31).

The result of the function has the same data type and length attribute as the
argument except that when the argument is DECIMAL, the precision is increased by
one if the argument’s precision and scale are equal. For example, an argument with
a data type of DECIMAL(5,5) results in DECIMAL(6,5).

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: Assume that host variable PROFIT is a large integer with a value of
50000.

SELECT SIGN(:PROFIT)
FROM SYSIBM.SYSDUMMY1;

This example returns the value 1.

�� SIGN(expression) ��

SIGN

Chapter 3. Built-in functions 267

SIN

The schema is SYSIBM.

The SIN function returns the sine of the argument, where the argument is an angle
expressed in radians. The SIN and ASIN functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable SINE is DECIMAL(2,1) with a value of 1.5. The
following statement:

SELECT SIN(:SINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 0.99.

�� SIN(expression) ��

SIN

268 SQL Reference

SINH

The schema is SYSIBM.

The SINH function returns the hyperbolic sine of the argument, where the argument
is an angle expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HSINE is DECIMAL(2,1) with a value of 1.5.
The following statement:

SELECT SINH(:HSINE)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 2.12.

�� SINH(expression) ��

SINH

Chapter 3. Built-in functions 269

SMALLINT

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number or
character string in the form of a numeric constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result of the function is a small integer. The result is the same number that
would occur if the argument were assigned to a small integer column or
variable. If the whole part of the argument is not within the range of small
integers, an error occurs. If present, the decimal part of the argument is
truncated.

string-expression
An expression that returns any type of string, (except a BLOB, CLOB, or
DBCLOB), with an actual length that is not greater than 255 bytes. Leading and
trailing blanks are removed from the string, and the resulting substring must
conform to the rules for forming a string representation of an SQL integer
constant.

The result of the function is a small integer. The result is the same number that
would occur if the corresponding numeric constant were assigned to a small
integer column or variable.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: Using sample table DSN8710.EMP, find the average education level
(EDLEVEL) of the employees in department 'A00'. Round the result to the nearest
full education level.

SELECT SMALLINT(AVG(EDLEVEL)+.5)
FROM DSN8710.EMP
WHERE DEPT = 'A00';

Assuming that the five employees in the department have education levels of 19,
18, 14, 18, and 14, the result is 17.

�� SMALLINT(numeric-expression)
string-expression

��

SMALLINT

270 SQL Reference

|
|

SPACE

The schema is SYSIBM.

The SPACE function returns a character string that consists of the number of SBCS
blanks that the argument specifies.

The argument is an expression that results in an integer. The integer specifies the
number of SBCS blanks for the result, and it must be between 0 and 32767.

The result of the function is a varying-length character string (VARCHAR) that
contains SBCS data.

If expression is a constant, the length attribute of the result is the constant.
Otherwise, the length attribute of the result is 4000. The actual length of the result
is the value of expression. The actual length of the result must not be greater than
the length attribute of the result.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: The following statement returns a character string that consists of 5
blanks followed by a zero-length string.

SELECT SPACE(5), SPACE(0)
FROM SYSIBM.SYSDUMMY1;

�� SPACE(expression) ��

SPACE

Chapter 3. Built-in functions 271

SQRT

The schema is SYSIBM.

The SQRT function returns the square root of the argument.

The argument can be any built-in numeric data type. If the argument is not double
precision floating point, it is converted to a double precision floating-point number
for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable SQUARE is defined as DECIMAL(2,1) and has
a value of 9.0. Find the square root of SQUARE.

SELECT SQRT(:SQUARE)
FROM SYSIBM.SYSDUMMY1;

This example returns a double precision floating-point number with an approximate
value of 3.

�� SQRT(expression1) ��

SQRT

272 SQL Reference

STRIP

The schema is SYSIBM.

The STRIP function removes blanks or another specified character from the end,
the beginning, or both ends of a string expression.

The first argument is an expression that returns any type of string except a BLOB,
CLOB, or DBCLOB.

The second argument indicates whether characters are removed from the
beginning, the end, or both ends of the string. If you do not specify a second
argument, blanks are removed from both the beginning and end of the string.

The third argument is a single-character constant that indicates the SBCS or DBCS
character that is to be removed. The first and third argument must have compatible
string types. For more information on compatibility, see “Conversion rules for string
comparison” on page 73. If the data type is not appropriate or the value contains
more than one character, an error is returned.

If you do not specify the third argument, the following occurs:

v If the first argument is a graphic string, then the default strip character is a DBCS
blank. The hex representation of a DBCS blank depends on the encoding
scheme and CCSID of the data. For example, for data encoded in ASCII, a
DBCS blank for Japan (CCSID 301) is X'8140', while for simplified Chinese it is
X'A1A1'. For EBCDIC DBCS, X'4040' is interpreted as a DBCS blank. For
UTF-16 (Unicode DBCS), X'0020' is interpreted as a DBCS blank.

v If the first argument is SBCS data, then the default strip character is an SBCS
blank. If the data is encoded in ASCII, then X'20' represents a blank. If the data
is encoded in EBCDIC, then X'40' represents a blank. If the data is encoded in
UTF-8 (Unicode mixed), then X'20' represents a blank.

The result of the function is a varying-length string with the same maximum length
as the length attribute of the string. The actual length of the result is the length of
the expression minus the number of characters removed. If all of the characters are
removed, the result is an empty, varying-length string.

The CCSID of the result is the same as that of the string. If the first argument can
be null, the result can be null; if the first argument is null, the result is the null value.

Example 1: Assume that host variable HELLO is defined as CHAR(9) and has a
value of ' Hello':

STRIP(:HELLO)

�� STRIP (string-expression)
,BOTH
,B ,strip-character
,LEADING
,L
,TRAILING
,T

��

STRIP

Chapter 3. Built-in functions 273

|
|
|

|
|

|
|

This example results in 'Hello'. If there had been any ending blanks, they would
have been removed, too.

Rewrite the example so that no beginning blanks are removed.
STRIP(:HELLO,TRAILING)

This results in ' Hello'.

Example 2: Assume that host variable BALANCE is defined as CHAR(9) and has a
value of '000345.50':

STRIP(:BALANCE,L,'0')

This example results in '345.50'.

STRIP

274 SQL Reference

SUBSTR

The schema is SYSIBM.

The SUBSTR function returns a substring of a string.

string-expression
An expression that specifies the string from which the result is derived. The
string must be a character, graphic, or binary string. If string-expression is a
character string, the result of the function is a character string. If it is a graphic
string, the result of the function is a graphic string. If it is a binary string, the
result of the function is a binary string.

A substring of string-expression is zero or more contiguous characters of string.
If string-expression is a graphic string, a character is a DBCS character. If
string-expression is a character string or a binary string, a character is a byte.
The SUBSTR function accepts mixed data strings. However, because SUBSTR
operates on a strict byte-count basis, the result will not necessarily be a
properly formed mixed data string.

start
An expression that specifies the position within string-expression to be the first
character of the result. The value of integer must be between 1 and the length
attribute of string-expression. (The length attribute of a varying-length string is
its maximum length.) A value of 1 indicates that the first character of the
substring is the first character of string-expression.

length
An expression that specifies the length of the resulting substring. The length
must be an integer in the range 0 to n, where n is equal to L-S+1 (L is the
length attribute of string-expression and S is the value of start). The specified
length must not be the integer constant 0.

If string-expression is a varying-length string and if length is explicitly specified,
string-expression is effectively padded on the right with the necessary number
of characters so that the specified substring of string-expression always exists.
Hexadecimal zeroes are used as the padding character when string-expression
is BLOB data. Otherwise, a blank that is appropriate for string-expression 23is
used as the padding character. If string-expression is a fixed-length string,
omission of length is an implicit specification of LENGTH(string-expression) -
start + 1, which is the number of characters from the character specified by
start to the last character of string-expression. If string-expression is a
varying-length string, omission of length is an implicit specification of zero or
LENGTH(string-expression) - start + 1, whichever is greater.

If length is explicitly specified by an integer constant that is 255 or less, the
result is a fixed-length string. If length is not explicitly specified, but
string-expression is a fixed-length string and start is an integer constant, the
result is a fixed-length string. In all other cases, the result is a varying-length
string with a maximum length that is the same as the length attribute of

23. The appropriate blank is defined by the data type and sub-type (if necessary) of string-expression

�� SUBSTR(string-expression,start)
,length

��

SUBSTR

Chapter 3. Built-in functions 275

|
|
|
|
|
|

|
|
|
|
|
|

string-expression. The result is subject to the restrictions that apply to long
strings if its maximum length is greater than 255. These restrictions also apply if
it is a graphic string whose maximum length is greater than 127.

If any argument of SUBSTR can be null, the result can be null. If any argument is
null, the result is the null value. The CCSID of the result is the CCSID of
string-expression.

Example 1: FIRSTNME is a VARCHAR(12) column in sample table DSN8710.EMP.
One of its values is the 5-character string 'MAUDE'. When FIRSTNME has this value:

Function ... Returns ...

SUBSTR(FIRSTNME,2,3) 'AUD'
SUBSTR(FIRSTNME,2) 'AUDE'
SUBSTR(FIRSTNME,2,6) 'AUDE' followed by two blanks
SUBSTR(FIRSTNME,6) a zero-length string
SUBSTR(FIRSTNME,6,4) four blanks

Example 2: Sample table DSN8710.PROJ contains column PROJNAME, which is
defined as VARCHAR(24). Select all rows from that table for which the string in
PROJNAME begins with 'W L PROGRAM'.

SELECT * FROM DSN8710.PROJ
WHERE SUBSTR(PROJNAME,1,12) = 'W L PROGRAM ';

Assume that the table has only the rows that were supplied by DB2. Then the
predicate is true for just one row, for which PROJNAME has the value 'W L PROGRAM
DESIGN'. The predicate is not true for the row in which PROJNAME has the value 'W
L PROGRAMMING' because, in the predicate’s string constant, 'PROGRAM' is followed by a
blank.

Example 3: Assume that a LOB locator named my_loc represents a LOB value that
has a length of 1 gigabyte. Assign the first 50 bytes of the LOB value to host
variable PORTION.

SET :PORTION = SUBSTR(:my_loc,1,50);

Example 4: Assume that host variable RESUME has a CLOB data type and holds
an employee’s resume. This example shows some of the statements that find the
section of department information in the resume and assign it to host variable
DeptBuf. First, the POSSTR function is used to find the beginning and ending
location of the department information. Within the resume, the department
information starts with the string 'Department Information Section' and ends
immediately before the string 'Education Section'. Then, using these beginning and
ending positions, the SUBSTR function assigns the information to the host variable.

SET :DInfoBegPos = POSSTR(:RESUME, 'Department Information Section');
SET :DInfoEnPos = POSSTR(:RESUME, 'Education Section');
SET :DeptBuf = SUBSTR(:RESUME, :DInfoBegPos, :DInfoEnPos - :DInfoBegPos);

SUBSTR

276 SQL Reference

TAN

The schema is SYSIBM.

The TAN function returns the tangent of the argument, where the argument is an
angle expressed in radians. The TAN and ATAN functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable TANGENT is DECIMAL(2,1) with a value of
1.5. The following statement:

SELECT TAN(:TANGENT)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of
14.10.

�� TAN(expression) ��

TAN

Chapter 3. Built-in functions 277

TANH

The schema is SYSIBM.

The TANH function returns the hyperbolic tangent of the argument, where the
argument is an angle expressed in radians. The TANH and ATANH functions are
inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is converted
to one for processing by the function.

The result of the function is a double precision floating-point number. The result can
be null; if the argument is null, the result is the null value.

Example: Assume that host variable HTANGENT is DECIMAL(2,1) with a value of
1.5. The following statement:

SELECT TANH(:HTANGENT)
FROM SYSIBM.SYSDUMMY1;

returns a double precision floating-point number with an approximate value of 0.90.

�� TANH(expression) ��

TANH

278 SQL Reference

TIME

The schema is SYSIBM.

The TIME function returns a time derived from its argument.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. (For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.)

If the argument is a string, the result the time or time part of the timestamp
represented by the string. If the CCSID of the string is not the same as the
corresponding default CCSID at the server, the string is first converted to that
CCSID. If the argument can be null, the result can be null; if the argument is null,
the result is the null value.

The other rules depend on the data type of the argument:

If the argument is a time, the result is that time.

If the argument is a timestamp, the result is the time part of the timestamp.

If the argument is a character string, the result is the time or time part of the
timestamp represented by the character string. If the CCSID of the string is not
the same as the corresponding default CCSID at the server, the string is first
converted to that CCSID.

Example: Assume that a table named CLASSES contains one row for each
scheduled class. Assume also that the class starting times are in the TIME column
named STARTTM. Using these assumptions, select those rows in CLASSES that
represent classes that start at 1:30 P.M.

SELECT *
FROM CLASSES
WHERE TIME(STARTTM) = '13:30:00';

�� TIME(expression) ��

TIME

Chapter 3. Built-in functions 279

|
|
|
|
|

|
|
|
|
|

TIMESTAMP

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp derived from its argument or
arguments.

The rules for the arguments depend on whether the second argument is specified.

If only one argument is specified, it must be a timestamp, a valid string
representation of a timestamp, a character string of length 8, or a string of
length 14. The argument cannot be a BLOB, CLOB, or DBCLOB. (String
representations for a timestamp are described in “String representations of
datetime values” on page 57.)

A string of length 8 is assumed to be a System/390 Store Clock value.

A string of length 14 must be a string of digits that represents a valid date and
time in the form yyyymmddhhmmss, where yyyy is the year, mm is the month,
dd is the day, hh is the hour, mm is the minute, and ss is the seconds.

If both arguments are specified, the first argument must be a date or a valid
string representation of a date and the second argument must be a time or a
valid string representation of a time. Neither argument can be a BLOB, CLOB,
or DBCLOB. (Table 4 on page 58 and Table 5 on page 59 list the valid formats
for string representations for dates and times.)

The result of the function is a timestamp. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:

If both arguments are specified, the result is a timestamp with the date
specified by the first argument and the time specified by the second argument.
The microsecond part of the timestamp is zero.

If only one argument is specified and it is a timestamp, the result is that
timestamp.

If only one argument is specified and it is a string, the result is the
timestamp represented by that string. The timestamp represented by a string of
length 14 has a microsecond part of zero. The interpretation of a string as a
Store Clock value will yield a timestamp with a year between 1900 to 2042 as
described in ESA/390 Principles of Operation.

If an argument is a string with a CCSID that is not the same as the corresponding
default CCSID at the server, the string is first converted to that CCSID.

Example: Assume that table TABLEX contains a DATE column named DATECOL
and a TIME column named TIMECOL. For some row in the table, assume that
DATECOL represents 25 December 1988 and TIMECOL represents 17 hours, 12
minutes, and 30 seconds after midnight. Then, for this row:

TIMESTAMP(DATECOL, TIMECOL)

returns the value '1988-12-25-17.12.30.000000'.

�� TIMESTAMP(expression)
,expression

��

TIMESTAMP

280 SQL Reference

|
|
|
|
|

|

|
|
|

|
|
|
|
|

TIMESTAMP_FORMAT

The schema is SYSIBM.

The TIMESTAMP_FORMAT function returns a timestamp.

string-expression
An expression that returns any type of string (except a BLOB, CLOB, or
DBCLOB) with a maximum length that is not greater than 255 bytes. Leading
and trailing blanks are removed from the string, and the resulting substring is
interpreted as a timestamp using the format specified by format-string.

format-string
An expression that returns a character string constant with a maximum length
that is not greater than 255 bytes. format-string contains a template of how
string-expression is to be interpreted as a timestamp value. Leading and trailing
blanks are removed from the string, and the resulting substring must be a valid
template for a timestamp. The only valid format for the function is:

’YYYY-MM-DD HH24:MI:SS’

where:

YYYY 4-digit year

MM Month (01-12, January = 01)

DD Day of month (01-31)

HH24 Hour of day (00–24, when the value is 24, the minutes and seconds
must be 0).

MI Minutes (00–59)

SS Seconds (00–59)

The result of the function is a timestamp.

If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Example: Set the character variable TVAR to the value of CREATEDTS from
SYSIBM.SYSDATABASE if it is equal to one second before the beginning of the
year 2000 (’1999-12-31 23:59:59’). The character string should be interpreted in the
only format that can be specified for the function.

SELECT VARCHAR_FORMAT(CREATEDTS,'YYYY-MM-DD HH24:MI:SS')
INTO :TVAR
FROM SYSIBM.SYSDATABASE;
WHERE CREATEDTS =
TIMESTAMP_FORMAT('1999-12-31 23:59:59','YYYY-MM-DD HH24:MI:SS');

��
(1)

TIMESTAMP_FORMAT(string-expression,format-string) ��

Notes:

1 TO_DATE can be specified as synonym for TIMESTAMP_FORMAT.

TIMESTAMP_FORMAT

Chapter 3. Built-in functions 281

TRANSLATE

The schema is SYSIBM.

The TRANSLATE function translates one or more characters of string-expression.

string-expression
An expression that specifies the string to be translated. The string must be a
character or graphic string. A character string argument must not be a CLOB
and must have an actual length that is not greater than 255. A graphic string
argument must not be a DBCLOB and must have an actual length that is not
greater than 127.

to-string
A string that specifies the characters to which certain characters in
string-expression are to be translated. This string is sometimes called the output
translation table. The string must be a character or graphic string. A character
string argument must not be a CLOB and must have an actual length that is not
greater than 255. A graphic string argument must not be a DBCLOB and must
have an actual length that is not greater than 127.

If the length of to-string is less than the length of from-string, to-string is padded
to the length of from-string with the pad-character or a blank. If the length of
to-string is greater than from-string, the extra characters in to-string are ignored
without warning.

from-string
A string that specifies the characters that if found in string-expression are to be
translated. This string is sometimes called the input translation table. When a
character in from-string is found, the character in string-expression is translated
to the character in to-string that is in the corresponding position of the character
in from-string.

from-string must be a character or a graphic string. A character string argument
must not be a CLOB and must have an actual length that is not greater than
255. A graphic string argument must not be a DBCLOB and must have an
actual length that is not greater than 127.

If from-string contains duplicate characters, the first occurrence of the character
is used, and no warning is issued. The default value for from-string is a string
that starts with the character X'00' and ends with the character X'FF' (decimal
255).

pad-character
A string that specifies the character with which to pad to-string if its length is
less than from-string. The string must be a character string (except a CLOB) or
a graphic string (except a DBCLOB) with a length of 1. A length of 1 is one
single byte for character strings and one double byte string for graphic
strings.The default is a blank that is appropriate for string-expression.

�� TRANSLATE(string-expression)
, to-string

, ’ ’
, from-string

, pad-character

��

TRANSLATE

282 SQL Reference

|
|
|

All of the arguments must have the same string type. They must all be character
strings or all be graphic strings.

If string-expression is the only argument that is specified, the characters of its value
are translated to uppercase based on the LC_CTYPE locale in effect for the
statement, which is determined by special register CURRENT LOCALE LC_CTYPE.
For example, a-z are translated to A-Z, and characters with diacritical marks are
translated to their uppercase equivalent, if any. (For a description of the uppercase
tables that are used for this translation, see IBM National Language Support
Reference Manual Volume 2.

If the LC_CTYPE locale is blank when the function is executed, the result of the
function depends on the data type of string-expression.

v For ASCII and EBCDIC, if string-expression specifies a graphic string expression,
then an error occurs. For a character string expression, characters a-z are
translated to A-Z and characters with diacritical marks are not translated.

v For Unicode, string-expression can be either a character string expression or a
graphic string expression, and LOCALE LC-CTYPE must be blank (no locale
specified). The characters a-z are translated to A-Z and all other characters,
including characters with diacritic marks, are left unchanged. If LOCALE
LC_CTYPE is not blank, an error occurs.

If more than one argument is specified, the result string is built
character-by-character from string-expression with each character in from-string
being translated to the corresponding character in to-string. For each character in
string-expression, the from-string is searched for the same character. If the
character is found to be the nth character in from-string, the resulting string will
contain the nth character from to-string. If to-string is less than n characters long,
the resulting string will contain the pad-character. If the character is not found in
from-string, it is moved to the result string without being translated.

The string can contain mixed data. However, because the function operates on a
strict byte-count basis, the result is not necessarily a properly formed mixed data
character string.

The length attribute, data type, subtype, and CCSID of the result are the same as
string-expression. If the first argument can be null, the result can be null. If the
argument is null, the result is the null value.

Example 1: Return the string 'abcdef' in uppercase characters. Assume that the
locale in effect is blank.

SELECT TRANSLATE ('abcdef')
FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.

Example 2: Assume that host variable SITE has a data type of VARCHAR(30) and
contains 'Hanauma Bay'.

SELECT TRANSLATE (:SITE)
FROM SYSIBM.SYSDUMMY1

Returns the value 'HANAUMA BAY'. The result is all uppercase characters because
only one argument is specified.

SELECT TRANSLATE (:SITE, 'j', 'B')
FROM SYSIBM.SYSDUMMY1

TRANSLATE

Chapter 3. Built-in functions 283

|
|

|
|
|

|
|
|
|
|

Returns the value 'Hanauma jay'.
SELECT TRANSLATE (:SITE, 'ei', 'aa')

FROM SYSIBM.SYSDUMMY1

Returns the value 'Heneume Bey'.
SELECT TRANSLATE (:SITE, 'bA', 'Bay', '%')

FROM SYSIBM.SYSDUMMY1

Returns the value 'HAnAumA bA%'.
SELECT TRANSLATE (:SITE, 'r', 'Bu')

FROM SYSIBM.SYSDUMMY1

Returns the value 'Hana ma ray'.

Example 3: Assume that host variable SITE has a data type of VARCHAR(30) and
contains 'Pivabiska Lake Place'.

SELECT TRANSLATE (:SITE, '$$', 'Ll')
FROM SYSIBM.SYSDUMMY1

Returns the value 'Pivabiska $ake P$ace'.
SELECT TRANSLATE (:SITE, 'pLA', 'Place', '.')

FROM SYSIBM.SYSDUMMY1

Returns the value 'pivAbiskA LAk. pLA..'.

TRANSLATE

284 SQL Reference

TRUNCATE or TRUNC

The schema is SYSIBM.

The TRUNCATE or TRUNC function returns expression1 truncated to expression2
places to the right of the decimal point. If expression2 is negative, expression1 is
truncated to the absolute value of expression2 places to the left of the decimal
point. If the absolute value of expression2 is larger than the number of digits to the
left of the decimal point, the result is 0. For example, TRUNCATE(748.58,-4) returns
0.

expression1
An expression that results in a value of any built-in numeric data type.

expression2
An expression that results in a small or large integer.

The result of the function has the same data type and length attribute as the first
argument. The result can be null. If any argument is null, the result is the null value.

Example 1: Using sample employee table DSN8710.EMP, calculate the average
monthly salary for the highest paid employee. Truncate the result to two places to
the right of the decimal point.

SELECT TRUNCATE(MAX(SALARY)/12,2)
FROM DSN8710.EMP;

Because the highest paid employee in the sample employee table earns $52750.00
per year, the example returns the value 4395.83.

Example 2: Return the number 873.726 truncated to 2, 1, 0, -1, and -2 decimal
places respectively.

SELECT TRUNC(873.726,2),
TRUNC(873.726,1),
TRUNC(873.726,0),
TRUNC(873.726,-1),
TRUNC(873.726,-2)

FROM TABLEX
WHERE INTCOL = 1234;

This example returns the values 873.720, 873.700, 873.000, 870.000, and 800.000.

�� TRUNCATE (expression1,expression2)
TRUNC

��

TRUNCATE or TRUNC

Chapter 3. Built-in functions 285

TRUNC_TIMESTAMP

The schema is SYSIBM.

The TRUNC_TIMESTAMP scalar function returns a timestamp that is the
timestamp-expression truncated to the unit specified by the format-string. If
format-string is not specified, timestamp-expression is truncated to the nearest day,
as if ’DD’ was specified for format-string.

timestamp-expression must be a timestamp, or a valid string representation of a
timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB, and
must have an actual length that is not greater than 255 bytes. For the valid formats
of string representations of dates and timestamps, see “String representations of
datetime values” on page 57.

Allowable values for format-string are listed in Table 29 on page 262.

The result of the function is a TIMESTAMP. The result can be null; if any argument
is null, the result is the null value.

Example: Set the host variable TRNK_TMSTMP with the current year rounded to
the nearest year value.

SET :TRNK_TMSTMP = TRUNC_TIMESTAMP('2000-03-14-17.30.00', 'YEAR');

The host variable TRNK_TMSTMP is set with the value 2000-01-01-
00.00.00.000000.

�� TRUNC_TIMESTAMP(timestamp-expression)
,format-string

��

TRUNC_TIMESTAMP

286 SQL Reference

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|
|

UCASE or UPPER

The schema is SYSIBM.

The UCASE or UPPER function returns a string in which all the characters have
been converted to uppercase characters.

string-expression
An expression that specifies the string to be converted. The string must be a
character or graphic string. A character string argument must not be a CLOB
and must have an actual length that is not greater than 255. A graphic string
argument must not be a DBCLOB and must have an actual length that is not
greater than 127.

The alphabetic characters of the argument are translated to uppercase characters
based on the value of the LC_CTYPE locale in effect for the statement. For
example, characters a-z are translated to A-Z, and characters with diacritical marks
are translated to their uppercase equivalent, if any. The locale is determined by
special register CURRENT LOCALE LC_CTYPE. For information about the special
register, see “CURRENT LOCALE LC_CTYPE” on page 86.

If the LC_CTYPE locale is blank when the function is executed, the result of the
function depends on the data type of string-expression.

v For ASCII and EBCDIC, if string-expression specifies a graphic string expression,
then an error occurs. For a character string expression, characters a-z are
translated to A-Z and characters with diacritical marks are not translated.

v For Unicode, string-expression can be either a character string expression or a
graphic string expression. The characters a-z are translated to A-Z and all other
characters, including characters with diacritic marks, are left unchanged. If
LOCALE LC_CTYPE is not blank, an error occurs.

The length attribute, data type, subtype, and CCSID of the result are the same as
the expression. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Example: Return the string 'abcdef' in uppercase characters. Assume that the locale
in effect is blank.

SELECT TRANSLATE ('abcdef')
FROM SYSIBM.SYSDUMMY1

The result is the value 'ABCDEF'.

�� UCASE (string-expression)
UPPER

��

UCASE or UPPER

Chapter 3. Built-in functions 287

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

VARCHAR

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string representation of a
character string, graphic string, datetime value, integer number, decimal number,
floating-point number, or row ID value.

The result of the function is a varying-length character string (VARCHAR). If the first
argument can be null, the result can be null; if the first argument is null, the result is
the null value.

Character to Varchar

Character to Varchar:

�� VARCHAR(character-expression)
, integer

��

Graphic to Varchar:

�� VARCHAR(graphic-expression)
, integer

��

Datetime to Varchar:

�� VARCHAR(datetime-expression) ��

Integer to Varchar:

�� VARCHAR(integer-expression) ��

Decimal to Varchar:

�� VARCHAR(decimal-expression)
, decimal-character

��

Floating-point to Varchar:

�� VARCHAR(floating-point-expression) ��

Row ID to Varchar:

�� VARCHAR(row-ID-expression) ��

VARCHAR

288 SQL Reference

|

character-expression
An expression that returns a value that is CHAR, VARCHAR, or CLOB data
type.

integer
The length attribute for the resulting varying-length character string. The value
must be between 1 and 32767. If the length is not specified, the length of the
result is the same as the length of character-expression. If the first argument is
mixed data, the second argument cannot be less than 4.

If the second argument is not specified and if the character-expression is an
empty string constant, the length attribute of the result is 1 and the result is an
empty string. Otherwise, the length attribute of the result is the same as the
length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression
is greater than the length attribute of the result, the result is truncated. Unless all
the truncated characters are blanks appropriate for character-expression, a warning
is returned.

If character-expression is bit data, the result is bit data. Otherwise, the CCSID of
the result is the same as the CCSID of character-expression.

Graphic to Varchar

graphic-expression
An expression that returns a value that is a GRAPHIC, VARGRAPHIC, or
DBCLOB data type.

integer
The length attribute for the resulting varying-length character string. The value
must be between 1 and 32740.

If second argument is not specified, the length attribute of the result is
determined as follows (where n is the length attribute of the first argument):

v If the graphic-expression is the empty graphic string constant, the length
attribute of the result is 1.

v If the result is SBCS data, the result length is n.

v If the result is mixed data, the result length is (3*(length(string-expression)).

The actual length of the result is the minimum of the length attribute of the
result and the actual length of graphic-expression. If the length of the character
expression is greater than the length attribute of the result, the result is
truncated. Unless all the truncated characters were blanks appropriate for
graphic-expression, a warning is returned .

Datetime to Varchar

datetime-expression
An expression whose value has one of the following three data types:

date The result is a varying-length character string representation of the date
in the format that is specified by the DATE precompiler option, if one is
provided, or else field DATE FORMAT on installation panel DSNTIP4
specifies the format. If the format is to be LOCAL, field LOCAL DATE
LENGTH on installation panel DSNTIP4 specifies the length of the
result. Otherwise, the length attribute and actual length of the result is
10.

VARCHAR

Chapter 3. Built-in functions 289

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|
|
|
|
|

LOCAL denotes the local format at the DB2 that executes the SQL
statement.

time The result is a varying-length character string representation of the time
in the format specified by the TIME precompiler option, if one is
provided, or else field TIME FORMAT on installation panel DSNTIP4
specifies the format. If the format is to be LOCAL, the field LOCAL
TIME LENGTH on installation panel DSNTIP4 specifies the length of
the result. Otherwise, the length attribute and actual length of the result
is 8.

LOCAL denotes the local format at the DB2 that executes the SQL
statement.

timestamp
The result is the varying-length character string representation of the
timestamp. The length attribute and actual length of the result is 26.

The CCSID of the result is the SBCS CCSID of the appropriate encoding
scheme.

Integer to Varchar

integer-expression
An expression that returns a value with a small or large integer data type.

The result is a varying-length character string representation (VARCHAR) of the
argument in the form of an SQL integer constant.

The length attribute of the result depends on whether the argument is a small or
large integer as follows:

v If the argument is a small integer, the length attribute of the result is 6 bytes.

v If the argument is a large integer, the length attribute of the result is 11 bytes.

The actual length of the result is the smallest number of characters that can be
used to represent the value of the argument. Leading zeroes are not included. If the
argument is negative, the first character of the result is a minus sign. Otherwise, the
first character is a digit.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Decimal to Varchar

decimal-expression
An expression that returns a value that is a decimal data type. To change the
precision and scale of the expression’s value, apply the DECIMAL function to
the expression before applying the VARCHAR function.

decimal-character
Specifies a single-byte character constant (CHAR or VARCHAR) that represents
the decimal point in the resulting character string. The character cannot be a
digit, a plus sign (+), a minus sign (−), or a blank. The default is the period (.) or
comma (,). For information on what factors govern the choice, see “Options
affecting SQL” on page 145.

VARCHAR

290 SQL Reference

The result is a varying-length character string representation (VARCHAR) of the
argument in the form of an SQL decimal constant. The result includes a character
that represents the decimal point and p digits where p is the precision of
decimal-expression.

The length attribute of the result is 2+p where p is the precision of
decimal-expression. The actual length of the result is the smallest number of
characters that can be used to represent the result, except that trailing zeros are
included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Floating-Point to Varchar

floating-point-expression
An expression that returns a value that is a floating-point data type.

The result is a varying-length character string representation (VARCHAR) of the
argument in the form of an SQL floating-point constant.

The length attribute of the result is 24. The actual length of the result is the smallest
number of characters that can represent the value of the argument such that the
mantissa consists of a single digit other than zero followed by a period and a
sequence of digits. If the argument is negative, the first character of the result is a
minus sign; otherwise, the first character is a digit. If the argument is zero, the
result is 0E0.

The CCSID of the result is the SBCS CCSID of the appropriate encoding scheme.

Row ID to Varchar

row-ID-expression
An expression whose value must be of a row ID data type.

The result is a varying-length character string representation (VARCHAR) of the
argument. It is bit data and does not have an associated CCSID.

The length attribute of the result is 40. The actual length of the result is the length
of row-ID-expression.

Example: Assume that host variable JOB_DESC is defined as VARCHAR(8). Using
sample table DSN8710.EMP, set JOB_DESC to the varying-length string equivalent
of the job description (column JOB defined as CHAR(8)) for the employee with the
last name of 'QUINTANA'.

SELECT VARCHAR(JOB)
INTO :JOB_DESC
FROM DSN8710.EMP
WHERE LASTNAME = 'QUINTANA';

VARCHAR

Chapter 3. Built-in functions 291

VARGRAPHIC

The schema is SYSIBM.

The VARGRAPHIC function returns a varying-length graphic string representation of
a character string value, with the single-byte characters converted to double-byte
characters, or a graphic string value.

The result of the function is a varying-length graphic string (VARGRAPHIC). If the
length attribute of the result is greater than 127 double-byte characters, the result is
a long string and subject to the restrictions that apply to long strings.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The length attribute and actual length of the result are measured in double-byte
characters because the result is a graphic string.

Character to Vargraphic

character-expression
An expression whose value must be an EBCDIC-encoded or Unicode-encoded
character string. The GRAPHIC function is not allowed for ASCII data. The
argument does not need to be mixed data, but any occurrences of X'0E' and
X'0F' in the string must conform to the rules for EBCDIC mixed data. (See
“Character strings” on page 49 for these rules.)

integer
The length attribute of the resulting varying-length graphic string. The value of
integer must be between 1 and 16352.

If the second argument is not specified and if the character-expression is an
empty string constant or has a value X'0E0F', the length attribute of the result is
1 and the result is an empty string. Otherwise, the length attribute of the result
is the same as the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of character-expression. If the length of character-expression,
as measured in single-byte characters, is greater than the specified length of the
result, as measured in double-byte characters, the result is truncated. Unless all the
truncated characters are blanks appropriate for character-expression, a warning is
returned.

Character to Vargraphic:

�� VARGRAPHIC(character-expression)
, integer

��

Graphic to Vargraphic:

�� VARGRAPHIC(graphic-expression)
, integer

��

VARGRAPHIC

Chapter 3. Built-in functions 293

|

|
|
|
|

|
|
|
|
|
|

For EBCDIC input data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M denote the system EBCDIC CCSID for mixed data. The
argument is not converted if any of the following conditions is true:

v The argument is mixed data and its CCSID is M.

v The argument is SBCS data and its CCSID is the same as the system CCSID for
SBCS data. In this case, the operation proceeds as if the CCSID of the argument
is M.

v The argument is BIT data. In this case, the operation proceeds as if the CCSID
of the argument is M.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M. If there is no system CCSID for mixed data,
conversion is to the coded character set that the system CCSID for SBCS data
identifies.

The result is derived from S using the following steps:
v Each shift character (X'0E' or X'0F') is removed.
v Each double-byte character remains as is.
v Each single-byte character is replaced by a double-byte character.

The replacement for a single-byte character is the equivalent DBCS character if an
equivalent exists. Otherwise, the replacement is X'FEFE'. The existence of an
equivalent character depends on M. If there is no system CCSID for mixed data,
the DBCS equivalent of X'xx' for EBCDIC is X'42xx', except for X'40', whose DBCS
equivalent is X'4040'.

For Unicode input data:

Each character of character-expression determines a character of the result. The
argument might need to be converted to the native form of mixed data before the
result is derived. Let M denote the system CCSID for mixed data. The argument is
not converted if any of the following conditions is true:

v The argument is mixed data, and its CCSID is M.

v The argument is SBCS data, and its CCSID is the same as the system CCSID
for SBCS data. In this case, the operation proceeds as if the CCSID of the
argument is M.

v The argument cannot be BIT data.

Otherwise, the argument is a new string S derived by converting the characters to
the coded character set identified by M.

The result is derived from S using the following steps:
v Each non-surrogate character is replaced by a Unicode double-byte character (a

UTF-16 code point).
v Each surrogate character is replaced by a pair of Unicode double-byte characters

(a pair of UTF-16 code points).

The replacement for a single-byte character is the Unicode equivalent character if
an equivalent exists. Otherwise, the replacement is X'FFFD'.

Graphic to Vargraphic

VARGRAPHIC

294 SQL Reference

|

|

|
|
|
|

|

|
|
|

|

|
|

|
|
|
|
|

|
|

graphic-expression
An expression that returns a value that is an EBCDIC-encoded or
Unicode-encoded graphic string.

integer
The length attribute for the resulting varying-length graphic string. The value
must be an integer between 1 and 16352.

If the second argument is not specified and if the graphic-expression is an
empty string constant, the length attribute of the result is 1 and the result is an
empty string. Otherwise, the length attribute of the result is the same as the
length attribute of the first argument.

If the first argument is an empty string, the result is an empty string.

The actual length of the result depends on the number of characters in
graphic-expression. If the length of graphic-expression is greater than the length
specified, the result is truncated. Unless all of the truncated characters are
double-byte blanks, a warning is returned.

The CCSID of the result is the same as the CCSID of graphic-expression.

Example: Assume that GRPHCOL is a VARGRAPHIC column in table TABLEX and
MIXEDSTRING is a character-string host variable that contains mixed data. For
various rows in TABLEX, an application uses a positioned UPDATE statement to
replace the value of GRPHCOL with the value of MIXEDSTRING. Before
GRPHCOL can be updated, the current value of MIXEDSTRING must be converted
to a varying-length graphic string. The following statement shows how to code the
VARGRAPHIC function within the UPDATE statement to ensure this conversion.

EXEC SQL UPDATE TABLEX
SET GRPHCOL = VARGRAPHIC(:MIXEDSTRING)
WHERE CURRENT OF CRSNAME;

VARGRAPHIC

Chapter 3. Built-in functions 295

|

|
|
|
|

WEEK

The schema is SYSIBM.

The WEEK function returns an integer in the range of 1 to 54 that represents the
week of the year. The week starts with Sunday.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a CLOB and must have an
actual length that is not greater than 255 bytes. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime
values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example: Using sample table DSN8710.PROJ, set the integer host variable WEEK
to the week of the year that project 'AD2100' ended.

SELECT WEEK(PRENDATE)
INTO :WEEK
FROM DSN8710.PROJ
WHERE PROJNO = 'AD2100';

The result is that WEEK is set 6.

�� WEEK(expression) ��

WEEK

WEEK_ISO

The schema is SYSIBM.

The WEEK function returns an integer in the range of 1 to 53 that represents the
week of the year. The week starts with Monday and includes 7 days. Week 1 is the
first week of the year to contain a Thursday, which is equivalent to the first week
containing January 4. Thus, it is possible to have up to 3 days at the beginning of
the year appear as the last week of the previous year, or to have up to 3 days at
the end of a year appear as the first week of the next year.

The argument must be a date, a timestamp, or a valid string representation of a
date or timestamp. A string representation must not be a BLOB, CLOB, or DBCLOB
and must have an actual length that is not greater than 255 bytes. For the valid
formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example 1: Using sample table DSN8710.PROJ, set the integer host variable
WEEK to the week of the year that project 'AD2100' ended.

SELECT WEEK_ISO(PRENDATE)
INTO :WEEK
FROM DSN8710.PROJ
WHERE PROJNO = 'AD2100';

Example 2:The following list shows what is returned by the WEEK_ISO function for
various dates.

DATE WEEK_ISO

1997-12-28 '52'
1997-12-31 '1'
1998-01-01 '1'
1999-01-01 '53'
1999-01-04 '1'
1999-12-31 '52'
2000-01-01 '52'
2000-01-03 '1'

�� WEEK_ISO(expression) ��

WEEK_ISO

Chapter 3. Built-in functions 297

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

YEAR

The schema is SYSIBM.

The YEAR function returns the year part of its argument.

The argument must be a date, a timestamp, date duration, timestamp duration, or a
valid string representation of a date or timestamp. A string representation must not
be a BLOB, CLOB, or DBCLOB and must have an actual length that is not greater
than 255 bytes. For the valid formats of string representations of dates and
timestamps, see “String representations of datetime values” on page 57.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

If the argument is a date, a timestamp, or a string representation of either,
the result is the year part of the value, which is an integer between 1 and 9999.

If the argument is a date duration or a timestamp duration, the result is the
year part of the value, which is an integer between -9999 and 9999. A nonzero
result has the same sign as the argument.

Example: From the table DSN8710.EMP, select all rows for employees who were
born in 1941.

SELECT *
FROM DSN8710.EMP
WHERE YEAR(BIRTHDATE) = 1941;

�� YEAR(expression) ��

YEAR

298 SQL Reference

|
|
|
|
|

|
|

Chapter 4. Queries

Authorization . 300
subselect . 301

select-clause . 301
from-clause. 304

table-spec . 305
joined-table . 308
join-condition . 309
Join operations . 310

where-clause . 310
group-by-clause . 311
having-clause . 311
Examples of subselects . 312

fullselect . 317
Character conversion in unions and concatenations 318
Selecting the result CCSID 318
Examples of fullselects . 319

select-statement . 321
order-by-clause . 322
read-only-clause . 323
update-clause . 324
optimize-for-clause . 324
with-clause . 325
queryno-clause . 326
fetch-first-clause . 326
Examples of select statements 327

© Copyright IBM Corp. 1982, 2001 299

||

A query specifies a result table. A query is a component of certain SQL statements.
There are three forms of a query:

A subselect
A fullselect
A select-statement

A subselect is a subset of a fullselect, and a fullselect is a subset of a
select-statement.

Another SQL statement called SELECT INTO is described in “SELECT INTO” on
page 845. SELECT INTO is not a subselect, fullselect, or a select-statement.

Authorization
The privilege set that is defined below must include one of the following:
v Ownership of the table or view
v The SELECT privilege on the table or view
v DBADM authority for the database (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)

For each user-defined function that is referenced in a query, the EXECUTE privilege
on the user-defined function is also required.

If the select-statement is part of a DECLARE CURSOR statement, the privilege set
is the privileges that are held by the authorization ID of the owner of the plan or
package.

For dynamically prepared statements, the privilege set depends on the dynamic
SQL statement behavior, which is specified by bind option DYNAMICRULES:

Run behavior
The privilege set is the union of the privilege sets that are held by each
authorization ID of the process.

Bind behavior
The privilege set is the privileges that are held by the authorization ID of the
owner of the plan or package.

Define behavior
The privilege set is the privileges that are held by the authorization ID of the
owner of the stored procedure or user-defined function.

Invoke behavior
The privilege set is the privileges that are held by the authorization ID of the
invoker of the stored procedure or user-defined function.

For a list of the DYNAMICRULES values that specify run, bind, define, or invoke
behavior, see Table 2 on page 44.

When any form of a query is used as a component of another statement, the
authorization rules that apply to the query are specified in the description of that
statement. For example, see “CREATE VIEW” on page 658 for the authorization
rules that apply to the subselect component of CREATE VIEW.

If your installation uses the access control authorization exit (DSNX@XAC), that exit
may be controlling the authorization rules instead of the rules that are listed here.

Queries

300 SQL Reference

subselect

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the result of its first FROM clause.
The derivation can be described as a sequence of operations in which the result of
each operation is input for the next. (This is only a way of describing the subselect.
The method used to perform the derivation may be quite different from this
description.)

The clauses of the subselect are processed in the following sequence:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause

select-clause

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is a list
of names and expressions specified in the SELECT clause, and R is the result of
the previous operation of the subselect. For example, if SELECT, FROM, and
WHERE are the only clauses specified, then R is the result of that WHERE clause.

ALL
Retains all rows of the final result table and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
DISTINCT must not be used more than once in a subselect, with the exception
of its use with a column function whose expression is a column. The same
DISTINCT column function with the same column expression can be referred to
more than once in a subselect. This restriction includes SELECT DISTINCT and
the use of DISTINCT in a column function of the select list or HAVING clause. It
does not include occurrences of DISTINCT in subqueries of the subselect.

�� select-clause from-clause
where-clause group-by-clause having-clause

��

��
ALL

SELECT
DISTINCT

�

*
,

expression
AS

column-name
table-name .*
view-name
correlation-name

��

subselect

Chapter 4. Queries 301

Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. For determining duplicate
rows, two null values are considered equal.

Select list notation:

* Represents a list of names that identify the columns of table R. The first name
in the list identifies the first column of R, the second name identifies the second
column of R, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

expression
Can be any expression of the type that is described in “Expressions” on
page 110. Each column-name in the expression must unambiguously identify a
column of R.

AS column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique.

name.*
Represents a list of names that identify the columns of name. name can be a
table name, view name, or correlation name, and must designate a table or
view named in the FROM clause. If a table is specified, it must not be an
auxiliary table. The first name in the list identifies the first column of the table or
view, the second name in the list identifies the second column of the table or
view, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Therefore, * does not identify any columns that have been
added to a table after the statement has been prepared.

SQL statements can be implicitly or explicitly rebound (prepared again). The effect
of a rebind on statements that include * or name.* is that the list of names is
re-established. Therefore, the number of columns returned by the statement may
change.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
the time the statement is prepared), and cannot exceed 750. The result of a
subquery must be a single column unless the subquery is used in an EXISTS
predicate.

Limitation on long string columns: The result of an expression must not be a
character string with a maximum length greater than 255 or a graphic string with a
maximum length greater than 127 if:
v SELECT DISTINCT is used.
v The subselect is a subquery.
v The subselect is an operand of UNION.

Applying the select list: Some of the results of applying the select list to R
depend on whether GROUP BY or HAVING is used. The next two separate lists
describe the results.

If neither GROUP BY nor HAVING is used:

subselect

302 SQL Reference

v The select list must not include column functions, or it must be entirely a list of
column functions.

v If the select list does not include column functions, it is applied to each row of R
and the result contains as many rows as there are rows in R.

v If the select list is a list of column functions, R is the source of the arguments of
the functions and the result of applying the select list is one row, even when R
has no rows.

If GROUP BY or HAVING is used:

v Each column-name in the select list must either identify a grouping column or be
specified within a column function.

v The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

v You cannot use GROUP BY with a name defined using the AS clause unless the
name is defined in a nested table expression. “Example 6” on page 313
demonstrates the valid use of AS and GROUP BY in a SELECT statement.

In either case, the nth column of the result contains the values specified by applying
the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns allow null values if they are
derived from one of the following:
v Any column function except COUNT or COUNT_BIG
v A column that allows null values
v A view column in an outer select list that is derived from an arithmetic expression
v An arithmetic expression in an outer select list
v An arithmetic expression that allows nulls
v A scalar function or string expression that allows null values
v A host variable that has an indicator variable
v A result of a UNION if at least one of the corresponding items in the select list is

nullable

Names of result columns: The name of a result column of a subselect is
determined as follows:

v If the AS clause is specified, the name of the result column is the name specified
on the AS clause. The name need not be unique.

v If the AS clause is not specified and the result column is derived from a column
name, the result column name is the unqualified name of that column.

v All other result columns are unnamed.

Names of result columns are placed into the SQL descriptor area (SQLDA) when
the DESCRIBE statement is executed. This allows an interactive SQL processor
such as SPUFI or QMF to use the column names when displaying the results. The
names in the SQLDA include those specified by the AS clause.

subselect

Chapter 4. Queries 303

Data types of result columns: Each column of the result of SELECT acquires a
data type from the expression from which it is derived.

Table 30. Data types of result columns

When the expression is... The data type of the result column is...

The name of any numeric
column

The same as the data type of the column, with the same precision and scale for
decimal columns.

An integer constant INTEGER.

A decimal or floating-point
constant

The same as the data type of the constant, with the same precision and scale for
decimal constants. For floating-point constants, the data type is DOUBLE
PRECISION.

The name of any numeric host
variable

The same as the data type of the variable, with the same precision and scale for
decimal variables. The result is decimal if the data type of the host variable is not an
SQL data type; for example, DISPLAY SIGN LEADING SEPARATE in COBOL.

An arithmetic or string
expression

The same as the data type of the result, with the same precision and scale for
decimal results as described in “Expressions” on page 110.

Any function The data type of the result of the function. For a built-in function, see “Chapter 3.
Built-in functions” on page 153 to determine the data type of the result. For a
user-defined function, the data type of the result is what was defined in the CREATE
FUNCTION statement for the function.

The name of any string column The same as the data type of the column, with the same length attribute.

The name of any string host
variable

The same as the data type of the variable, with a length attribute equal to the length
of the variable. The result is a varying-length character string if the data type of the
host variable is not an SQL data type; for example, a NUL-terminated string in C.

A character string constant of
length n

VARCHAR(n).

A graphic string constant of
length n

VARGRAPHIC(n).

The name of a datetime column The same as the data type of the column.

The name of a ROWID column Row ID.

The name of a distinct type
column

The same as the distinct type of the column, with the same length, precision, and
scale attributes, if any.

from-clause

The FROM clause specifies an intermediate result table, R. If a single table-spec is
specified, R is the result of that table-spec. If more than one table-spec is specified,
R consists of all possible combinations of the rows of the result of each table-spec.
Each row of R is a row from the result of the first table-spec concatenated with a
row from the result of the second table-spec, concatenated with a row from the
result of the third table-spec, and so on. The number of rows in R is the product of
the number of rows in the result of each table-spec. Thus, if the result of any
table-spec is empty, R is empty.

�� �

,

FROM table-spec ��

subselect

304 SQL Reference

table-spec

A table-spec specifies an intermediate result table:

v If a single table or view is identified, the intermediate result table is simply that
table or view.

v If a table locator is identified, the host variable represents the intermediate table.
The intermediate table has the same structure as the table identified in
table-name.

v A fullselect in parentheses is called a nested table expression. If a nested table
expression is specified, the result table is the result of that nested table
expression. The columns of the result do not need unique names, but a column
with a non-unique name cannot be referenced. At any time, the table consists of
the rows that would result if the fullselect were executed.

v If a function-name is specified, the intermediate result table is the set of rows
returned by the table function.

v If a joined-table is specified, the intermediate result table is the result of one or
more join operations as explained below.

Each table-name or view-name specified in every FROM clause of the same SQL
statement must identify a table or view that exists at the same DB2 subsystem. The

table-spec:

�� table-name
view-name correlation-clause
table-locator-reference

(fullselect) correlation-clause
TABLE

table-function-reference
joined-table

��

table-locator-reference:

�� TABLE (table-locator-variable LIKE table-name) ��

table-function-reference:

��

�

TABLE (function-name())
,

expression
TABLE transition_table_name

correlation-clause ��

correlation-clause

��
AS

�

correlation-name
,

(column-name)

��

subselect

Chapter 4. Queries 305

|
|
|
|
|

tables that are identified must not be auxiliary tables. The tables, table functions, or
underlying tables of the views that are identified must have the same encoding
scheme—either all ASCII, all EBCDIC, or all Unicode. If a FROM clause is specified
in a subquery of a basic predicate, a view that includes GROUP BY or HAVING
must not be identified.

Each table-locator-variable must specify a host variable with a table locator type.
The only way to assign a value to a table locator is to pass the old or new transition
table of a trigger to a user-defined function or stored procedure. A table locator host
variable must not have a null indicator and must not be a parameter marker. In
addition, a table locator can be used only in a manipulative SQL statement.

Each function-name, together with the types of its arguments, must resolve to a
table function that exists at the same DB2 subsystem. An algorithm called function
resolution, which is described on page 106, uses the function name and the
arguments to determine the exact function to use. Unless given column names in
the correlation-clause, the column names for a table function are those specified on
the RETURNS clause of the CREATE FUNCTION statement. This is analogous to
the column names of a table, which are defined in the CREATE TABLE.

Each correlation-name in a correlation-clause defines a designator for the
immediately preceding intermediate result table (table-name, view-name, nested
table expression, or function-name reference), which can be used to qualify
references to the columns of the table. Using column-names to list and rename the
columns is optional. A correlation name must be specified for nested table
expressions and references to table functions.

If a list of column-names is specified in a correlation-clause, the number of names
must be the same as the number of columns in the corresponding table, view,
nested table expression, or table function. Each name must be unique and
unqualified. If columns are added to an underlying table of a table-spec, the number
of columns in the result of the table-spec no longer matches the number of names
in its correlation-clause. Therefore, when a rebind of a package containing the
query in question is attempted, DB2 returns an error and the rebind fails. At that
point, change the correlation-clause of the embedded SQL statement in the
application program so that the number of names matches the number of columns.
Then, precompile, compile, bind, and link-edit the modified program.

An exposed name is a correlation-name or a table-name or view name that is not
followed by a correlation-name. The exposed names in a FROM clause should be
unique, and only exposed names should be used as qualifiers of column names.
Thus, if the same table name is specified twice, at least one specification of the
table name should be followed by a unique correlation name. That correlation name
should be used to qualify references to columns of that instance of the table. In
addition, if column names are listed for the correlation name in the FROM clause,
those columns names should be used to reference the columns. For more
information, see “Column name qualifiers in correlated references” on page 97.

Correlated references in table-specs: In general, nested table expressions and
table functions can be specified in any FROM clause. Columns from the nested
table expressions and table functions can be referenced in the select list and in the
rest of the fullselect using the correlation name. The scope of this correlation name
is the same as correlation names for other table or view names in the FROM
clause. The basic rule that applies for both these cases is that the correlated
reference must be from a table-spec at a higher level in the hierarchy of
subqueries.

subselect

306 SQL Reference

|

|
|
|
|
|
|
|

Nested table expressions can be used in place of a view to avoid creating a view
when general use of the view is not required. They can also be used when the
desired result table is based on host variables.

For table functions, an additional capability exists. A table function can contain one
or more correlated references to other tables in the same FROM clause if the
referenced tables precede the reference in the left-to-right order of the tables in the
FROM clause. The same capability exists for nested table expressions if the
optional keyword TABLE is specified; otherwise, only references to higher levels in
the hierarchy of subqueries is allowed.

A nested table expression or table function that contains correlated references to
other tables in the same FROM clause:
v Cannot participate in a FULL OUTER JOIN or a RIGHT OUTER JOIN
v Can participate in LEFT OUTER JOIN or an INNER JOIN if the referenced tables

precede the reference in the left-to-right order of the tables in the FROM clause

Table 31 shows some examples of valid and invalid correlated references. TABF1
and TABF2 represent table functions.

Table 31. Examples of correlated references

Subselect Valid Reason

SELECT T.C1, Z.C5
FROM TABLE(TABF1(T.C2)) AS Z, T
WHERE T.C3 = Z.C4;

No T.C2 cannot be resolved because
T does not precede TABF1 in
FROM

SELECT T.C1, Z.C5
FROM T, TABLE(TABF1(T.C2)) AS Z
WHERE T.C3 = Z.C4;

Yes T precedes TABF1 in FROM,
making T.C2 known

SELECT A.C1, B.C5
FROM TABLE(TABF2(B.C2)) AS A,

TABLE(TABF1(A.C6)) AS B
WHERE A.C3 = B.C4;

No B in B.C2 cannot be resolved
because the table function that
would resolve it, TABF1, follows
its reference in TABF2 in FROM

SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT

FROM DEPT D,
(SELECT AVG(E.SALARY) AS AVGSAL,

COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT = D.DEPTNO)
AS EMPINFO;

No DEPT precedes nested table
expression, but keyword TABLE
is not specified, making D.DEPTNO
unknown

SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT

FROM DEPT D,
TABLE (SELECT AVG(E.SALARY) AS AVGSAL,

COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT = D.DEPTNO)

AS EMPINFO;

Yes DEPT precedes nested table
expression and keyword TABLE
is specified, making D.DEPTNO
known

subselect

Chapter 4. Queries 307

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

joined-table

A joined-table specifies an intermediate result table that is the result of either an
inner equi-join or an outer join. The table is derived by applying one of the
join-operators: INNER, RIGHT OUTER, LEFT OUTER, or FULL OUTER to its
operands. If a join-operator is not specified, INNER is implicit. The order in which a
LEFT OUTER JOIN or RIGHT OUTER JOIN is performed can affect the result.

As described in more detail under “Join operations” on page 310 an inner join
combines each row of the left table with every row of the right table keeping only
the rows where the join-condition is true. Thus, the result table may be missing
rows from either or both of the joined tables. Outer joins include the rows produced
by the inner join as well as the missing rows, depending on the type of outer join as
follows:

Left outer. Includes the rows from the left table that were missing from the inner
join.
Right Outer. Includes the rows from the right table that were missing from the
inner join.
Full Outer. Includes the rows from both tables that were missing from the inner
join.

A joined-table can be used in any context in which any form of the SELECT
statement is used. Both a view and a cursor is read-only if its SELECT statement
includes a joined-table.

��
INNER

table-spec JOIN table-spec ON join-condition

OUTER
LEFT
RIGHT

(joined-table)

��

subselect

308 SQL Reference

join-condition

For INNER, LEFT OUTER, and RIGHT OUTER joins, the join-condition is a
search-condition that must conform to these rules:

v It cannot contain any subqueries.

v Any column that is referenced in an expression of the join-condition must be a
column of one of the operand tables of the associated join operator (in the scope
of the same joined-table clause).

For a FULL OUTER (or FULL) join, the join-condition is a search condition in which
the predicates can only be combined with AND. In addition, each predicate must
have the form 'expression = expression', where one expression references only
columns of one of the operand tables of the associated join operator, and the other
expression references only columns of the other operand table. The values of the
expressions must be comparable.

Each full-join-expression in a FULL OUTER join must include a column name or a
cast function that references a column. The COALESCE and VALUE functions are
allowed.

For any type of join, column references in an expression of the join-condition are
resolved using the rules for resolution of column name qualifiers specified in
“Resolution of column name qualifiers and column names” on page 98 before any
rules about which tables the columns must belong to are applied.

For INNER, LEFT OUTER, and RIGHT OUTER joins:

�� search-condition ��

For FULL OUTER joins:

�� �

AND

full-join-expression = full-join-expression ��

full-join-expression:

��

�

column-name
(1)

cast-function

COALESCE (column-name , column-name)
VALUE (1) (1)

cast-function , cast-function

��

Notes:

1 cast-function must only contain a column and the casting data type must be a distinct type or the
data type upon which the distinct type was based.

subselect

Chapter 4. Queries 309

Join operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and
right operand tables of its associated JOIN operator. For all possible combinations
of rows T1 and T2, a row of T1 is paired with a row of T2 if the join-condition is
true. When a row of T1 is joined with a row of T2, a row in the result consists of the
values of that row of T1 concatenated with the values of that row of T2. The
execution might involve the generation of a “null row”. The null row of a table
consists of a null value for each column of the table, regardless of whether the
columns allow null values.

The following summarizes the results of the join operations:

v The result of T1 INNER JOIN T2 consists of their paired rows.

v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of T2. All
columns derived from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of T1. All
columns derived from T1 allow null values.

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of T2,
and for each unpaired row of T2, the concatenation of that row with the null row
in T1. All columns of the result table allow null values.

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed before the other clauses in the
statement.

where-clause

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search condition is true. R is the result of the FROM clause
of the subselect.

The search condition must conform to the following rules:

v Each column name must unambiguously identify a column of R or be a
correlated reference. A column name is a correlated reference if it identifies a
column of a table or view that is identified in an outer subselect.

v A column function must not be specified unless the WHERE clause is specified in
a subquery of a HAVING clause and the argument of the function is a correlated
reference to a group.

Any subquery in the search-condition is effectively executed for each row of R and
the results are used in the application of the search-condition to the given row of R.
A subquery is actually executed for each row of R only if it includes a correlated
reference. In fact, a subquery with no correlated references is executed just once,
whereas a subquery with a correlated reference may have to be executed once for
each row.

�� WHERE search-condition ��

subselect

310 SQL Reference

|
|
|

group-by-clause

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause.

Each column-name must unambiguously identify a column of R other than a long
string column. Each identified column is called a grouping column.

The result of GROUP BY is a set of groups of rows. In each group of more than
one row, all values of each grouping column are equal; and all rows with the same
set of values of the grouping columns are in the same group. For grouping, all null
values within a grouping column are considered equal.

Because every row of a group contains the same value of any grouping column, the
name of a grouping column can be used in a search condition in a HAVING clause
or an expression in a SELECT clause. In each case, the reference specifies only
one value for each group. However, if the grouping column contains varying-length
strings with trailing blanks, the values in the group can differ in the number of
trailing blanks and may not all have the same length. In that case, a reference to
the grouping column still specifies only one value for each group, but the value for a
group is chosen arbitrarily from the available set of values. Thus, the actual length
of the result value is unpredictable.

The GROUP BY clause must not be used in a subquery of a basic predicate or
must not be used if R is derived from a view whose outer subselect includes
GROUP BY or HAVING clauses.

having-clause

The HAVING clause specifies an intermediate result table that consists of those
groups of R for which the search-condition is true. R is the result of the previous
clause. If this clause is not GROUP BY, R is considered a single group with no
grouping columns.

Each column-name in search-condition must:
v Unambiguously identify a grouping column of R, or
v Be specified within a column function24, or
v Be a correlated reference. A column-name is a correlated reference if it identifies

a column of a table or view identified in an outer subselect.

24. See “Chapter 3. Built-in functions” on page 153 for restrictions that apply to the use of column functions.

�� �

,

GROUP BY column-name ��

�� HAVING search-condition ��

subselect

Chapter 4. Queries 311

|
|
|

A group of R to which the search condition is applied supplies the argument for
each function in the search condition, except for any function whose argument is a
correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is executed
for each group only if it contains a correlated reference. For an illustration of the
difference, see Example 4 and Example 5 in “Examples of subselects” below.

A correlated reference to a group of R must either identify a grouping column or be
contained within a column function.

The HAVING clause must not be used in a subquery of a basic predicate. When
HAVING is used without GROUP BY, any column name in the select list must
appear within a column function.

Examples of subselects
Example 1: Show all rows of the table DSN8710.EMP.

SELECT * FROM DSN8710.EMP;

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of DSN8710.EMP with the same job code, but only for groups with
more than one row and with a maximum salary greater than 50000.

SELECT JOB, MAX(SALARY), MIN(SALARY)
FROM DSN8710.EMP
GROUP BY JOB
HAVING COUNT(*) > 1 AND MAX(SALARY) > 50000;

Example 3: For each employee in department E11, get the following information
from the table DSN8710.EMPPROJACT: employee number, activity number, activity
start date, and activity end date. Using the CHAR function, convert the start and
end dates to their USA formats. Get the needed department information from the
table DSN8710.EMP.

SELECT EMPNO, ACTNO, CHAR(EMSTDATE,USA), CHAR(EMENDATE,USA)
FROM DSN8710.EMPPROJACT
WHERE EMPNO IN (SELECT EMPNO FROM DSN8710.EMP

WHERE WORKDEPT = 'E11');

Example 4: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for all
employees. (In this example, the subquery would be executed only once.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8710.EMP
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM DSN8710.EMP);

Example 5: Show the department number and maximum departmental salary for all
departments whose maximum salary is less than the average salary for employees
in all other departments. (In contrast to Example 4, the subquery in this statement,
containing a correlated reference, would need to be executed for each group.)

SELECT WORKDEPT, MAX(SALARY)
FROM DSN8710.EMP Q
GROUP BY WORKDEPT

subselect

312 SQL Reference

HAVING MAX(SALARY) < (SELECT AVG(SALARY)
FROM DSN8710.EMP
WHERE NOT WORKDEPT = Q.WORKDEPT);

Example 6: For each group of employees hired during the same year, show the
year-of-hire and current average salary. (This example demonstrates how to use the
AS clause in a FROM clause to name a derived column that you want to refer to in
a GROUP BY clause.)

SELECT HIREYEAR, AVG(SALARY)
FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY

FROM DSN8710.EMP) AS NEWEMP
GROUP BY HIREYEAR;

Example 7: For an example of how to group the results of a query by an expression
in the SELECT clause without having to retype the expression, see “Example 4” on
page 125 for CASE expressions.

Example 8: Get the employee number and employee name for all the employees in
DSN8710.EMP. Order the results by the date of hire.

SELECT EMPNO, FIRSTNME, LASTNAME
FROM DSN8710.EMP
ORDER BY HIREDATE;

Example 9: Assume that an external function named ADDYEARS exists. For a
given date, the function adds a given number of years and returns a new date. (The
data types of the two input parameters to the function are DATE and INTEGER.)
Get the employee number and employee name for all employees who have been
hired within the last 5 years.

SELECT EMPNO, FIRSTNME, LASTNAME
FROM DSN8710.EMP
WHERE ADDYEARS(HIREDATE, 5) > CURRENT DATE;

To distinguish the different types of joins, to show nested table expressions, and to
demonstrate how to combine join columns, the remaining examples use these two
tables:
The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
======= ===== ============ ===== =========== =====
WIRE 10 ACWF 505 SCREWDRIVER 3.70
OIL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

Example 10: Join the tables on the PROD# column to get a table of parts with their
suppliers and the products that use the parts:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

or
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

Either one of these two statements give this result:

subselect

Chapter 4. Queries 313

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice two things about the example:

v There is a part in the parts table (OIL) whose product (#160) is not listed in the
products table. There is a product (SCREWDRIVER, #505) that has no parts
listed in the parts table. Neither OIL nor SCREWDRIVER appears in the result of
the join.

An outer join, however, includes rows where the values in the joined columns do
not match.

v There is explicit syntax to express that this familiar join is not an outer join but an
inner join. You can use INNER JOIN in the FROM clause instead of the comma.
Use ON when you explicitly join tables in the FROM clause.

You can specify more complicated join conditions to obtain different sets of results.
For example, eliminate the suppliers that begin with the letter A from the table of
parts, suppliers, product numbers and products:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE 'A%';

The result of the query is all rows that do not have a supplier that begins with A:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example 11: Join the tables on the PROD# column to get a table of all parts and
products, showing the supplier information, if any.
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) (null) SCREWDRIVER

The clause FULL OUTER JOIN includes unmatched rows from both tables. Missing
values in a row of the result table are filled with nulls.

Example 12: Join the tables on the PROD# column to get a table of all parts,
showing what products, if any, the parts are used in:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:

subselect

314 SQL Reference

PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)

The clause LEFT OUTER JOIN includes rows from the table identified before it
where the values in the joined columns are not matched by values in the joined
columns of the table identified after it.

Example 13: Join the tables on the PROD# column to get a table of all products,
showing the parts used in that product, if any, and the supplier.
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result is:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
(null) (null) 505 SCREWDRIVER

The clause RIGHT OUTER JOIN includes rows from the table identified after it
where the values in the joined columns are not matched by values in the joined
columns of the table identified before it.

Example 14: The result of Example 11 (a full outer join) shows the product number
for SCREWDRIVER as null, even though the PRODUCTS table contains a product
number for it. This is because PRODUCTS.PROD# was not listed in the SELECT
list of the query. Revise the query using COALESCE, a synonym for the VALUE
function, so that all part numbers from both tables are shown.
SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

In the result, notice that the AS clause (AS PRODNUM), provides a name for the
result of the COALESCE function:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 (null)
(null) (null) 505 SCREWDRIVER

Example 15: For all parts that are used in product numbers less than 200, show the
part, the part supplier, the product number, and the product name. Use a nested
table expression.

subselect

Chapter 4. Queries 315

SELECT PART, SUPPLIER, PRODNUM, PRODUCT
FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER

FROM PARTS
WHERE PROD# < 200) AS PARTX

LEFT OUTER JOIN PRODUCTS
ON PRODNUM = PROD#;

The result is:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
OIL WESTERN_CHEM 160 (null)

subselect

316 SQL Reference

fullselect

The fullselect is a component of the select-statement, the CREATE VIEW
statement, and the INSERT statement. The fullselect is also a component of certain
predicates that, in turn, are components of a subselect. A subselect that is a
component of a predicate is called a subquery.

A fullselect specifies a result table. If UNION is not used, the result of the fullselect
is the result of the specified subselect.25

UNION or UNION ALL
Derives a result table by combining two other result tables, R1 and R2. If
UNION ALL is specified, the result consists of all rows in R1 and R2. If UNION
is specified without the ALL option, the result is the set of all rows in either R1
or R2, with duplicate rows eliminated.

If the nth column of R1 and the nth column of R2 have the same result column
name, the nth column of R has the same result column name. If the nth column
of R1 and the nth column of R2 do not have the same name, the result column
in R is unnamed.

Qualified column names cannot be used in the ORDER BY clause when
UNION or UNION ALL is also specified.

Duplicate rows: Two rows are duplicates if each value in the first is equal to the
corresponding value of the second. For determining duplicates, two null values are
considered equal.

UNION and UNION ALL are associative operations. However, when UNION and
UNION ALL are used in the same statement, the result depends on the order in
which the operations are performed. Operations within parentheses are performed
first. When the order is not specified by parentheses, operations are performed in
order from left to right.

Rules for columns: R1 and R2 must have the same number of columns and the
data type of the nth column of R1 must be compatible with the data type of the nth
column of R2. If UNION is specified without the ALL option, R1 and R2 must not
include a long string column.

The nth column of the result of UNION and UNION ALL is derived from the nth
columns of R1 and R2.

For information on the valid combinations of operand columns and the data type of
the result column, see “Rules for result data types” on page 77.

25. DB2 allows SELECT INTO as the operand of UNION. This is a deprecated feature with undefined results.

�� subselect
(fullselect)

�

UNION subselect
UNION ALL (fullselect)

��

fullselect

Chapter 4. Queries 317

|
|
|
|

Character conversion in unions and concatenations
The SQL operations that combine strings include concatenation, UNION, UNION
ALL, and the IN list of an IN predicate. Within an SQL statement, concatenation
combines two or more strings into a new string. Within a fullselect, UNION, UNION
ALL, or the IN list of an IN predicate combine two or more string columns resulting
from the subselects into results column. All such operations have the following in
common:
v The choice of a result CCSID for the string or column
v The possible conversion of one or more of the component strings or columns to

the result CCSID

For all such operations, the rules for those two actions are the same, as described
in “Selecting the result CCSID”. These rules also apply to the COALESCE (or
VALUE) scalar function.

Selecting the result CCSID
The result CCSID is selected at bind time. The result CCSID is the CCSID of one of
the operands.

Two operands: When two operands are used, the result CCSID is determined by
the operand types, their CCSIDs, and their relative positions in the operation. The
rules shown here apply when neither CCSID is X'FFFF'. When a CCSID is X'FFFF',
the result CCSID is always X'FFFF', and no character conversions take place.

If one CCSID is for SBCS data and the other is for mixed data, the operand
selected depends on the value of the MIXED DATA field on installation panel
DSNTIPF at the DB2 where the operation takes place:
v If this value is YES, the operand MIXED furnishes the result CCSID.
v If this value is NO, the operand SBCS furnishes the result CCSID.

Unicode data can be mixed regardless of the setting of the MIXED field on
installation panel DSNTIPF.

If both CCSIDs are the same type (both SBCS, both MIXED, or both GRAPHIC
CCSIDs), then the operand that furnishes the result CCSID is as shown in Table 32.

For example, assume a concatenation of the form:

Three or more operands:

If all the operands have the same CCSID, the result CCSID is the common
CCSID.

If at least one of the CCSIDs has the value X'FFFF', the result CCSID also has
the value X'FFFF'.

Otherwise, selection proceeds as follows:

1. The rules for a pair of operands are applied to the first two operands. This picks
a “candidate” for the second step. The candidate is the operand that would
furnish the result CCSID if just the first two operands were involved in the
operation.

2. The rules are applied to the Step 1 candidate and the third operand, thereby
selecting a second candidate.

3. If a fourth operand is involved, the rules are applied to the second candidate
and fourth operand, to select a third candidate, and so on.

The process continues until all operands have been used. The remaining candidate
is the one that furnishes the result CCSID. Whenever the rules for a pair are
applied to a candidate and an operand, the candidate is considered to be the first
operand.

Consider, for example, the following concatenation:
A CONCAT B CONCAT C

Here, the rules are first applied to the strings A and B. Suppose that the string
selected as candidate is A. Then the rules are applied to A and C. If the string
selected is again A, then A furnishes the result CCSID. Otherwise, C furnishes the
result CCSID.

Character conversion of components: An operand of concatenation or the
selected argument of the COALESCE (or VALUE) scalar function is converted, if
necessary, to the coded character set of the result string. Each string of an operand
of UNION or UNION ALL is converted, if necessary, to the coded character set of
the result column. In either case, the coded character set is the one identified by
the result CCSID. Character conversion is necessary only if all of the following are
true:
v The result and operand CCSIDs are different.
v Neither CCSID is X'FFFF' (neither string is defined as BIT data).
v The string is neither null nor empty.
v The SYSSTRINGS catalog table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted, SYSSTRINGS is
used but contains no information about the CCSID pair, or DB2 cannot do the
conversion through DB2 for OS/390 and z/OS support for Unicode or Language
Environment. A warning occurs if a character of a string is converted to the
substitution character.

Examples of fullselects

Example 1: A query specifies the union of result tables R1 and R2. A column in R1
has the data type CHAR(10) and the subtype BIT. The corresponding column in R2
has the data type CHAR(15) and the subtype SBCS. Hence, the column in the

fullselect

Chapter 4. Queries 319

|
|
|
|
|

union has the data type CHAR(15) and the subtype BIT. Values from the first
column are converted to CHAR(15) by adding five trailing blanks.

Example 2: Show all the rows from DSN8710.EMP.
SELECT * FROM DSN8710.EMP;

Example 3: Using sample tables DSN8710.EMP and DSN8710.EMPROJACT, list
the employee numbers of all employees for which either of the following statements
are true:
v Their department numbers begin with 'D'.
v They are assigned to projects whose project numbers begin with 'AD'.

SELECT EMPNO FROM DSN8710.EMP
WHERE WORKDEPT LIKE 'D%'
UNION

SELECT EMPNO FROM DSN8710.EMPPROJACT
WHERE PROJNO LIKE 'AD%';

The result is the union of two result tables, one formed from the sample table
DSN8710.EMP, the other formed from the sample table DSN8710.EMPPROJACT.
The result—a one-column table—is a list of employee numbers. Because UNION,
rather than UNION ALL, was used, the entries in the list are distinct. If instead
UNION ALL were used, certain employee numbers would appear in the list more
than once. These would be the numbers for employees in departments that begin
with 'D' while their projects begin with 'AD'.

Example 4: Find the average charges for each subscriber (SNO) in the state of
California during the last Friday of each month in the first quarter of 2000. Group
the result according to SNO. Each MONTHnn table has columns for SNO,
CHARGES, and DATE. The CUST table has columns for SNO and STATE.

SELECT V.SNO, AVG(V.CHARGES)
FROM CUST, TABLE (

SELECT SNO, CHARGES, DATE
FROM MONTH1
WHERE DATE BETWEEN '01/01/2000' AND '01/31/2000'

UNION ALL

SELECT SNO, CHARGES, DATE
FROM MONTH2
WHERE DATE BETWEEN '02/01/2000' AND '02/29/00'

UNION ALL

SELECT SNO, CHARGES, DATE
FROM MONTH3
WHERE DATE BETWEEN '03/01/2000' AND '03/31/2000'
) AS V(SNO, CHARGES, DATE)

WHERE CUST.SNO=V.SNO
AND CUST.STATE='CA'
AND DATE IN ('01/28/2000','02/25/2000','03/31/2000')

GROUP BY V.SNO;

fullselect

320 SQL Reference

|
|
|
|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

select-statement

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE
CURSOR statement. It can also be issued interactively using SPUFI causing a
result table to be displayed at your terminal. In any case, the table specified by
select-statement is the result of the fullselect.

The tables and view identified in a select statement can be at the current server or
any DB2 subsystem with which the current server can establish a connection.

For local queries on DB2 for OS/390 and z/OS or remote queries in which the
server and requester are DB2 for OS/390 and z/OS, if a table is encoded as ASCII
or Unicode, the retrieved data is encoded in EBCDIC. For information on retrieving
data encoded in ASCII or Unicode, see Part 6 of DB2 Application Programming and
SQL Guide.

A select statement can implicitly or explicitly invoke user-defined functions or
implicitly invoke stored procedures. This technique is known as nesting of SQL
statements. A function or procedure is implicitly invoked in a select statement when
it is invoked at a lower level. For instance, if you invoke a user-defined function
from a select statement and the user-defined function invokes a stored procedure,
you are implicitly invoking the stored procedure. When you execute a select
statement on a table, no INSERT, UPDATE, or DELETE statement at a lower level
of nesting must be executed on the same table.

For example, suppose that you execute this SQL statement at level 1 of nesting:
SELECT UDF1(C1) FROM T1;

You cannot execute this SQL statement at a lower level of nesting:
INSERT INTO T1 VALUES(...);

�� fullselect
(1)

order-by-clause

�
(2)

read-only-clause
(3)

update-clause
optimize-for-clause
with-clause
queryno-clause
fetch-first-clause

��

Notes:

1 If the order-by-clause is specified, the update-clause cannot be specified except when the
select-statement is associated with an INSENSITIVE or SENSITIVE STATIC SCROLL CURSOR.

2 The same clause must not be specified more than once.

3 If the update-clause is specified, the fetch-first-clause cannot be specified.

select-statement

Chapter 4. Queries 321

||

|

|

||
|

||

||
|
|

|

|
|

order-by-clause

The ORDER BY clause specifies an ordering of the rows of the result table. If a
single sort-key is identified, the rows are ordered by the values of that sort-key. If
more than one sort-key is identified, the rows are ordered by the values of the first
sort-key, then by the values of the second sort-key, and so on. A sort-key cannot be
a long string column.

A named column in the select list can be identified by a sort-key that is an integer
or a column name. An unnamed column in the select list must be identified by an
integer or by an expression. A column is unnamed if the AS clause is not specified
in the select list and the column is derived from a constant, an expression with
operators, or a function. If the fullselect includes a UNION operator, the fullselect
rules on named columns apply.

column-name
Usually identifies a column of the result table. In this case, column-name must
be the name of a named column in the select list. If the fullselect includes a
UNION or UNION ALL, the column name cannot be qualified.

If the query is a subselect, the column-name can also identify a column name
of a table, view, or nested table expression identified in the FROM clause. An
error occurs if the subselect includes any of the following:
v DISTINCT in the select list
v Column functions in the select list
v GROUP BY clause

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table.

expression
Specifies an expression with operators (that is, not simply a column-name or
integer). The query to which ordering is applied must be a subselect to use this
form of the sort-key.

The expression cannot include a non-deterministic function or a function with an
external action. Any column name in the expression must conform to the rules
described in “Column names in sort keys” on page 323. An expression cannot
be specified if DISTINCT is used in the select list of the subselect.

If the subselect is grouped, the expression can be an expression in the select
list of the subselect or can include a column function, constant, or host variable.
If the expression is not in the select list, the following rules apply:

�� �

,
ASC

ORDER BY sort-key
DESC

��

sort-key:

�� column-name
integer
expression

��

select-statement

322 SQL Reference

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

v If the subselect contains a GROUP BY clause, all columns in the expression
must be in the GROUP BY clause.

v If the subselect does not contain a GROUP BY clause (the result is grouped
because a column function is in the ORDER BY clause), all expressions in
the select list must be grouped data, constants, or host variables.

ASC
Uses the values of the sort-key in ascending order. This is the default.

DESC
Uses the values of the sort-key in descending order.

Ordering is performed in accordance with the comparison rules described in
Chapter 2. Language elements, beginning on page 72. The null value is higher than
all other values. If your ordering specification does not determine a complete
ordering, rows with duplicate values of the last identified sort-keyy have an arbitrary
order. If you do not specify ORDER BY, the rows of the result table have an
arbitrary order.

Column names in sort keys: A column name in a sort-key must conform to the
following rules:

v If the column name is qualified, the query must be a subselect. The column
name must unambiguously identify a column of a table, view, or nested table
expression in the FROM clause of the subselect; its value is used to compute the
value of the sort specification.

v If the column name is unqualified, the following two cases apply:

– The query is a subselect. In this case, the column name must unambiguously
identify a column of a table, view, or nested table expression in the FROM
clause of the subselect. If the column name is identical to one column of the
result table, its value is used to compute the value of the sort specification. If
the column name is not identical to one column, it must unambiguously
identify a column of a table, view, or nested table expression in the FROM
clause of the fullselect.

– The query is not a subselect (that is, the query includes a UNION or UNION
ALL). The column name must be identical to exactly one column of the result
table; its value is used to compute the value of the sort specification.

read-only-clause

The clause FOR FETCH ONLY26 declares that the result table is read-only. The
cursor cannot be used in positioned updates and deletes with one exception. A
SENSITIVE STATIC scrollable cursor can perform positioned updates or deletes
even if FOR READ ONLY is specified in its SELECT statement.

Some result tables are read-only by nature (for example, a table based on a
read-only view.) FOR FETCH ONLY can still be specified for such tables, but the
specification has no effect. For result tables for which updates and deletes are

26. Or, FOR READ ONLY is equivalent.

�� FOR FETCH ONLY
READ

��

select-statement

Chapter 4. Queries 323

||||||||||||||||

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

possible, specifying FOR FETCH ONLY can possibly improve the performance of
FETCH operations and distributed operations.

If factors other than specifying the FOR READ ONLY clause make the result table
read-only, positioned updates or deletes cannot be done. A read-only result table
must not be referred to in an UPDATE or DELETE statement, whether it is
read-only by nature or specified as FOR FETCH ONLY.

update-clause

The optional UPDATE clause identifies the columns that can be updated in a later
positioned UPDATE statement. Each column name must be unqualified and must
identify a column of the table or view identified in the first FROM clause of the
fullselect. The clause must not be specified if the result table of the fullselect is
read-only. For a discussion of read-only result tables, see “DECLARE CURSOR” on
page 665. The clause must also not be specified if a created temporary table is
referenced in the first FROM clause of the select-statement.

If the UPDATE clause is specified without a list of columns, the columns that can be
updated will include all the updatable columns of the table or view that is identified
in the first FROM clause of the fullselect.

The declaration of a cursor referred to in a positioned UPDATE statement need not
include an UPDATE clause if the STDSQL(YES) or NOFOR option is specified
when the program is precompiled. For more on the subject, see “Positioned
updates of columns” on page 152.

When FOR UPDATE is used, FETCH operations referencing the cursor acquire U
or X locks rather than S locks when:

v The isolation level of the statement is cursor stability.

v The isolation level of the statement is repeatable read or read stability and field U
LOCK FOR RR/RS on installation panel DSNTIPI is set to get U locks.

v The isolation level of the statement is repeatable read or read stability and KEEP
UPDATE LOCKS is specified in the SQL statement, an X lock, instead of a U
lock, is acquired at FETCH time.

No locks are acquired on declared temporary tables. For a discussion of U locks
and S locks, see Part 5 (Volume 2) of DB2 Administration Guide.

optimize-for-clause

��

�

FOR UPDATE
,

OF column-name

��

�� OPTIMIZE FOR integer ROWS
ROW

��

select-statement

324 SQL Reference

|
|
|
|

|

|
|
|

The OPTIMIZE FOR clause requests special optimization of the select-statement. If
the clause is omitted, optimization is based on the assumption that all rows of the
result table will be retrieved. If the clause is specified, optimization is based on the
assumption that the number of rows retrieved will not exceed n, where n is the
value of the integer.

The OPTIMIZE FOR clause does not limit the number of rows that can be fetched
or affect the result in any way other than performance. In general, if you are
retrieving only a few rows, use OPTIMIZE FOR 1 ROW to influence the access
path that DB2 selects. For more information about using this clause, see DB2
Application Programming and SQL Guide.

with-clause

The WITH clause specifies the isolation level at which the statement is executed.
(Isolation level does not apply to declared temporary tables because no locks are
acquired.)
CS Cursor stability
UR Uncommitted read
RR Repeatable read
RR KEEP UPDATE LOCKS

Repeatable read keep update locks
RS Read stability
RS KEEP UPDATE LOCKS

Read stability keep update locks

WITH UR can be specified only if the result table is read-only.

WITH RR KEEP UPDATE LOCKS or WITH RS KEEP UPDATE LOCKS can be
specified only if the FOR UPDATE OF clause is also specified. KEEP UPDATE
LOCKS tells DB2 to acquire and hold an X lock instead of an U or S lock on all
qualified pages and rows. Although this option can reduce concurrency, it can
prevent some types of deadlocks.

The default isolation level of the statement depends on:
v The isolation of the package or plan that the statement is bound in
v Whether the result table is read-only

If package isolation
is:

And plan isolation
is:

And the result table
is:

Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

�� WITH CS
UR
RR

KEEP UPDATE LOCKS
RS

KEEP UPDATE LOCKS

��

select-statement

Chapter 4. Queries 325

If package isolation
is:

And plan isolation
is:

And the result table
is:

Then the default
isolation is:

UR Any Read-only UR

Not read-only CS

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

See “Notes” on page 668 for a list of the characteristics that make a result table
read-only. A simple way to ensure that a result table is read-only is to specify FOR
FETCH ONLY or FOR READ ONLY in the SQL statement.

queryno-clause

The QUERYNO clause specifies the number to be used for this SQL statement in
EXPLAIN output and trace records. The number is used for the QUERYNO columns
of the plan tables for the rows that contain information about this SQL statement.
This number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application program
is changed and then precompiled, that statement number might change.

Using the QUERYNO clause to assign unique numbers to the SQL statements in a
program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on accessing the
plan table, see Part 5 (Volume 2) of DB2 Administration Guide.

fetch-first-clause

The FETCH FIRST clause limits the number of rows that can be fetched. It
improves the performance of queries with potentially large result sets when only a

�� QUERYNO integer ��

�� FETCH FIRST
1

integer
ROW
ROWS

ONLY ��

select-statement

326 SQL Reference

|
|

|
|
|
|

|
|
|

|

|

|
|

limited number of rows are needed. If the clause is specified, the number of rows
retrieved will not exceed n, where n is the value of the integer. An attempt to fetch
n+1 rows is handled the same way as normal end of data. The value of integer
must be positive and non-zero. The default is 1.

If the OPTIMIZE FOR clause is not specified, a default of ″OPTIMIZE FOR integer
ROWS″ is assumed. If both the FETCH FIRST and OPTIMIZE FOR clauses are
specified, the lower of the integer values from these clauses is used to influence
optimization and the communications buffer size.

If both the FETCH FIRST clause and the ORDER BY clause are specified, the
ordering is performed on the entire result set prior to returning the first n rows.

Examples of select statements
Example 1: Select all the rows from DSN8710.EMP.

SELECT * FROM DSN8710.EMP;

Example 2: Select all the rows from DSN8710.EMP, arranging the result table in
chronological order by date of hiring.

SELECT * FROM DSN8710.EMP ORDER BY HIREDATE;

Example 3: Select the department number (WORKDEPT) and average
departmental salary (SALARY) for all departments in the table DSN8710.EMP.
Arrange the result table in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM DSN8710.EMP
GROUP BY WORKDEPT
ORDER BY 2;

Example 4: Change various salaries, bonuses, and commissions in the table
DSN8710.EMP. Confine the changes to employees in departments D11 and D21.
Use positioned updates to do this with a cursor named UP_CUR. Use a FOR
UPDATE clause in the cursor declaration to indicate that all updatable columns are
updated. Below is the declaration for a PL/I program.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM

FROM DSN8710.EMP
WHERE WORKDEPT IN ('D11','D21')
FOR UPDATE;

Beginning where the cursor is declared, all updatable columns would be updated. If
only specific columns needed to be updated, such as only the salary column, the
FOR UPDATE clause could be used to specify the salary column (FOR UPDATE
OF SALARY).

Example 5: Find the maximum, minimum, and average bonus in the table
DSN8710.EMP. Execute the statement with uncommitted read isolation, regardless
of the value of ISOLATION with which the plan or package containing the statement
is bound. Assign 13 as the query number for the SELECT statement.

EXEC SQL
SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG
FROM DSN8710.EMP
WITH UR
QUERYNO 13;

select-statement

Chapter 4. Queries 327

|
|
|
|

|
|
|
|

|
|

|

If bind option EXPLAIN(YES) is specified, rows are inserted into the plan table. The
value used for the QUERYNO column for these rows is 13.

Example 6: The cursor declaration shown below is in a PL/I program. In the query
within the declaration, X.RMT_TAB is an alias for a table at some other DB2.
Hence, when the query is used, it is processed using DRDA access. See
“Distributed data” on page 14.

The declaration indicates that no positioned updates or deletes will be done with the
query’s cursor. It also specifies that the access path for the query be optimized for
the retrieval of at most 50 rows. Even so, the program can retrieve more than 50
rows from the result table, which consists of the entire table identified by the alias.
However, when more than 50 rows are retrieved, performance could possibly
degrade.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT * FROM X.RMT_TAB
OPTIMIZE FOR 50 ROWS
FOR FETCH ONLY;

The FETCH FIRST clause could be used instead of the OPTIMIZE FOR clause to
ensure that only 50 rows are retrieved as in the following example:

EXEC SQL DECLARE C1 CURSOR FOR
SELECT * FROM X.RMT_TAB
FETCH FIRST 50 ROWS Only;

select-statement

328 SQL Reference

|

|
|

|
|
|

Chapter 5. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements listed in the following table.

Table 33. SQL statements

SQL statement Function Page

ALLOCATE CURSOR Defines and associates a cursor with a result set locator variable 338

ALTER DATABASE Changes the description of a database 340

ALTER FUNCTION (external
scalar)

Changes the description of a user-defined external scalar or table
function

343

ALTER FUNCTION (SQL
scalar)

Changes the description of an SQL scalar function 359

ALTER INDEX Changes the description of an index 366

ALTER PROCEDURE
(external)

Changes the description of a stored procedure 378

ALTER PROCEDURE
(SQL))

Changes the description of an SQL procedure 389

ALTER STOGROUP Changes the description of a storage group 395

ALTER TABLE Changes the description of a table 398

ALTER TABLESPACE Changes the description of a table space 419

ASSOCIATE LOCATORS Gets the result set locator value for each result set returned by a stored
procedure

430

BEGIN DECLARE SECTION Marks the beginning of a host variable declaration section 433

CALL Calls a stored procedure 434

CLOSE Closes a cursor 442

COMMENT Replaces or adds a comment to the description of an object 444

COMMIT Ends a unit of recovery and commits the database changes made by
that unit of recovery

451

CONNECT (Type 1) Connects the process to a server 456

CONNECT (Type 2) Connects the process to a server 462

CREATE ALIAS Defines an alias 466

CREATE AUXILIARY TABLE Defines an auxiliary table for storing LOB data 466

CREATE DATABASE Defines a database 471

CREATE DISTINCT TYPE Defines a distinct type (user-defined data type) 474

CREATE FUNCTION
(external scalar)

Defines a user-defined external scalar function 482

CREATE FUNCTION
(external table)

Defines a user-defined external table function 504

CREATE FUNCTION
(sourced)

Defines a user-defined function that is based on an existing scalar or
column function

521

CREATE FUNCTION (SQL
scalar)

Defines a user-defined SQL scalar function 535

CREATE GLOBAL
TEMPORARY TABLE

Defines a created temporary table at the current server 545

CREATE INDEX Defines an index on a table 550

© Copyright IBM Corp. 1982, 2001 329

|

|
|
||

|
|
||

Table 33. SQL statements (continued)

SQL statement Function Page

CREATE PROCEDURE
(external)

Defines an external stored procedure 566

CREATE PROCEDURE
(SQL)

Defines an SQL procedure 584

CREATE STOGROUP Defines a storage group 596

CREATE SYNONYM Defines an alternate name for a table or view 599

CREATE TABLE Defines a table 601

CREATE TABLESPACE Defines a table space, which includes allocating and formatting the table
space

629

CREATE TRIGGER Defines a trigger 647

CREATE VIEW Defines a view of one or more tables or views 658

DECLARE CURSOR Defines an SQL cursor 665

DECLARE GLOBAL
TEMPORARY TABLE

Defines a declared temporary table at the current server 672

DECLARE STATEMENT Declares names used to identify prepared SQL statements 682

DECLARE TABLE Provides the programmer and the precompiler with a description of a
table or view

683

DECLARE VARIABLE Defines a CCSID for a host variable 685

DELETE Deletes one or more rows from a table 688

DESCRIBE (prepared
statement or TABLE)

Describes the result columns of a prepared statement or the columns of
a table or view

695

DESCRIBE CURSOR Puts information about the result set associated with a cursor into a
descriptor

702

DESCRIBE INPUT Puts information about the input parameters (markers) of a prepared
statement into a descriptor

704

DESCRIBE PROCEDURE Puts information about the result sets returned by a stored procedure
into a descriptor

706

DROP Deletes objects 709

END DECLARE SECTION Marks the end of a host variable declaration section 721

EXECUTE Executes a prepared SQL statement 722

EXECUTE IMMEDIATE Prepares and executes an SQL statement 725

EXPLAIN Obtains information about how an SQL statement would be executed 727

FETCH Positions the cursor (BEFORE/AFTER), returns data (CURRENT), or
both postions the cursor and returns data

739

FREE LOCATOR Removes the association between a LOB locator variable and its value 748

GRANT (collection
privileges)

Grants authority to create a package in a collection 752

GRANT (database
privileges)

Grants privileges on a database 753

GRANT (distinct type or JAR
privileges)

Grants the usage privilege on a distinct type (user-defined data type) or
JARs

755

GRANT (function or
procedure privileges)

Grants privileges on a user-defined function or a stored procedure 757

GRANT (package privileges) Grants authority to bind, execute, or copy a package 762

Statements

330 SQL Reference

|

||
|
|

|
|
|
|
|

Table 33. SQL statements (continued)

SQL statement Function Page

GRANT (plan privileges) Grants authority to bind or execute an application plan 764

GRANT (schema privileges) Grants privileges on a schema 765

GRANT (system privileges) Grants system privileges 765

GRANT (table or view
privileges)

Grants privileges on a table or view 770

GRANT (use privileges) Grants authority to use specified buffer pools, storage groups, or table
spaces

773

HOLD LOCATOR Allows a LOB locator variable to retain its association with its value
beyond a unit of work

775

INCLUDE Inserts declarations into a source program 776

INSERT Inserts one or more rows into a table 778

LABEL ON Replaces or adds a label on the description of a table, view, alias, or
column

784

LOCK TABLE Locks a table or table space partition in shared or exclusive mode 786

OPEN Opens a cursor 788

PREPARE Prepares an SQL statement (with optional parameters) for execution 792

RELEASE (connection) Places one or more connections in the release pending status 805

Table 33. SQL statements (continued)

SQL statement Function Page

SET CONNECTION Establishes the database server of the process by identifying one of its
existing connections

848

SET CURRENT
APPLICATION ENCODING
SCHEME

Assigns a value to the CURRENT APPLICATION ENCODING SCHEME
special register

850

SET CURRENT DEGREE Assigns a value to the CURRENT DEGREE special register 851

SET CURRENT LOCALE
LC_CTYPE

Assigns a value to the CURRENT LOCALE LC_CTYPE special register 853

SET CURRENT
OPTIMIZATION HINT

Assigns a value to the CURRENT OPTIMIZATION HINT special register 855

SET CURRENT
PACKAGESET

Assigns a value to the CURRENT PACKAGESET special register 856

SET CURRENT PRECISION Assigns a value to the CURRENT PRECISION special register 858

SET CURRENT RULES Assigns a value to the CURRENT RULES special register 859

SET CURRENT SQLID Assigns a value to the CURRENT SQLID special register 860

SET host-variable
Assignment

Assigns values to host variables 862

SET PATH Assigns a value to the CURRENT PATH special register 865

SET transition-variable
Assignment

Assigns values to transition variables 868

SIGNAL SQLSTATE Signals an error with a user-specified SQLSTATE and description

UPDATE Updates the values of one or more columns in one or more rows of a
table

872

VALUES Provides a method to invoke a user-defined function from a trigger 882

VALUES INTO Assigns values to host variables 883

WHENEVER Defines actions to be taken on the basis of SQL return codes 885

How SQL statements are invoked
The SQL statements described in this chapter are classified as executable or
nonexecutable. The section on invocation in the description of each statement
indicates whether or not the statement is executable.

Executable statements can be invoked in the following ways:
v Embedded in an application program
v Dynamically prepared and executed
v Dynamically prepared and executed using DB2 ODBC function calls
v Issued interactively

Depending on the statement, you can use some or all of these methods. The
section on invocation in the description of each statement tells you which methods
can be used. See “Appendix B. Characteristics of SQL statements in DB2 for
OS/390 and z/OS” on page 913 for a list of executable statements.

A nonexecutable statement can only be embedded in an application program.

Statements

332 SQL Reference

|
|
|

|
|
|

|
|
||

###

|
|
||

In addition to the statements described in this chapter, there is one more SQL
statement construct: the select-statement. (See “select-statement” on page 321.) It
is not included in this chapter because it is used in a different way from other
statements.

A select-statement can be invoked in the following ways:
v Included in DECLARE CURSOR and implicitly executed by OPEN
v Dynamically prepared, referred to in DECLARE CURSOR, and implicitly executed

by OPEN
v Dynamically executed (no PREPARE required) using a DB2 ODBC function call
v Issued interactively

The first two methods are called, respectively, the static and the dynamic invocation
of select-statement.

Embedding a statement in an application program
You can include SQL statements in a source program that will be submitted to the
precompiler. Such statements are said to be embedded in the application program.
An embedded statement can be placed anywhere in the application program where
a host language statement is allowed. You must precede each embedded statement
with EXEC SQL.

Executable statements: An executable statement embedded in an application
program is executed every time a statement of the host language would be
executed if specified in the same place. (Thus, for example, a statement within a
loop is executed every time the loop is executed, and a statement within a
conditional construct is executed only when the condition is satisfied.)

An embedded statement can contain references to host variables. A host variable
referred to in this way can be used in one of two ways:

As input
The current value of the host variable is used in the execution of the
statement.

As output
The variable is assigned a new value as a result of executing the
statement.

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for each
statement.

The successful or unsuccessful execution of the statement is indicated by setting
the SQLCODE and SQLSTATE fields in the SQLCA.27 You must therefore follow all
executable statements by a test of SQLCODE or SQLSTATE. Alternatively, you can
use the WHENEVER statement (which is itself nonexecutable) to change the flow of
control immediately after the execution of an embedded statement.

Nonexecutable statements: An embedded nonexecutable statement is processed
only by the precompiler. The statement is never executed, and acts as a

27. SQLCODE and SQLSTATE cannot be in the SQLCA when the precompiler option STDSQL(YES) is in effect. See “SQL standard
language” on page 150.

Statements

Chapter 5. Statements 333

“no-operation” if placed among executable statements of the application program.
Therefore, you must not follow such statements by a test of the SQLCODE or
SQLSTATE field in the SQLCA.

Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the application program (for example, input from a terminal).
The statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded)
statement EXECUTE, as described in Part 6 of DB2 Application Programming and
SQL Guide. Alternatively, you can use the (embedded) statement EXECUTE
IMMEDIATE to prepare and execute a statement in one step.

The statement may also be prepared by calling the DB2 ODBC SQLPrepare
function and then executed by calling the DB2 ODBC SQLExecute function. In both
cases, the application does not contain an embedded PREPARE or EXECUTE
statement. You can execute the statement, without preparation, by passing the
statement to the DB2 ODBC SQLExecDirect function.

DB2 ODBC Guide and Reference describes the APIs supported with this interface.

A statement that is going to be prepared must not contain references to host
variables. It can instead contain parameter markers. (See “Parameter markers” on
page 798 in the description of the PREPARE statement for rules concerning
parameter markers.) When the prepared statement is executed, the parameter
markers are effectively replaced by current values of the host variables specified in
the EXECUTE statement. (See “EXECUTE” on page 722 for rules concerning this
replacement.) Once prepared, a statement can be executed several times with
different values of host variables.

Parameter markers are not allowed in the SQL statement prepared and executed
using EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by the
values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the
EXECUTE (or EXECUTE IMMEDIATE) statement. You should check the fields as
described above for embedded statements.

As explained in “Authorization IDs and dynamic SQL” on page 43, the
DYNAMICRULES behavior in effect determines the privilege set that is used for
authorization checking when dynamic SQL statements are processed. Table 34
summarizes those privilege sets. (See Table 2 on page 44 for a list of the
DYNAMICRULES bind option values that determine which behavior is in effect).

Table 34. DYANMICRULES behaviors and authorization checking

DYNAMICRULES
behavior

Privilege set

Run behavior The union of the set of privileges held by each authorization ID of
the process if the dynamically prepared statement is other than an
ALTER, CREATE, DROP, GRANT, RENAME, or REVOKE
statement.

The privileges that are held by the SQL authorization ID of the
process if the dynamic SQL statement is a CREATE, GRANT, or
REVOKE statement.

Statements

334 SQL Reference

Table 34. DYANMICRULES behaviors and authorization checking (continued)

DYNAMICRULES
behavior

Privilege set

Bind behavior The privileges that are held by the primary authorization ID of the
owner of the package or plan.

Define behavior The privileges that are held by the authorization ID of the stored
procedure or user-defined function owner (definer).

Invoke behavior The privileges that are held by the authorization ID of the stored
procedure or user-defined function invoker. However, if the invoker is
the primary authorization ID of the process or the CURRENT SQLID
value, secondary authorization IDs are also checked if they are
needed for the required authorization. Therefore, in that case, the
privilege set is the union of the set of privileges that are held by
each authorization ID.

Static invocation of a SELECT statement
You can include a SELECT statement as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time you open the cursor
by means of the (embedded) statement OPEN. After the cursor is open, you can
retrieve the result table a row at a time by successive executions of the (embedded)
SQL FETCH statement.

If the application is using DB2 ODBC, the SELECT statement is first prepared with
the SQLPrepare function call. It is then executed with the SQLExecute function call.
Data is then fetched with the SQLFetch function call. The application does not
explicitly open the cursor.

The SELECT statement used in this way can contain references to host variables.
These references are effectively replaced by the values that the variables have at
the moment of executing OPEN.

The successful or unsuccessful execution of the SELECT statement is indicated by
the values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the
OPEN. You should check the fields as described above for embedded statements.

If the application is using DB2 ODBC, the successful execution of the SELECT
statement is indicated by the return code from the SQLExecute function call. If
necessary, the application may retrieve the SQLCA by calling the SQLGetSQLCA
function.

Dynamic invocation of a SELECT statement
Your application program can dynamically build a SELECT statement in the form of
a character string placed in a host variable. In general, the statement is built from
some data available to the application program (for example, a query obtained from
a terminal). The statement so constructed can be prepared for execution by means
of the (embedded) statement PREPARE, and referred to by a (nonexecutable)
statement DECLARE CURSOR. The statement is then executed every time you
open the cursor by means of the (embedded) statement OPEN. After the cursor is
open, you can retrieve the result table a row at a time by successive executions of
the (embedded) SQL FETCH statement.

The SELECT statement used in that way must not contain references to host
variables. It can instead contain parameter markers. (See “Notes” in “PREPARE” on
page 792

Statements

Chapter 5. Statements 335

page 791 for rules concerning parameter markers.) The parameter markers are
effectively replaced by the values of the host variables specified in the OPEN
statement. (See “OPEN” on page 788 for rules concerning this replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by
the values returned in the SQLCODE and SQLSTATE fields in the SQLCA after the
OPEN. You should check the fields as described above for embedded statements.

Interactive invocation
IBM relational database management systems allow you to enter SQL statements
from a terminal. DB2 for OS/390 and z/OS provides SPUFI to prepare and execute
these statements. Other products are also available. A statement entered in this
way is said to be issued interactively.

A statement issued interactively must not contain parameter markers or references
to host variables, because these make sense only in the context of an application
program. For the same reason, there is no SQLCA involved.

Checking the execution of SQL statements
An application program that contains executable SQL statements must include one
or both of the following stand-alone host variables:
v SQLCODE (SQLCOD in Fortran)
v SQLSTATE (SQLSTT in Fortran)

Or,
v An SQLCA, which can be provided by using the INCLUDE SQLCA statement

Whether you define stand-alone SQLCODE and SQLSTATE host variables or an
SQLCA in your program depends on the DB2 precompiler option you choose.

If the application is using DB2 ODBC and it calls the SQLGetSQLCA function, it
need only include an SQLCA. Otherwise, all notification of success or errors is
specified with return codes for the various function calls.

When you specify STDSQL(YES), which indicates conformance to the SQL
standard, you should not define an SQLCA. The stand-alone variable for SQLCODE
must be a valid host variable in the DECLARE SECTION of a program. It can also
be declared outside of the DECLARE SECTION when no variable is defined for
SQLSTATE. The stand-alone variable for SQLSTATE must be declared in the
DECLARE SECTION; it must not be declared as an element of a structure.

When you specify STDSQL(NO), which indicates conformance to DB2 rules, you
must include an SQLCA explicitly.

SQLCODE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable for SQLCODE, DB2 sets SQLCODE after each SQL statement
is executed. DB2 conforms to the SQL standard as follows:
v If SQLCODE = 0, execution was successful.
v If SQLCODE > 0, execution was successful with a warning.
v If SQLCODE < 0, execution was not successful.

SQLCODE +100 indicates "no data". For example, a FETCH statement returned no
data because the cursor was positioned after the last row of the result table. The

Statements

336 SQL Reference

SQL standard does not define the meaning of any other specific positive or negative
values of SQLCODE and the meaning of these values is not the same in all
implementations of SQL.

If the application is using DB2 ODBC, an SQLCODE is only returned if the
application issues the SQLGetSQLCA function.

SQLSTATE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable for SQLSTATE, DB2 sets SQLSTATE after each SQL
statement is executed. DB2 returns values that conform to the error specification in
the SQL standard.

If the application is using DB2 ODBC, the SQLSTATE returned conforms to the
ODBC Version 2.0 specification.

SQLSTATE provides application programs with common codes for common error
conditions (the values of SQLSTATE are product-specific if the error or warning is
product-specific). Furthermore, SQLSTATE is designed so that application programs
can test for specific errors or classes of errors. The coding scheme is the same for
all IBM implementations of SQL. The SQLSTATE values are based on the
SQLSTATE specifications contained in the SQL standard.

Error messages and the tokens that are substituted for variables in error messages
are associated with SQLCODE values, not SQLSTATE values.

Statements

Chapter 5. Statements 337

ALLOCATE CURSOR
The ALLOCATE CURSOR statement specifies a cursor and associates it with a
result set locator variable.

Invocation
This statement can be embedded in an application program. It is an executable
statement that can be dynamically prepared. It cannot be issued interactively.

Authorization
None required.

Syntax

Description
cursor-name

Identifies the cursor. The name must not identify a cursor that has already been
declared in the source program.

CURSOR FOR RESULT SET rs-locator-variable
Specifies a result set locator variable that has been declared in the application
program according to the rules for declaring result set locator variables.

The result set locator variable must contain a valid result set locator value, as
returned by the ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL
statement.

Notes
Dynamically prepared ALLOCATE CURSOR statements: The EXECUTE
statement with the USING clause must be used to execute a dynamically prepared
ALLOCATE CURSOR statement. In a dynamically prepared statement, references
to host variables are represented by parameter markers (question marks). In the
ALLOCATE CURSOR statement, rs-locator-variable is always a host variable. Thus,
for a dynamically prepared ALLOCATE CURSOR statement, the USING clause of
the EXECUTE statement must identify the host variable whose value is to be
substituted for the parameter marker that represents rs-locator-variable.

You cannot prepare an ALLOCATE CURSOR statement with a statement identifier
that has already been used in a DECLARE CURSOR statement. For example, the
following SQL statements are invalid because the PREPARE statement uses
STMT1 as an identifier for the ALLOCATE CURSOR statement and STMT1 has
already been used for a DECLARE CURSOR statement.

DECLARE CURSOR C1 FOR STMT1;

PREPARE STMT1 FROM INVALID
'ALLOCATE C2 CURSOR FOR RESULT SET ?';

Rules for using an allocated cursor: The following rules apply when you use an
allocated cursor:

v You cannot open an allocated cursor with the OPEN statement.

�� ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ��

ALLOCATE CURSOR

338 SQL Reference

v You can close an allocated cursor with the CLOSE statement. Closing an
allocated cursor closes the associated cursor defined in the stored procedure.

v You can allocate only one cursor to each result set.

The life of an allocated cursor: A rollback operation, an implicit close, or an
explicit close destroy allocated cursors. A commit operation destroys allocated
cursors that are not defined WITH HOLD by the stored procedure. Destroying an
allocated cursor closes the associated cursor defined in the stored procedure.

Example
The statement in the following example is assumed to be in a PL/I program.

Define and associate cursor C1 with the result set locator variable LOC1 and the
related result set returned by the stored procedure:

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1;

ALLOCATE CURSOR

Chapter 5. Statements 339

ALTER DATABASE
The ALTER DATABASE statement changes the description of a database at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The DROP privilege on the database
v Ownership of the database
v DBADM or DBCTRL authority for the database
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

Syntax

Description
DATABASE database-name

Identifies the database to be altered. The name must identify a database that
exists at the current server.

BUFFERPOOL bpname
Identifies the default buffer pool for the table spaces within the database. It
does not apply to table spaces that already exist within the database.

If the database is a work file database, 8KB and 16KB buffer pools cannot be
specified.

See “Naming conventions” on page 34 for more details about bpname.

INDEXBP bpname
Identifies the default buffer pool for the indexes within the database. It does not
apply to indexes that already exist within the database. The name must identify
a 4KB buffer pool. See “Naming conventions” on page 34 for more details about
bpname.

�� ALTER DATABASE database-name �
(1)

BUFFERPOOL bpname
INDEXBP bpname
STOGROUP stogroup-name
CCSID ccsid-value

��

Notes:

1 The same clause must not be specified more than once.

ALTER DATABASE

340 SQL Reference

INDEXBP cannot be specified for a work file database.

STOGROUP stogroup-name
Identifies the storage group to be used, as required, as a default storage group
to support DASD space requirements for table spaces and indexes within the
database. It does not apply to table spaces and indexes that already exist
within the database.

STOGROUP cannot be specified for a work file database.

CCSID ccsid-value
Identifies the default CCSID for table spaces within the database. It does not
apply to existing table spaces in the database. ccsid-value must identify a
CCSID value that is compatible with the current value of the CCSID for the
database. “Notes” contains a list that shows the CCSID to which a given CCSID
can be altered.

CCSID cannot be specified for a work file database or a TEMP database.

Notes
Altering the CCSID: The ability to alter the default CCSID enables you to change
to a CCSID that supports the Euro symbol. You can only convert between specific
CCSIDs that do and do not define the Euro symbol. In most cases, the codepoint
that supports the Euro symbol replaces an existing codepoint, such as the
International Currency Symbol (ICS).

Changing a CCSID can be disruptive to the system and requires several steps. For
each encoding scheme of a system (ASCII, EBCDIC, and Unicode), DB2 supports
SBCS, DBCS, and mixed CCSIDs. Therefore, the CCSIDs for all databases and all
table spaces within an encoding scheme should be altered at the same time.
Otherwise, unpredictable results might occur.

The recommended method for changing the CCSID requires that the data be
unloaded and reloaded. See Appendix A of DB2 Installation Guide for the steps
needed to change the CCSID, such as running an installation CLIST to modify the
CCSID data in DSNHDECP, when to drop and recreate views, and when to rebind
invalidated plans and packages.

The following lists show the CCSIDs that can be converted. The second CCSID in
each pair is the CCSID with the Euro symbol. The CCSID can be changed from the
CCSID that does not support the Euro symbol to the CCSID that does, and vice
versa. For example, if the current CCSID is 500, it can be changed to 1148.
EBCDIC CCSIDs

37 1140
273 1141
277 1142
278 1143
280 1144
284 1145
285 1146
297 1147
500 1148
871 1149

ALTER DATABASE

Chapter 5. Statements 341

|
|
|
|
|

ASCII CCSIDs

850 858
874 4970
1250 5346
1251 5347
1252 5348
1253 5349
1254 5350
1255 5351
1256 5352
1257 5353

Example
Change the default buffer pool for both table spaces and indexes within database
ABCDE to BP2.

ALTER DATABASE ABCDE
BUFFERPOOL BP2
INDEXBP BP2;

ALTER DATABASE

342 SQL Reference

ALTER FUNCTION (external scalar)
The ALTER FUNCTION statement changes the description of a user-defined
external scalar or external table function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v Ownership of the function
v The ALTERIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the authorization IDs of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as one of these authorization IDs, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v An authorization ID of the process has the ALTERIN privilege on the schema.

If the environment in which the function is to be run is being changed, the
authorization ID must have authority to use the WLM environment specified. The
required authorization is obtained from an external security product, such as RACF.

For external scalar functions, when LANGUAGE is JAVA and a jar-name is specified
in the EXTERNAL NAME clause, the privilege set must include USAGE on the JAR,
the Java ARchive file.

Syntax

�� ALTER

�

FUNCTION function-name
,

()
parameter-type

SPECIFIC FUNCTION specific-name

option-list ��

ALTER FUNCTION (external scalar)

Chapter 5. Statements 343

|
|
|

|
|
|

parameter-type:

�� data-type
(1)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

data-type:

�� built-in-data-type
distinct-type-name

��

ALTER FUNCTION (external scalar)

344 SQL Reference

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID ASCII

(integer) MIXED EBCDIC
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

VARCHAR
CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID ASCII

CLOB (integer) MIXED EBCDIC
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID ASCII

(integer) EBCDIC
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 The values that are specified for length, precision, or scale attributes must match the values that
were specified when the function was created. Coding specific values is optional. Empty
parentheses, (), can be used instead to indicate that DB2 is to ignore the attributes when
determining whether data types match.

2 The value that is specified does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE). 1<=integer<= 21
indicates REAL and 22<=integer<=53 indicates DOUBLE. Coding a specific value is optional.
Empty parentheses cannot be used.

ALTER FUNCTION (external scalar)

Chapter 5. Statements 345

option-list:

��
(1)

EXTERNAL
(2)

NAME ’string’
identifier

LANGUAGE ASSEMBLE
C
COBOL

(3) (4)
JAVA
PLI

�

� PARAMETER STYLE DB2SQL
(3) (4)

JAVA

(5)
NOT DETERMINISTIC
DETERMINISTIC

�

�
(6)

RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

READS SQL DATA
CONTAINS SQL

(4)
MODIFIES SQL DATA
NO SQL

NO EXTERNAL ACTION
EXTERNAL ACTION

�

� NO SCRATCHPAD
SCRATCHPAD length

NO FINAL CALL
FINAL CALL

(4)
ALLOW PARALLEL
DISALLOW PARALLEL

NO DBINFO
DBINFO

�

�
(7)

CARDINALITY integer NO COLLID
COLLID collection-id

WLM ENVIRONMENT name
(name ,*)

�

� ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

PROGRAM TYPE SUB
MAIN

�

� SECURITY DB2
USER
DEFINER

�

� RUN OPTIONS run-time-options INHERIT SPECIAL REGISTERS
DEFAULT SPECIAL REGISTERS

��

Notes:

1 The clauses in the option-list can be specified in any order. The same clause must not be
specified more than once.

2 If LANGUAGE is JAVA, EXTERNAL NAME must be specified with a ’string’ that is a valid
external-java-routine-name. See the following figure.

3 When LANGUAGE JAVA is specified, PARAMETER STYLE JAVA must also be specified. When
PARAMETER STYLE JAVA is specified, LANGUAGE JAVA must be also be specified.

4 LANGUAGE JAVA, PARAMETER STYLE JAVA, MODIFIES SQL DATA, and ALLOW PARALLEL
are not supported for external table functions.

5 Synonyms for this clause include VARIANT for NOT DETERMINISTIC, and NOT VARIANT for
DETERMINISTIC.

6 Synonyms for this clause include NOT NULL CALL for RETURNS NULL ON NULL INPUT, and
NULL CALL for CALLED ON NULL INPUT.

7 CARDINALITY is not supported for external scalar functions.

ALTER FUNCTION (external scalar)

346 SQL Reference

Description
One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the external function by its function name. The name is implicitly or
explicitly qualified with a schema name. If the name is not explicitly qualified, it
is implicitly qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

v If the statement is prepared dynamically, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

The identified function must be an external function. There must be exactly one
function with function-name in the schema. The function can have any number

external-java-routine-name:

jar-name:
method-name

method-signature

jar-name:

schema-name.
jar-id

method-name:

�

package-id .
(1)

/

class-id .
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with DB2 for OS/390 Version 5 and Version 6.

2 The exclamation point (!) is supported for compatibility with DB2 UWO.

ALTER FUNCTION (external scalar)

Chapter 5. Statements 347

|

|||||||||||||||||||||||

|

|

||||||||||||||||

|

|

||

|

|

|||||||||||||||||||||||||||

|

|

||

||
|
|

of input parameters. If the schema does not contain a function with
function-name or contains more than one function with this name, an error
occurs.

FUNCTION function-name (parameter-type,...)
Identifies the external function by its function signature, which uniquely identifies
the function.

function-name
Gives the function name of the external function. If the function name is not
qualified, it is implicitly qualified with a schema name as described in the
preceding description for FUNCTION function-name.

(parameter-type,...)
Identifies the number of input parameters of the function and their data
types.

The data type of each parameter must match the data type that was
specified in the CREATE FUNCTION statement for the parameter in the
corresponding position. The number of data types and the logical
concatenation of the data types are used to uniquely identify the function.
Therefore, you cannot change the number of parameters or the data types
of the parameters.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

v Empty parentheses indicate that DB2 is to ignore the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute, the
value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates REAL
and 22<=n<=53 indicates DOUBLE. Matching is based on whether the
data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE TABLE”
on page 601.

For data types with a subtype or encoding scheme attribute, specifying the
FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that DB2 is to ignore the attribute when determining whether the
data types match. If you specify either clause, it must match the value that
was implicitly or explicitly specified in the CREATE FUNCTION statement.

ALTER FUNCTION (external scalar)

348 SQL Reference

See “CREATE FUNCTION” on page 481 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly
specified schema; otherwise, an error occurs.

SPECIFIC FUNCTION specific-name
Identifies the external function by its specific name. The name is implicitly or
explicitly qualified with a schema name. A function with the specific name must
exist in the schema; otherwise, an error occurs.

If the specific name is not qualified, it is implicitly qualified with a schema name
as described in the preceding description for FUNCTION function-name.

The following clauses change the description of the function that has been identified
to be changed.

EXTERNAL
Identifies the program that runs when the function is invoked.

DB2 loads the load module when the function is invoked. The load module is
created when the program that contains the function body is compiled and
link-edited. The load module does not need to exist when the ALTER
FUNCTION statement is executed. However, it must exist and be accessible by
the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME ’string’ or identifier
Identifies the user-written code that implements the user-defined function.

If LANGUAGE is JAVA, ’string’ must be specified and enclosed in single
quotation marks, with no extraneous blanks within the single quotation
marks. It must specify a valid external-java-routine-name. If multiple ’string’s
are specified, the total length of all of them must not be greater than 1305
bytes and they must be separated by a space or a line break. Do not
specify a JAR for a JAVA function for which NO SQL is in effect.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR when it was installed in the
database. The name contains jar-id, which can optionally be qualified
with a schema. Examples are ″myJar″ and ″mySchema.myJar.″ The
unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the package or
plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

ALTER FUNCTION (external scalar)

Chapter 5. Statements 349

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|

|
|

|
|
|
|
#
#

|

|
|
|
|
|
|

|
|
|
|

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SQLID special register.

If jar-name is specified, it must exist when the ALTER FUNCTION
statement is processed.

If jar-name is not specified, the function is loaded from the class file
directly instead of being loaded from a JAR file. DB2 for DB2 for
OS/390 and z/OS searches the directories in the CLASSPATH
associated with the WLM Environment. Environmental variables for
Java routines are specified in a dataset identified in a JAVAENV DD
card on the JCL used to start the address space for a WLM-managed
function.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method ID’s are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies the package list that the class identifier is part of. If the
class is part of a package, the method name must include the
complete package prefix, such as ″myPacks.UserFuncs.″ The Java
virtual machine looks in the directory ″/myPacks/UserFuncs/″ for the
classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature
if the user-defined function involves any input or output parameters that
can be NULL. When the function being created is called, DB2 searches
for a Java method with the exact method-signature. The number of
java-datatype elements specified indicates how many parameters that
the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java
method-signature is not specified, DB2 searches for a Java method with
a signature derived from the default JDBC types associated with the
SQL types specified in the parameter list of the ALTER FUNCTION
statement.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters or a short identifier. It must conform to the
naming conventions for MVS load modules. Alphabetical extenders for
national languages can be used as the first character and as subsequent
characters in the load module name.

If you do not specify the NAME clause, ’NAME function-name’ is implicit. In
this case, function-name must not be longer than 8 characters.

ALTER FUNCTION (external scalar)

350 SQL Reference

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

LANGUAGE
Specifies the application programming language in which the function is written.
All programs must be designed to run in IBM’s Language Environment®

environment .

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++.

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

JAVA
The user-defined function is written in Java byte code and is executed in
the OS/390 Java Virtual Machine. If the ALTER FUNCTION statement
results in changing LANGUAGE to JAVA, PARAMETER STYLE JAVA and
an EXTERNAL NAME clause must be specified to provide the appropriate
values. When LANGUAGE JAVA is specified, the EXTERNAL NAME clause
must also be specified with a valid external-java-routine-name and
PARAMETER STYLE must be specified with JAVA.

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL,
DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is in effect. Do not
specify LANGUAGE JAVA for a table function.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the linkage convention that the function program uses to receive input
parameters from and pass return values to the invoking SQL statement.

DB2SQL
Indicates that parameters for indicator variables are associated with each
input and return value to allow for null values. The parameters that are
passed between the invoking SQL statement and the function include:
v The first n parameters are the input parameters that are specified for the

function
v A parameter for the result of the function
v n parameters for the indicator variables for the input parameters
v A parameter for the indicator variable for the result
v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2

Zero to three additional parameters might also be passed:
v The scratchpad, if SCRATCHPAD is specified
v The call type, if NO FINAL CALL is specified
v The DBINFO structure, if DBINFO is specified

JAVA
Indicates that the user-defined function uses a convention for passing
parameters that conforms to the Java and SQLJ specifications. If the
ALTER FUNCTION statement results in changing LANGUAGE to JAVA,
PARAMETER STYLE JAVA and an EXTERNAL NAME clause must be
specified to provide the appropriate values. PARAMETER STYLE JAVA can

ALTER FUNCTION (external scalar)

Chapter 5. Statements 351

|

|
|
|
|
|
|
|
|

#
#
#

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

be specified only if LANGUAGE is JAVA. JAVA must be specified for
PARAMETER STYLE when LANGUAGE is JAVA.

Do not specify PARAMETER STYLE JAVA for a table function.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments.

NOT DETERMINISTIC
The function might not return the same result for identical input arguments.
The function depends on some state values that affect the results. DB2
uses this information when processing a SELECT, UPDATE, DELETE, or
INSERT statement to disable merging of views that refer to the function. An
example of a function that is not deterministic is one that generates random
numbers, or any function that contains SQL statements.

Some SQL functions that invoke functions that are not deterministic can
receive incorrect results if the function is executed by parallel tasks. Specify
the DISALLOW PARALLEL clause for these functions.

If a view refers to the function, the function cannot be changed to NOT
DETERMINISTIC. To change the function, drop any views that refer to the
function first.

DETERMINISTIC
The function always returns the same result for identical input arguments.
DB2 can use this information to optimize view processing for SELECT,
UPDATE, DELETE, or INSERT statements. An example of a deterministic
function is a function that calculates the square root of the input.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON NULL INPUT
The function is not called if any of the input arguments is null. For an
external scalar function, the result is the null value. For an external table
function, the result is an empty table, which is a table with no rows.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments is
null, making the function responsible for testing for null argument values.
For an external scalar function, the function can return a null or nonnull
value. For an external table function, the function can return an empty table,
depending on its logic.

NO SQL, MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Indicates whether the function issues any SQL statements and, if so, what type.
DB2 verifies that the SQL issued by the function is consistent with this
specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

NO SQL
The function does not execute SQL statements. Do not specify NO SQL for
a JAVA function that uses a JAR.

MODIFIES SQL DATA
The function might execute any SQL statement except those statements

ALTER FUNCTION (external scalar)

352 SQL Reference

|
|

#

|

#
#

|

that are not supported in any function. Do not specify MODIFIES SQL
DATA for external table functions or when ALLOW PARALLEL is in effect.

READS SQL DATA
The function does not execute SQL statements that modify data. SQL
statements that are not supported in any function return a different error.

READS SQL DATA is the default.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.
SQL statements that are not supported in any function return a different
error.

NO EXTERNAL ACTION or EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for external functions, DB2 can
participate in two-phase commit with any other resource manager that uses
RRS. For resource managers that do not use RRS, there is no coordination of
commit or rollback operations on non-DB2 resources.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 can use this information to optimize the
processing of views for SELECT, UPDATE, DELETE or INSERT
statements.

EXTERNAL ACTION
The function can take an action that changes the state of an object that
DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, DB2:

v Materializes the views in SELECT, UPDATE, DELETE or INSERT
statements that refer to the function.

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

If a view refers to the function, the function cannot be changed to
EXTERNAL ACTION. To change the function, drop any views that refer to
the function first.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

ALTER FUNCTION (external scalar)

Chapter 5. Statements 353

|
|

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 is to provide a scratchpad for the function. It is strongly
recommended that external functions be reentrant, and a scratchpad provides
an area for the function to save information from one invocation to the next.

NO SCRATCHPAD
A scratchpad is not allocated and passed to the function.

SCRATCHPAD length
When the function is invoked for the first time, DB2 allocates memory for a
scratchpad. A scratchpad has the following characteristics:

v length must be between 1 and 32767. The default value is 100 bytes.

v DB2 initializes the scratchpad to all binary zeros (X'00's).

v The scope of a scratchpad is the SQL statement. For each reference to
the function in an SQL statement, there is one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that do not work correctly with parallelism.

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2
initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so that
the function can free those system resources.

Each time that the function is invoked, DB2 passes an additional argument
to the function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:

v Does not move the function from one TCB or address space to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until the
cursor is closed. This is also applicable for cursors declared WITH HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is in effect.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the
function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the
function acquires system resource and anchors them in the scratchpad.

ALTER FUNCTION (external scalar)

354 SQL Reference

|

The effect of NO FINAL CALL or FINAL call depends on whether the external
function is a scalar function or a table function.

For an external scalar function:

NO FINAL CALL
A final call is not made to the external scalar function. The function does
not receive an additional argument that specifies the type of call.

FINAL CALL
A final call is made to the external scalar function. See the following
description of call types for the characteristics of a final call. When FINAL
CALL is specified, the function receives an additional argument that
specifies the type of call to enable the function to differentiate between a
final call and another type of call. Do not specify FINAL CALL when
LANGUAGE JAVA is in effect.

For more information on NO FINAL CALL and FINAL CALL for external scalar
functions, including the types of calls, see the description of the option for
“CREATE FUNCTION (external scalar)” on page 482.

For an external table function:

NO FINAL CALL
A first and final call are not made to the external table function.

FINAL CALL
A first call and final call are made to the external table function in addition
to one or more other types of calls.

For both NO FINAL CALL and FINAL CALL, the function receives an additional
argument that specifies the type of call. For more information on NO FINAL
CALL and FINAL CALL for external table functions, including the types of calls,
see the description of the option for “CREATE FUNCTION (external table)” on
page 504.

ALLOW or DISALLOW PARALLEL
Specifies whether, for a single reference to the function, the function can be
executed in parallel. If the function is defined with MODIFIES SQL DATA,
specify DISALLOW PARALLEL, not ALLOW PARALLEL.

ALLOW PARALLEL
Specifies that DB2 can consider parallelism for the function. Parallelism is
not forced on the SQL statement that invokes the function or on any SQL
statement in the function. Existing restrictions on parallelism apply.

See SCRATCHPAD, EXTERNAL ACTION, and FINAL CALL for
considerations when specifying ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether specific information that DB2 knows is passed to the function
when it is invoked.

NO DBINFO
Additional information is not passed.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application

ALTER FUNCTION (external scalar)

Chapter 5. Statements 355

|
|

|
|

run-time authorization ID, the schema name, the name of a table or column
that the function might be inserting into or updating, and identification of the
database server that invoked the function. For details about the argument
and its structure, see DB2 Application Programming and SQL Guide.

Do not specify DBINFO when LANGUAGE JAVA is in effect.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must range
from 0 to 2147483647.

If a function has an infinite cardinality—the function never returns the
“end-of-table” condition and always returns a row, then a query that requires the
“end-of-table” to work correctly, will need to be interrupted. Thus, avoid using
such functions in queries that involve GROUP BY and ORDER BY.

Do not specify CARDINALITY for external scalar functions.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function program is bound.

NO COLLID
The package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, the package collection is the value of the
CURRENT PACKAGESET special register.

COLLID collection-id
The name of the package collection that is to be used when the function is
executed.

WLM ENVIRONMENT
A long SQL identifier that identifies the name of the WLM (MVS workload
manager) application environment in which the function is to run.

name
The WLM environment in which the function must run. If the user-defined
function is nested and if the calling stored procedure or invoking
user-defined function is not running in an address space associated with
the specified WLM environment, DB2 routes the function request to a
different MVS address space.

(name,*)
When an SQL application program calls the function, name specifies the
WLM environment in which the function runs.

If another user-defined function or a stored procedure calls the function, the
function runs in the same environment that the calling routine uses. In this
case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

The name of the WLM environment is a long identifier.

To change the environment in which the function is to run, you must have
appropriate authority for the WLM environment. For an example of a RACF
command that provides this authorization, see “Running stored procedures” on
page 582.

ALTER FUNCTION (external scalar)

356 SQL Reference

|

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a function, setting a limit can be helpful if the function
gets caught in a loop. For information on service units, see OS/390 MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to
2GB-1. If the function uses more service units than the specified value, DB2
cancels the function.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends.

NO
The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions.

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

SUB
The function runs as a subroutine.

MAIN
The function runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is in effect.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID associated with the
WLM-established stored procedure address space.

USER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the primary authorization ID of the process
that invoked the function.

DEFINER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the authorization ID of the owner of the
function.

ALTER FUNCTION (external scalar)

Chapter 5. Statements 357

#

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the
function. You must specify run-time-options as a character string that is no
longer than 254 bytes. To replace any existing run-time options with no options,
specify an empty string with RUN OPTIONS. When you specify an empty string,
DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

Do not specify RUN OPTIONS when LANGUAGE JAVA is in effect.

INHERIT SPECIAL REGISTERS
Indicates that special registers should be inherited according to the rules listed
in the table for characteristics of special registers in a user-defined function in
Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers should be initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
user-defined function in Table 19 on page 92.

Notes
Changes are immediate: Any changes that the ALTER FUNCTION statement
causes to the definition of an external function take effect immediately. The changed
definition is used the next time that the function is invoked.

Invalidation of plans and packages: When an external function is altered, all the
plans and packages that refer to that function are marked invalid.

Examples
Example 1: Assume that there are two functions CENTER in the PELLOW schema.
The first function has two input parameters with INTEGER and FLOAT data types,
respectively. The specific name for the first function is FOCUS1. The second
function has three parameters with CHAR(25), DEC(5,2), and INTEGER data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME2.

ALTER SPECIFIC FUNCTION ENGLES.FOCUS1 WLM ENVIRONMENT WLMENVNAME2;

Example 2: Change the second function that is described in Example 1 so that it is
not invoked when any of the arguments are null. Use the function signature to
identify the function,

ALTER FUNCTION ENGLES.CENTER (CHAR(25), DEC(5,2), INTEGER)
RETURNS NULL ON NULL INPUT;

You can also code the ALTER FUNCTION statement without the exact values for
the CHAR and DEC data types:

ALTER FUNCTION ENGLES.CENTER (CHAR(), DEC(), INTEGER)
RETURNS NULL ON NULL INPUT;

If you use empty parentheses, DB2 is to ignore the length, precision, and scale
attributes when looking for matching data types to find the function.

ALTER FUNCTION (external scalar)

358 SQL Reference

|

|
|
|
|

|
|
|
|

ALTER FUNCTION (SQL scalar)
The ALTER FUNCTION (SQL) statement changes the description of a user-defined
SQL scalar function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v Ownership of the function
v The ALTERIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the authorization IDs of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as one of these authorization IDs, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v An authorization ID of the process has the ALTERIN privilege on the schema.

Syntax

�� ALTER FUNCTION

�

function-name
,

()
parameter-type

SPECIFIC FUNCTION function-name

option-list ��

parameter-type:

��

data-type:

�� built-in-data-type
distinct-type-name

��

ALTER FUNCTION (SQL scalar)

360 SQL Reference

|

||||||||||||||

|
|
|
|

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID ASCII

(integer) MIXED EBCDIC
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

VARCHAR
CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID ASCII

CLOB (integer) MIXED EBCDIC
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID ASCII

(integer) EBCDIC
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 The values that are specified for length, precision, or scale attributes must match the values that
were specified when the function was created. Coding specific values is optional. Empty
parentheses, (), can be used instead to indicate that DB2 is to ignore the attributes when
determining whether data types match.

2 The value that is specified does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE). 1<=integer<= 21
indicates REAL and 22<=integer<=53 indicates DOUBLE. Coding a specific value is optional.
Empty parentheses cannot be used.

ALTER FUNCTION (SQL scalar)

Chapter 5. Statements 361

|

|||

|

|

||
|
|
|

||
|
|
|
|
|
|

Description
One of the following three clauses identifies the function to be changed.

FUNCTION function-name
Identifies the SQL function by its function name. The name is implicitly or
explicitly qualified with a schema name. If the name is not explicitly qualified, it
is implicitly qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

v If the statement is prepared dynamically, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

The identified function must be an SQL function. There must be exactly one
function with function-name in the schema. The function can have any number
of input parameters. If the schema does not contain a function with
function-name or contains more than one function with this name, an error
occurs.

FUNCTION function-name (parameter-type,...)
Identifies the SQL function by its function signature, which uniquely identifies
the function.

function-name
Gives the function name of the SQL function. If the function name is not
qualified, it is implicitly qualified with a schema name as described in the
preceding description for FUNCTION function-name.

(parameter-type,...)
Identifies the number of input parameters of the function and the data type
of each parameter.The data type of each parameter must match the data
type that was specified in the CREATE FUNCTION statement for the
parameter in the corresponding position. The number of data types and the

option-list:

��

(1)
LANGUAGE SQL STATIC DISPATCH CALLED ON NULL INPUT

�

�
(2)

NOT DETERMINISTIC
DETERMINISTIC

EXTERNAL ACTION
NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL
��

Notes:

1 This clause and the other clauses in the option-list can be specified in any order. However, the
same clause cannot be specified more than once.

2 Synonyms for this clause include VARIANT for NOT DETERMINISTIC, and NOT VARIANT for
DETERMINISTIC.

ALTER FUNCTION (SQL scalar)

362 SQL Reference

|

|||||||||||||||||||||||||||||||
|

|
|||

|

|

||
|

||
|
|
|
|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

logical concatenation of the data types are used to uniquely identify the
function. Therefore, you cannot change the number of parameters or the
data types of the parameters.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

v Empty parentheses indicate that DB2 is to ignore the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute, the
value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates REAL
and 22<=n<=53 indicates DOUBLE. Matching is based on whether the
data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE TABLE”
on page 601.

For data types with a subtype or encoding scheme attribute, specifying the
FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that DB2 is to ignore the attribute when determining whether the
data types match. If you specify either clause, it must match the value that
was implicitly or explicitly specified in the CREATE FUNCTION statement.

See “CREATE FUNCTION” on page 481 for more information on the
specification of the parameter list.

A function with the function signature must exist in the explicitly or implicitly
specified schema; otherwise, an error occurs.

SPECIFIC FUNCTION function-name
Identifies the SQL function by its specific name. The name is implicitly or
explicitly qualified with a schema name. A function with the specific name must
exist in the schema; otherwise, an error occurs.

If the specific name is not qualified, it is implicitly qualified with a schema name
as described in the preceding description for FUNCTION function-name.

The following clauses change the description of the function that has been identified
to be changed.

LANGUAGE SQL
Specifies the application programming language in which the stored function is

ALTER FUNCTION (SQL scalar)

Chapter 5. Statements 363

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
||
||
||
||

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

written. The value of the function is written as DB2 SQL in the expression of the
RETURN clause in the CREATE FUNCTION statement. LANGUAGE SQL is the
default.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments.

NOT DETERMINISTIC
The function might not return the same result for identical input arguments.
The function depends on some state values that affect the results. DB2
uses this information when processing a SELECT, UPDATE, DELETE, or
INSERT statement to disable the merging of views that refer to the function.
An example of a function that is not deterministic is one that generates
random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the
function program accesses a special register or invokes another
non-deterministic function. NOT DETERMINISTIC is the default.

DETERMINISTIC
The function always returns the same result for identical input arguments.
DB2 can use this information to optimize view processing for SELECT,
UPDATE, DELETE, or INSERT statements. An example of a deterministic
function is a function that calculates the square root of the input.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

EXTERNAL ACTION
The function can take an action that changes the state of an object that
DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, then DB2:

v Materializes the views in SELECT, UPDATE, DELETE or INSERT
statements that refer to the function.

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

ALTER FUNCTION (SQL scalar)

364 SQL Reference

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

EXTERNAL ACTION must be specified explicitly or implicitly if the function
program invokes another function that has an external action. EXTERNAL
ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 can use this information to optimize the
processing of views for SELECT, UPDATE, DELETE or INSERT
statements.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

READS SQL DATA or CONTAINS SQL
Indicates whether the function can execute any SQL statements and, if so, what
type. DB2 verifies that the SQL issued by the function is consistent with this
specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

READS SQL DATA
The function does not execute SQL statements that modify data. SQL
statements that are not supported in any function return a different error.

READS SQL DATA is the default.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.
SQL statements that are not supported in any function return a different
error.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments is null,
making the function responsible for testing for null arguments. The function can
return null. CALLED ON NULL INPUT is the default.

Notes
Changes are immediate: Any changes that the ALTER FUNCTION statement
causes to the definition of an SQL function take effect immediately. The changed
definition is used the next time that the function is invoked.

Invalidation of plans and packages: When an SQL function is altered, all the
plans and packages that refer to that function are marked invalid.

Examples
Example 1: Modify the definition for an SQL function to indicate that the function is
deterministic.

ALTER FUNCTION MY_UDF1 DETERMINISTIC;

ALTER FUNCTION (SQL scalar)

Chapter 5. Statements 365

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

|

ALTER INDEX
The ALTER INDEX statement changes the description of an index at the current
server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include one of the following:
v Ownership of the index
v Ownership of the table on which the index is defined
v DBADM authority for the database that contains the table
v SYSADM or SYSCTRL authority

If BUFFERPOOL or USING STOGROUP is specified, additional privileges could be
needed, as explained in the description of those clauses.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

ALTER INDEX

366 SQL Reference

Syntax

��
(1)

ALTER INDEX index-name �
(2)

BUFFERPOOL bpname
CLOSE YES

NO
COPY NO

YES
(3)

PIECESIZE integer K
M
G

using-block
free-block
gbpcache-block

�

�

� �

�

,

(4) (2)
PART integer

, using-block
free-block

VALUES (constant) gbpcache-block

��

Notes:

1 At least one clause must be specified after index-name. It can be from the optional list or it can be
PART.

2 The same clause must not be specified more than once.

3 The PIECESIZE clause can only be specified for nonpartitioning indexes. When you use
PIECESIZE, the index is placed into REBUILD-pending (PSRBD) status and is inaccessible. You
must use the REBUILD INDEX or the REORG TABLESPACE utility to remove that status.

4 The PART clause can only be specified for partitioning indexes. Any PART clauses that are
specified must be specified last.

ALTER INDEX

Chapter 5. Statements 367

Description
index-name

Identifies the index to be altered. The name must identify a user-created index
that exists at the current server. The name must not identify an index that is
defined on a declared temporary table.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the index. The bpname must identify an
activated 4KB buffer pool, and the privilege set must include SYSADM authority,
SYSCTRL authority, or the USE privilege for the buffer pool. See “Naming
conventions” on page 34 for more details about bpname.

The change to the description of the index takes effect the next time the data
sets of the index space are opened. The data sets can be closed and reopened

using-block:

�� �
(1)

USING VCAT catalog-name
STOGROUP stogroup-name

PRIQTY integer
SECQTY integer
ERASE YES

NO

��

Notes:

1 The same clause must not be specified more than once.

free-block:

�� �
(1)

FREEPAGE integer
PCTFREE integer

��

Notes:

1 The same clause must not be specified more than once.

gbpcache-block:

�� GBPCACHE CHANGED
ALL
NONE

��

ALTER INDEX

368 SQL Reference

by a STOP DATABASE command to stop the index followed by a START
DATABASE command to start the index.

In a data sharing environment, if you specify BUFFERPOOL, the index space
must be in the stopped state when the ALTER INDEX statement is executed.

CLOSE
Specifies whether the data set is eligible to be closed when the index is not
being used and the limit on the number of open data sets is reached. The
change to the close rule takes effect the next time the data sets of the index
space are opened.

YES
Eligible for closing.

NO
Not eligible for closing.

If DSMAX is reached and there are no CLOSE YES page sets to close,
CLOSE NO page sets will be closed.

COPY
Indicates whether the COPY utility is allowed for the index.

NO
Does not allow full image or concurrent copies or the use of the RECOVER
utility on the index.

YES
Allows full image or concurrent copies and the use the RECOVER utility on
the index.

PIECESIZE integer
Specifies the maximum addressability of each piece (data set) for a
nonpartitioning index.

Be very aware that when you alter the PIECESIZE value, the index is placed
into page set REBUILD-pending (PSRBD) status. The entire index space
becomes inaccessible. You must run the REBUILD INDEX or the REORG
TABLESPACE utility to remove that status.

The subsequent keyword K, M, or G, indicates the units of the value specified
in integer.

K Indicates that the integer value is to be multiplied by 1 024 to specify
the maximum piece size in bytes. The integer must be a power of two
between 256 and 67 108 864.

M Indicates that the integer value is to be multiplied by 1 048 576 to
specify the maximum piece size in bytes. The integer must be a power
of two between 1 and 65 536.

G Indicates that the integer value is to be multiplied by 1 073 741 824 to
specify the maximum piece size in bytes. The integer must be a power
of two between 1 and 64.

Table 35 on page 370 shows the valid values for piece size, which depend on
the size of the table space.

ALTER INDEX

Chapter 5. Statements 369

#
#
#
#

Table 35. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

254 K
512 K
1024 K
2048 K
4096 K
8192 K
16384 K
32768 K
65536 K
131072 K
262144 K
524288 K
1048576 K
2097152 K
4194304 K
8388608 K
16777216 K
33554432 K
67108864 K

-
-
1 M
2 M
4 M
8 M
16 M
32 M
64 M
128 M
256 M
512 M
1024 M
2048 M
4096 M
8192 M
16384 M
32768 M
65536 M

-
-
-
-
-
-
-
-
-
-
-
-
1 G
2 G
4 G
8 G
16 G
32 G
64 G

-
-
-
-
-
-
-
-
-
-
-
-
-
-
LARGE, DSSIZE 4 G (or greater)
DSSIZE 8 G (or greater)
DSSIZE 16 G (or greater)
DSSIZE 32 G (or greater)
DSSIZE 64 G

ALTER INDEX

370 SQL Reference

using-block

The components of the using-block are discussed below, first for nonpartitioning
indexes and then for partitioning indexes.

Using Block for Nonpartitioning Indexes
For nonpartitioning indexes, the USING clause specifies whether the data sets
for the index are to be managed by the user or managed by DB2. The USING
clause applies to every data set that can be used for the index.

If you specify USING, the index must be in the stopped state when the ALTER
INDEX statement is executed. See “Altering storage attributes” on page 376 to
determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of a
short identifier. Thus, you must specify an alias if the name of the integrated
catalog facility catalog is longer than eight characters. When the new
description of the index is applied, the integrated catalog facility catalog
must contain an entry for the data set the conforms to the DB2 naming
conventions set forth in Part 2 (Volume 1) of DB2 Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

STOGROUP stogroup-name
Specifies using a DB2-managed data set that resides on a volume of the
specified storage group. The stogroup name must identify a storage group
that exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the index is applied, the description of the
storage group must include at least one volume serial number. Each
volume serial number must identify a volume that is accessible to MVS for
dynamic allocation of the data set, and all identified volumes must be of the
same device type. Furthermore, the integrated catalog facility catalog used
for the storage group must not contain an entry for the data set.

If you specify USING STOGROUP and omit the PRIQTY, SECQTY, or
ERASE clause, the implicit value of the omitted clause is its current value
when the current data set is DB2-managed. If the current data set is being
changed from being user-managed to DB2-managed, the implicit value of
the omitted clause is its default value, which are:

v PRIQTY 12 when PRIQTY is omitted

v SECQTY 12 when PRIQTY and SECQTY are omitted. When SECQTY is
omitted but PRIQTY is specified, SECQTY is either 10% of PRIQTY or 3
times the index page size (4K), whichever is larger.

v ERASE NO when ERASE is omitted

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set.
This clause can be specified only if the data set is currently managed by DB2
and USING VCAT is not specified.

If PRIQTY is specified, the primary space allocation is at least n kilobytes,
where n is:

12 If integer is less than 12

ALTER INDEX

Chapter 5. Statements 371

integer If integer is between 12 and 4194304
4194304 If integer is greater than 4194304

If USING STOGROUP is specified and PRIQTY is omitted, the value of
PRIQTY is its current value. (However, if the current data set is being changed
from being user-managed to DB2-managed, the value is its default value. See
the description of USING STOGROUP.)

DB2 specifies the primary space allocation to access method services using the
smallest multiple of 4KB not less than n. The allocated space can be greater
than the amount of space requested by DB2. For example, it could be the
smallest number of tracks that will accommodate the space requested. To more
closely estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method Services for the
Integrated Catalog.

When determining a suitable value for PRIQTY, be aware that two of the pages
of the primary space are used by DB2 for purposes other than storing index
entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data
set. This clause can be specified only if the data set is currently managed by
DB2 and USING VCAT is not specified.

If SECQTY is specified, the secondary space allocation is at least n kilobytes,
where n is:

integer If integer is not greater than 4194304
4194304 If integer is greater than 4194304

If integer is 0, no data set for the index can be extended.

If USING STOGROUP is specified and SECQTY is omitted, the value of
SECQTY is its current value. (However, if the current data set is being changed
from being user-managed to DB2-managed, the value is its default value. See
the description of USING STOGROUP.)

DB2 specifies the secondary space allocation to access method services using
the smallest multiple of 4KB not less than n. The allocated space can be
greater than the amount of space requested by DB2. For example, it could be
the smallest number of tracks that will accommodate the space requested. To
more closely estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method Services for the
Integrated Catalog.

ERASE
Indicates whether the DB2-managed data sets are to be erased when they are
deleted during the execution of a utility or an SQL statement that drops the
index. Refer to DFSMS/MVS: Access Method Services for the Integrated
Catalog for more information.

NO
Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

ALTER INDEX

372 SQL Reference

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is currently managed by DB2
and USING VCAT is not specified. If you specify ERASE, the index must be in
the stopped state when the ALTER INDEX statement is executed. See “Altering
storage attributes” on page 376 to determine how and when changes take
effect.

USING Block for Partitioning Indexes:
For a partitioning index, there is an optional PART clause for each partition. A
using-block can be specified at the global level or at the partition level. A
using-block within a PART clause applies only to that partition. A using-block
specified before any PART clauses applies to every partition except those with
a PART clause with a using-block.

For DB2-managed data sets, the values of PRIQTY, SECQTY, and ERASE for
each partition are given by the first of these choices that applies:

v The values of PRIQTY, SECQTY, and ERASE given in the using-block within
the PART clause for the partition. Do not use more than one using-block in
any PART clause.

v The values of PRIQTY, SECQTY, and ERASE given in a using-block before
any PART clauses

v The current values of PRIQTY, SECQTY, and ERASE

For data sets that are being changed from user-managed to DB2-managed, the
values of PRIQTY, SECQTY, and ERASE for each partition are given by the
first of these choices that applies:

v The values of PRIQTY, SECQTY, and ERASE given in the using-block within
the PART clause for the partition. Do not use more than one using-block in
any PART clause.

v The values of PRIQTY, SECQTY, and ERASE given in a using-block before
any PART clauses

v The default values of PRIQTY, SECQTY, and ERASE, which are:

– PRIQTY 12

– SECQTY 12, if PRIQTY is not specified in either using-block, or 10% of
PRIQTY or 3 times the index page size (whichever is larger) when
PRIQTY is specified

– ERASE NO

Any partition for which USING or ERASE is specified (either explicitly at the
partition level or implicitly at the global level) must be in the stopped state when
the ALTER INDEX statement is executed. See “Altering storage attributes” on
page 376 to determine how and when changes take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of a
short identifier. Thus, you must specify an alias if the name of the integrated
catalog facility catalog is longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility
catalog must already contain an entry for the nth data set of the index,
conforming to the DB2 naming convention for data sets set forth in Part 2
(Volume 1) of DB2 Administration Guide.

ALTER INDEX

Chapter 5. Statements 373

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
If USING STOGROUP is used, stogroup-name must identify a storage
group that exists at the current server and the privilege set must include
SYSADM authority, SYSCTRL authority, or the USE privilege for the storage
group.

DB2 assumes one and only one data set for each partition.

For information on the PRIQTY, SECQTY, and ERASE clauses, see the
description of those clauses for nonpartitioning indexes.

End of using-block

free-block

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility. One free page is left for every
integer pages. The value of integer can range from 0 to 255. The change to the

CHANGED
When there is inter-DB2 R/W interest on the index or partition, updated
pages are written to the group buffer pool. When there is no inter-DB2 R/W
interest, the group buffer pool is not used. Inter-DB2 R/W interest exists
when more than one member in the data sharing group has the index or
partition open, and at least one member has it open for update.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
CHANGED is ignored and no pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached to the group buffer pool as they are
read in from DASD, with one exception. When the page set is not
GBP-dependent and one DB2 data sharing member has exclusive R/W
interest in that page set (no other group members have any interest in the
page set), no pages are cached in the group buffer pool.

Hiperpools are not used for indexes or partitions that are defined with
GBPCACHE ALL.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
ALL is ignored and no pages are cached to the group buffer pool.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2
uses the group buffer pool only for cross-invalidation.

If you specify NONE, the index or partition must not be in group buffer pool
recover pending (GRECP) status.

If the index is partitioned, the value of GBPCACHE for a particular partition is
given by the first of these choices that applies:

1. The value of GBPCACHE given in the PART clause for that partition. Do not
use more than one gbpcache-block in any PART clause.

2. The value given in a gbpcache-block before any PART clauses.

3. The current value of GBPCACHE for that partition.

If you specify GBPCACHE in a data sharing environment, the index or partition
must be in the stopped state when the ALTER INDEX statement is executed.
You cannot alter the GBPCACHE value for certain indexes on DB2 catalog
tables; for more information, see “SQL statements allowed on the catalog” on
page 955.

End of gbpcache-block

PART integer
Identifies a partition of the index. For an index that has n partitions, you must
specify an integer in the range 1 to n. You must not use this clause if the index
is nonpartitioned. You must use this clause if the index is partitioned and you
specify the VALUES clause.

VALUES(constant,...)
Specifies the highest value of the index key for the identified partition of the
partitioning index. In this context, highest means highest in the sorting
sequences of the index columns. In a column defined as ascending (ASC),
highest and lowest have their usual meanings. In a column defined as
descending (DESC), the lowest actual value is highest in the sorting
sequence.

ALTER INDEX

Chapter 5. Statements 375

You must use at least one constant after VALUES in each PART clause.
You can use as many constants as there are columns in the key. The
concatenation of all the constants is the highest value of the key in the
corresponding partition of the index. The length of each highest key value
(also called the limit key) is the same as the length of the partitioning index.

The use of the constants to define key values is subject to these rules:

v The first constant corresponds to the first column of the key, the second
constant to the second column, and so on. Each constant must have the
same data type as its corresponding column.

v If a key includes a ROWID column (or a column with a distinct type that
is sourced on a ROWID data type), the values of the ROWID column
should be assumed to be in the range of X'000...00' to X'FFF...FF'. Only
the first 17 bytes of the constant that is specified for the corresponding
ROWID column are considered.

v The precision and scale of a decimal constant must not be greater than
the precision and scale of its corresponding column.

v If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the
right to the required length. If the column is ascending, the padding
character is X'FF'; if the column is descending, the padding character is
X'00'.

v Using fewer constants than there are columns in the key has the same
effect as using the highest possible values for all omitted columns for an
ascending index. For a descending index, it has the same effect as using
the lowest possible values for all omitted columns.

v The highest value of the key in any partition must be lower than the
highest value of the key in the next partition.

v The highest value of the key in the last partition depends on how the
table space was defined. For table spaces created without the LARGE or
DSSIZE option, the constants you specify after VALUES are not
enforced. The highest value of the key that can be placed in the table is
the highest possible value of the key.

For table spaces created with the LARGE or DSSIZE options, the
constants you specify after VALUES are enforced. The value specified by
the constants is the highest value of the key that can be placed in the
table. Any keys that are made invalid after the ALTER statement is
executed are placed in a discard data set when you run REORG. If the
last partition is in REORG pending, regardless of whether you changed
its limiting key values, you must specify a discard data set when you run
REORG.

Notes
Running utilities: You cannot execute the ALTER INDEX statement while a DB2
utility has control of the index or its associated table space.

Altering storage attributes: The USING, PRIQTY, SECQTY, and ERASE clauses
define the storage attributes of the index or partition. However, if you specify the
USING or ERASE clause when altering storage attributes, the index or partition
must be in the stopped state when the ALTER INDEX statement is executed. A
STOP DATABASE...SPACENAM... command can be used to stop the index or
partition.

ALTER INDEX

376 SQL Reference

If the catalog name changes, the changes take effect after you move the data and
start the index or partition using the START DATABASE...SPACENAM... command.
The catalog name can be implicitly or explicitly changed by the ALTER INDEX
statement. The catalog name also changes when you move the data to a different
device. See the procedures for moving data in Part 2 (Volume 1) of DB2
Administration Guide .

Changes to the secondary space allocation (SECQTY) take effect the next time
DB2 extends the data set; however, the new value is not reflected in the integrated
catalog until you use the REORG, RECOVER, or LOAD REPLACE utility on the
index or partition. Changes to the other storage attributes take effect the next time
you use the REORG, RECOVER, or LOAD REPLACE utility on the index or
partition. If you change the primary space allocation parameters or erase rule, you
can have the changes take effect earlier if you move the data before you start the
index or partition.

Altering indexes on DB2 catalog tables: For details on altering options on catalog
tables, see “SQL statements allowed on the catalog” on page 955.

Examples
Example 1: Alter the index DSN8710.XEMP1. Indicate that DB2 is not to close the
data sets that support the index when there are no current users of the index.

ALTER INDEX DSN8710.XEMP1
CLOSE NO;

Example 2: Alter the index DSN8710.XPROJ1. Use BP1 as the buffer pool that is to
be associated with the index, indicate that full image or concurrent copies on the
index are allowed, and change the maximum size of each data set to 8 megabytes.

ALTER INDEX DSN8710.XPROJ1
BUFFERPOOL BP1
COPY YES
PIECESIZE 8M;

Example 3: Alter partitioned index DSN8710.DEPT1. For partition 3, leave one page
of free space for every 13 pages and 13 percent of free space per page. For
partition 5, leave one page for every 25 pages and 25 percent of free space. For all
the other partitions, leave one page of free space for every 6 pages and 11 percent
of free space. Ensure that index pages are cached to the group buffer pool for all
partitions except partition 4. For partition 4, write pages only when there is
inter-DB2 R/W interest on the partition.

ALTER INDEX DSN8710.XDEPT1
BUFFERPOOL BP1
CLOSE YES
COPY YES
USING VCAT CATLGG
FREEPAGE 6
PCTFREE 11
GBPCACHE ALL
PART 3

USING VCAT CATLGG
FREEPAGE 13
PCTFREE 13,

PART 4
USING VCAT CATLGG
GBPCACHE CHANGED,

PART 5
USING VCAT CATLGG
FREEPAGE 25
PCTFREE 25;

ALTER INDEX

Chapter 5. Statements 377

ALTER PROCEDURE (external)
The ALTER PROCEDURE statement changes the description of an external stored
procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v Ownership of the stored procedure
v The ALTERIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the authorization IDs of the process. The specified procedure name can
include a schema name (a qualifier). However, if the schema name is not the same
as one of these authorization IDs, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v An authorization ID of the process has the ALTERIN privilege on the schema.

If the environment in which the stored procedure is to run is being changed, the
authorization ID must have authority to use the WLM environment or
DB2-established stored procedure address space. This authorization is obtained
from an external security product, such as RACF.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR, the Java ARchive file.

Syntax

�� ALTER PROCEDURE procedure-name option-list ��

ALTER PROCEDURE (external)

378 SQL Reference

|
|
|
|

|
|

option-list:

��
(1) (2)

DYNAMIC RESULT SET integer
SETS

EXTERNAL
(3)

NAME ’string’
identifier

�

� LANGUAGE ASSEMBLE
C
COBOL
COMPJAVA
JAVA
PLI
REXX

(4)
PARAMETER STYLE DB2SQL

GENERAL
GENERAL WITH NULLS
JAVA

(5)
NOT DETERMINISTIC
DETERMINISTIC

�

� CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA
NO SQL

NO DBINFO
DBINFO

NO COLLID
COLLID collection-id

�

� WLM ENVIRONMENT name
(name ,*)

NO WLM ENVIRONMENT

ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

�

�

Description
procedure-name

Identifies the stored procedure to be altered. The name is implicitly or explicitly
qualified by a schema name. If the name is not explicitly qualified, it is implicitly
qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not specified, the schema name
is the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

external-java-routine-name:

(1)
jar-name:

method-name
method-signature

jar-name:

schema-name.
jar-id

method-name:

�

(2)
package-id .

(3)
/

class-id .
(4)

!

method-id

method-signature:

�

(3)
()

,

java-datatype

Notes:

1 With LANGUAGE COMPJAVA, jar-name must not be specified.

2 With LANGUAGE COMPJAVA, at least one package-id must be specified.

3 The slash (/) is supported for compatibility with DB2 for OS/390 Version 5 and Version 6.

4 The exclamation point (!) is supported for compatibility with DB2 UWO.

ALTER PROCEDURE (external)

380 SQL Reference

|

||||||||||||||||||||||||

|

|

||||||||||||||||

|

|

|||

|

|

||||||||||||||||||||||||||||

|

|

||

||

||

||
|
|

DYNAMIC RESULT SET integer or DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The value must be between 0 and 32767.

EXTERNAL
Identifies the program that runs when the procedure name is specified in a
CALL statement.

The program does not need to exist when the ALTER PROCEDURE statement
is executed. However, it must exist and be accessible by the current server
when a CALL statement to the stored procedure is issued.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME ’string’ or identifier
Identifies the user-written code that implements the stored procedure.

If LANGUAGE is COMPJAVA or JAVA, ’string’ must be specified and
enclosed in single quotation marks, with no extraneous blanks within the
single quotation marks. It must specify a valid external-java-routine-name. If
multiple ’string’s are specified, the total length of all of them must not be
greater than 1305 bytes, and they must be separated by a space or a line
break. Do not specify a JAR for a JAVA procedure for which NO SQL is in
effect.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR when it was installed in the
database. The name contains jar-id, which can optionally be qualified
with a schema. Examples are ″myJar″ and ″mySchema.myJar.″ The
unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the package or
plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SQLID special register.

If jar-name is specified, it must exist when the ALTER PROCEDURE
statement is processed. With LANGUAGE COMPJAVA, a jar-name
must not be specified.

If jar-name is not specified, the procedure is loaded from the class file
directly instead of being loaded from a JAR file. DB2 for DB2 for
OS/390 and z/OS searches the directories in the CLASSPATH
associated with the WLM Environment. Environmental variables for

ALTER PROCEDURE (external)

Chapter 5. Statements 381

|
|
|
|
|
#
#

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

Java routines are specified in a data set identified in a JAVAENV DD
card on the JCL used to start the address space for a WLM-managed
stored procedure.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method ID’s are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies the package list that the class identifier is part of. If the
class is part of a package, the method name must include the
complete package prefix, such as ″myPacks.StoredProcs.″ The
Java virtual machine looks in the directory ″/myPacks/StoredProcs/″
for the classes. With LANGUAGE COMPJAVA, at least one
package-id must be specified.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature
if the procedure involves any input or output parameters that can be
NULL. When the stored procedure being created is called, DB2
searches for a Java method with the exact method-signature. The
number of java-datatype elements specified indicates how many
parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java
method-signature is not specified, DB2 searches for a Java method with
a signature derived from the default JDBC types associated with the
SQL types specified in the parameter list of the ALTER PROCEDURE
statement.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters or a short identifier. It must conform to the
naming conventions for MVS load modules. Alphabetical extenders for
national languages can be used as the first character and as subsequent
characters in the load module name.

If you do not specify the NAME clause, NAME procedure-name is implicit.
In this case procedure-name must not be longer than 8 characters, and
LANGUAGE must not be COMPJAVA or JAVA.

LANGUAGE
Specifies the application programming language in which the stored procedure
is written. Assembler, C, COBOL, and PL/I programs must be designed to run in
IBM’s Language Environment.

ASSEMBLE
The stored procedure is written in Assembler.

C The stored procedure is written in C or C++.

ALTER PROCEDURE (external)

382 SQL Reference

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

COBOL
The stored procedure is written in COBOL, including the OO-COBOL
language extensions.

COMPJAVA
The stored procedure is written in Java and the Java byte code has been
bound into a PDSE member using the Visual Age for Java ET/390 byte
code binder. When LANGUAGE COMPJAVA is specified, the EXTERNAL
NAME clause must also be specified with a valid external-java-routine-
name.

JAVA
The stored procedure is written in Java byte code and is executed in the
OS/390 Java Virtual Machine. When LANGUAGE JAVA is specified, the
EXTERNAL NAME clause must also be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified
with JAVA.

Do not specify LANGUAGE JAVA when DBINFO, NO WLM
ENVIRONMENT, PROGRAM TYPE MAIN, or RUN OPTIONS is in effect.

PLI
The stored procedure is written in PL/I.

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE REXX
when PARAMETER STYLE DB2SQL or NO WLM ENVIRONMENT is in
effect.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to the stored
procedure. All of the linkage conventions provide arguments to the stored
procedure that contain the parameters specified on the CALL statement. Some
of the linkage conventions pass additional arguments to the stored procedure
that provide more information to the stored procedure. For more information on
linkage conventions, see DB2 Application Programming and SQL Guide.

DB2SQL
In addition to the parameters on the CALL statement, the following
arguments are also passed to the stored procedure:
v A null indicator for each parameter on the CALL statement
v The SQLSTATE to be returned to DB2
v The qualified name of the stored procedure
v The specific name of the stored procedure
v The SQL diagnostic string to be returned to DB2

If DBINFO is specified, an additional parameter, the DB2INFO structure,
might also be passed.

Do not specify DB2 SQL when LANGUAGE REXX is in effect.

GENERAL
Only the parameters on the CALL statement are passed to the stored
procedure. The parameters cannot be null.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement, another argument is
also passed to the stored procedure. The additional argument contains a
vector of null indicators for each of the parameters on the CALL statement
that enables the stored procedure to accept or return null parameter values.

ALTER PROCEDURE (external)

Chapter 5. Statements 383

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

JAVA
The stored procedure uses a convention for passing parameters that
conforms to the Java and SQLJ specifications. PARAMETER STYLE JAVA
can be specified only if LANGUAGE is COMPJAVA or JAVA. If the ALTER
PROCEDURE statement results in changing LANGUAGE to JAVA,
PARAMETER STYLE JAVA and an EXTERNAL NAME clause might need
to be specified to provide appropriate values. If LANGUAGE is COMPJAVA,
PARAMETER STYLE defaults to JAVA. JAVA must be specified for
PARAMETER STYLE when LANGUAGE is JAVA.

INOUT and OUT parameters are passed as single-entry arrays. The INOUT
and OUT parameters are declared in the Java method as single-element
arrays of the Java type.

For REXX stored procedures (LANGUAGE REXX), GENERAL and GENERAL
WITH NULLS are the only valid values for PARAMETER STYLE; therefore,
specify one of these values and do not allow PARAMETER STYLE to default to
DB2SQL.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the stored procedure returns the same result from successive
calls with identical input arguments.

NOT DETERMINISTIC
The stored procedure might not return the same result from successive
calls with identical input arguments.

DETERMINISTIC
The stored procedure returns the same result from successive calls with
identical input arguments.

DB2 does not verify that the stored procedure code is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

NO SQL, MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if so,
what type. DB2 verifies that the SQL issued by the function is consistent with
this specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

NO SQL
The stored procedure does not execute SQL statements. Do not specify NO
SQL for a JAVA procedure that uses a JAR.

MODIFIES SQL DATA
The stored procedure can execute any SQL statement except those
statements that are not supported in any stored procedure.

READS SQL DATA
The stored procedure cannot execute SQL statements that modify data.
SQL statements that are not supported in any stored procedure return a
different error.

CONTAINS SQL
The stored procedure cannot execute any SQL statements that read or
modify data. SQL statements that are not supported in any stored
procedure return a different error.

NO DBINFO or DBINFO
Specifies whether specific information known by DB2 is passed to the stored
procedure when it is invoked.

ALTER PROCEDURE (external)

384 SQL Reference

|
|
|
|
|
|
|
|

|
|
|

#
#

NO DBINFO
Additional information is not passed.

DBINFO
An additional argument is passed when the stored procedure is invoked.
The argument is a structure that contains information such as the
application run-time authorization ID, the schema name, the name of a
table or column that the procedure might be inserting into or updating, and
identification of the database server that invoked the procedure. For details
about the argument and its structure, see DB2 Application Programming
and SQL Guide.

DBINFO can be specified only if PARAMETER STYLE DB2SQL is in effect.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is
executed. This is the package collection into which the DBRM that is associated
with the stored procedure is bound.

NO COLLID
Specifies that the package collection for the stored procedure is the same
as the package collection of the calling program. If the calling program does
not use a package, the package collection is set to the value of the
CURRENT PACKAGESET special register.

COLLID collection-id
Identifies the package collection that is to be used when the stored
procedure is executed. It is the name of the package collection into which
the DBRM associated with the stored procedure is bound.

For REXX stored procedures, collection-id can be DSNREXRR,
DSNREXRS, DSNREXCR, or DSNREXCS.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is a long identifier.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different MVS address space.

(name,*)
When the stored procedure is called directly by an SQL application
program, the WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To change the environment in which the procedure is to run, you must have
appropriate authority for the WLM environment. For an example of a RACF
command that provides this authorization, see “Running stored procedures” on
page 582.

NO WLM ENVIRONMENT
Indicates that the stored procedure is to run in the DB2-established stored
procedure address space.

ALTER PROCEDURE (external)

Chapter 5. Statements 385

|

Do not specify NO WLM ENVIRONMENT if the definition of the stored
procedure implicitly or explicitly includes the following clauses or parameters:
v The PROGRAM TYPE SUB clause
v The SECURITY USER or SECURITY DEFINER clause
v The LANGUAGE REXX, LANGUAGE COMPJAVA, or JAVA clause
v Parameters with a LOB data type or a distinct type based on a LOB data

type

To change the procedure to run in the DB2-established stored procedure
address space, you must have appropriate authority for the DB2-established
stored procedure address space. For an example of a RACF command that
provides this authorization, see “Running stored procedures” on page 582.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column in the resource limit specification table.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on CPU
service units, see OS/390 MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to
2GB-1. If the stored procedure uses more service units than the specified
value, DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in
memory when the stored procedure ends.

NO
The load module is deleted from memory after the stored procedure ends.
Use NO for non-reentrant stored procedures.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

SUB
The stored procedure runs as a subroutine.

Specify PROGRAM TYPE SUB for stored procedures with a LANGUAGE
value of REXX. Do not specify PROGRAM TYPE SUB when NO WLM
ENVIRONMENT is in effect.

MAIN
The stored procedure runs as a main routine.

Do not specify PROGRAM TYPE MAIN when LANGUAGE JAVA is in effect.

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security

ALTER PROCEDURE (external)

386 SQL Reference

|

environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space.

SECURITY DB2 is the only valid choice when NO WLM ENVIRONMENT is
in effect.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

Do not specify SECURITY USER when NO WLM ENVIRONMENT is in
effect.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure.

Do not specify SECURITY DEFINER when NO WLM ENVIRONMENT is in
effect.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the stored
procedure. For a REXX stored procedure, specifies the Language Environment
run-time options to be passed to the REXX language interface to DB2. You
must specify run-time-options as a character string that is no longer than 254
bytes. To replace any existing run-time options with no options, specify an
empty string with RUN OPTIONS. When you specify an empty string, DB2 does
not pass any run-time options to Language Environment, and Language
Environment uses its installation defaults. For a description of the Language
Environment run-time options, see OS/390 Language Environment for OS/390
& VM Programming Reference.

Do not specify RUN OPTIONS when LANGUAGE COMPJAVA or LANGUAGE
JAVA is in effect.

COMMIT ON RETURN
Indicates whether DB2 is to commit the transaction immediately on return from
the stored procedure.

NO
DB2 does not issue a commit when the stored procedure returns.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined WITH HOLD to be usable after
the commit.

ALTER PROCEDURE (external)

Chapter 5. Statements 387

|
|

|
|

|
|

INHERIT SPECIAL REGISTERS
Indicates that values of special registers are inherited according to the rules
listed in the table for characteristics of special registers in a stored
procedure in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure in Table 19 on page 92.

CALLED ON NULL INPUT
Specifies that the stored procedure will be called even if any of the input
arguments is null, making the procedure responsible for testing for null
argument values. The result is the null value.

Notes
Changes are immediate: Any changes that the ALTER PROCEDURE statement
cause to the definition of a procedure take effect immediately. The changed
definition is used the next time that the procedure is called.

Restrictions for nested stored procedures: A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the COMMIT
ON RETURN clause.

Example
Assume that stored procedure SYSPROC.MYPROC is currently defined to run in
WLM environment PARTSA and that you have appropriate authority on that WLM
environment and WLM environment PARTSEC. Change the definition of the stored
procedure so that it runs in PARTSEC.

ALTER PROCEDURE SYSPROC.MYPROC WLM ENVIRONMENT PARTSEC;

ALTER PROCEDURE (external)

388 SQL Reference

|
|
|
|

|
|
|
|

ALTER PROCEDURE (SQL)
The ALTER PROCEDURE statement changes the description of an SQL stored
procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v Ownership of the stored procedure
v The ALTERIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the authorization IDs of the process. The specified procedure name can
include a schema name (a qualifier). However, if the schema name is not the same
as one of these authorization IDs, one of the following conditions must be met:
v The privilege set includes SYSADM or SYSCTRL authority.
v An authorization ID of the process has the ALTERIN privilege on the schema.

The authorization ID used to alter the stored procedure definition must have
appropriate authority for the specified environment (WLM environment or
DB2-established stored procedure address space) in which the procedure is
currently defined to run. This authorization is obtained from an external security
product, such as RACF.

ALTER PROCEDURE (SQL)

Chapter 5. Statements 389

Syntax

Description
procedure-name

Identifies the stored procedure to be altered. The name is implicitly or explicitly
qualified by a schema. If the name is not explicitly qualified, it is implicitly
qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

�� ALTER PROCEDURE procedure-name �
(1) (2)

DYNAMIC RESULT SET integer
SETS

(3)
NOT DETERMINISTIC
DETERMINISTIC
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA
NO COLLID
COLLID collection-id
WLM ENVIRONMENT name

(name ,*)
NO WLM ENVIRONMENT

ASUTIME NO LIMIT
LIMIT integer

STAY RESIDENT NO
YES

PROGRAM TYPE SUB
MAIN

SECURITY DB2
USER
DEFINER

RUN OPTIONS run-time-options
COMMIT ON RETURN NO

YES
INHERIT SPECIAL REGISTERS
DEFAULT SPECIAL REGISTERS

(4)
CALLED ON NULL INPUT

��

Notes:

1 The same clause must not be specified more than once.

2 Synonyms include RESULT SET for DYNAMIC RESULT SET and RESULT SETS for DYNAMIC
RESULT SETS.

3 Synonyms for the clause include VARIANT for NOT DETERMINISTIC, and NOT VARIANT is a
synonym for DETERMINISTIC.

4 Synonyms include NULL CALL for CALLED ON NULL INPUT.

ALTER PROCEDURE (SQL)

390 SQL Reference

|
|
|
|

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

DYNAMIC RESULT SET integer or DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The value must be between 0 and 32767.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the stored procedure returns the same result from successive
calls with identical input arguments.

NOT DETERMINISTIC
The stored procedure might not return the same result from successive
calls with identical input arguments.

DETERMINISTIC
The stored procedure returns the same result from successive calls with
identical input arguments.

DB2 does not verify that the stored procedure code is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL DATA
Indicates whether the stored procedure can execute any SQL statements and, if
so, what type. DB2 verifies that the SQL issued by the function is consistent
with this specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

MODIFIES SQL DATA
The stored procedure can execute any SQL statement except those
statements that are not supported in any stored procedure.

READS SQL DATA
The stored procedure does not execute SQL statements that modify data.
SQL statements that are not supported in any stored procedure return a
different error.

CONTAINS SQL
The stored procedure does not execute any SQL statements that read or
modify data. SQL statements that are not supported in any stored
procedure return a different error.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is
executed. This is the package collection into which the DBRM that is associated
with the stored procedure is bound.

NO COLLID
Indicates that the package collection for the stored procedure is the same
as the package collection of the calling program. If the calling program does
not use a package, the package collection is set to the value of special
register CURRENT PACKAGESET.

COLLID collection-id
Indicates the package collection for the stored procedure is the one
specified.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is a long identifier.

ALTER PROCEDURE (SQL)

Chapter 5. Statements 391

|
|

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different MVS address space.

(name,*
When an SQL application program directly calls a stored procedure, the
WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To change the environment in which the stored procedure is to run, you must
have appropriate authority for the WLM environment. For an example of a
RACF command that provides this authorization, see “Running stored
procedures” on page 582 .

NO WLM ENVIRONMENT
Indicates that the stored procedure is to run in the DB2-established stored
procedure address space.

Do not specify NO WLM ENVIRONMENT if you implicitly or explicitly define the
stored procedure with the SECURITY USER or SECURITY DEFINER clause.

To change the procedure to run in the DB2-established stored procedure
address space, you must have appropriate authority for the DB2-established
stored procedure address space. For an example of a RACF command that
provides this authorization, see “Running stored procedures” on page 582.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column of the resource limit specification table.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on service
units, see OS/390 MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2 GB.
If the stored procedure uses more service units than the specified value,
DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in
memory when the stored procedure ends.

NO
The load module is deleted from memory after the stored procedure ends.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

ALTER PROCEDURE (SQL)

392 SQL Reference

|
|

SUB
The stored procedure runs as a subroutine.

MAIN
The stored procedure runs as a main routine.

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the stored
procedure. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
stored procedure.

NO
DB2 does not issue a commit when the stored procedure returns.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined as WITH HOLD to be usable
after the commit.

INHERIT SPECIAL REGISTERS
Indicates that special registers should be inherited according to the rules

ALTER PROCEDURE (SQL)

Chapter 5. Statements 393

|
|

|
|

|

|
|

listed in the table for characteristics of special registers in a stored
procedure function in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers should be initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure function in Table 19 on page 92.

CALLED ON NULL INPUT
Specifies that the stored procedure will be called even if any of the input
arguments is null, making the procedure responsible for testing for null
argument values. The result is the null value.

Notes
Changes are immediate: Any changes that the ALTER PROCEDURE statement
cause to the definition of a procedure take effect immediately. The changed
definition is used the next time that the procedure is called.

Restrictions for nested stored procedures: A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the COMMIT
ON RETURN clause.

Example
Modify the definition for an SQL procedure so that SQL changes are committed on
return from the SQL procedure and the SQL procedure runs in the WLM
environment named WLMSQLP.
ALTER PROCEDURE UPDATE_SALARY_1
COMMIT ON RETURN YES
WLM ENVIRONMENT WLMSQLP;

ALTER PROCEDURE (SQL)

394 SQL Reference

|
|

|
|
|
|

ALTER STOGROUP
The ALTER STOGROUP statement changes the description of a storage group at
the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include one of the following:
v Ownership of the storage group
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

Syntax

Description
stogroup-name

Identifies the storage group to be altered. The name must identify a storage
group that exists at the current server.

ADD VOLUMES(volume-id,...) or ADD VOLUMES('*',...)
Adds volumes to the storage group. Each volume-id is the volume serial
number of a storage volume to be added. It can have a maximum of six
characters and is specified as an identifier or a string constant.

�� ALTER STOGROUP stogroup-name � �

�

�

�

,
(1) (2)

ADD VOLUMES (volume-id)
,

'*'
,
(2)

REMOVE VOLUMES (volume-id)
,

'*'

��

Notes:

1 The same clause must not be specified more than once.

2 The same volume-id must not be specified more than once in the same clause.

ALTER STOGROUP

Chapter 5. Statements 395

A volume-id must not be specified if any volume of the storage group is
designated by an asterisk (*). An asterisk must not be specified if any volume of
the storage group is designated by a volume-id.

You cannot add a volume that is already in the storage group unless you first
remove it with REMOVE VOLUMES.

Asterisks are recognized only by Storage Management Subsystem (SMS). To
allow SMS control over volume selection, define DB2 STOGROUPs with
VOLUMES('*',...). SMS usage is recommended, rather than using DB2 to
allocate data to specific volumes. Having DB2 select the volume requires
non-SMS usage or assigning an SMS Storage Class with guaranteed space.
However, because guaranteed space reduces the benefits of SMS allocation, it
is not recommended.

If you do choose to use specific volume assignments, additional manual space
management must be performed. Free space must be managed for each
individual volume to prevent failures during the initial allocation and extension.
This process generally requires more time for space management and results in
more space shortages. Guaranteed space should be used only where the
space needs are relatively small and do not change.

REMOVE VOLUMES(volume-id,...) or REMOVE VOLUMES('*',...)
Removes volumes from the storage group. Each volume-id is the volume serial
number of a storage volume to be removed. Each volume-id must identify a
volume that is in the storage group.

The REMOVE VOLUMES clause is applied to the current list of volumes before
the ADD VOLUMES clause is applied. Removing a volume from a storage
group does not affect existing data, but a volume that has been removed is not
used again when the storage group is used to allocate storage for table spaces
or index spaces.

Asterisks are recognized only by Storage Management Subsystem (SMS). For
information about using asterisks, see the above description of the ADD
VOLUMES clause.

Notes
Work file databases: If the storage group altered contains data sets in a work file
database, the database must be stopped and restarted for the effects of the ALTER
to be recognized. To stop and restart a database, issue the following commands:

-STOP DATABASE(database-name)
-START DATABASE(database-name)

Device types: When the storage group is used at run time, an error can occur if
the volumes in the storage group are of different device types, or if a volume is not
available to MVS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set was
defined. Otherwise, an extend failure occurs if an attempt is made to extend the
data set.

Number of volumes: There is no specific limit on the number of volumes that can
be defined for a storage group. However, the maximum number of volumes that can
be managed for a storage group is 133. Thus, there is no point in creating a
storage group with more than 133 volumes.

ALTER STOGROUP

396 SQL Reference

|
|
|
|
|
|
|

|
|
|
|
|
|

MVS imposes a limit on the number of volumes that can be allocated per data set:
59 at this writing. For the latest information on that restriction, see DFSMS/MVS:
Access Method Services for the Integrated Catalog.

Verifying volume IDs: When processing the ADD VOLUMES or REMOVE
VOLUMES clause, DB2 does not check the existence of the volumes or determine
the types of devices that they identify. Later, when the storage group is used to
allocate or deallocate data sets, the list of volumes is passed in the specified order
to Data Facilities (DFSMSdfp), which does the actual work. See Part 2 (Volume 1)
of DB2 Administration Guide for more information about creating DB2 storage
groups.

SMS data set management: You can have Storage Management Subsystem
(SMS) manage the storage needed for the objects that the storage group supports.
To do so, specify ADD VOLUMES('*') and REMOVE VOLUMES(current-vols) in the
ALTER statement, where current-vols is the list of the volumes currently assigned to
the storage group. SMS manages every data set created later for the storage
group. SMS does not manage data sets created before the execution of the
statement.

You can also specify ADD VOLUMES(volume-id) and REMOVE VOLUMES('*') to
make the opposite change.

See Part 2 (Volume 1) of DB2 Administration Guide for considerations for using
SMS to manage data sets.

Examples
Example 1: Alter storage group DSN8G710. Add volumes DSNV04 and DSNV05.

ALTER STOGROUP DSN8G710
ADD VOLUMES (DSNV04,DSNV05);

Example 2: Alter storage group DSN8G710. Remove volumes DSNV04 and
DSNV05.

ALTER STOGROUP DSN8G710
REMOVE VOLUMES (DSNV04,DSNV05);

ALTER STOGROUP

Chapter 5. Statements 397

ALTER TABLE
The ALTER TABLE statement changes the description of a table at the current
server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The ALTER privilege on the table
v Ownership of the table
v DBADM authority for the database
v SYSADM or SYSCTRL authority

Additional privileges might be required if FOREIGN KEY, DROP PRIMARY KEY,
DROP FOREIGN KEY, or DROP CONSTRAINT is specifie or the data type of a
column that is added to the table is a distinct type. See the description of the
appropriate clauses for the details about these privileges.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

ALTER TABLE

398 SQL Reference

Syntax

��
(1)

ALTER TABLE table-name �
COLUMN

ALTER column-alteration
(2)

ADD column-definition
unique-constraint
referential-constraint
check-constraint

DROP PRIMARY KEY
FOREIGN KEY constraint-name
UNIQUE
CHECK
CONSTRAINT

VALIDPROC program-name
NULL

AUDIT NONE
CHANGES
ALL

DATA CAPTURE NONE
CHANGES

ADD RESTRICT ON DROP
DROP

��

Notes:

1 The same clause must not be specified more than once, except for the ALTER COLUMN clause,
which can be specified more than once. Do not specify DROP CONSTRAINT if DROP FOREIGN
KEY or DROP CHECK is specified.

2 The ADD keyword is optional for the unique-constraint and referential-constraint clauses if it is the
first clause specified in the statement. Otherwise, it is required.

column-alteration:

�� column-name SET DATA TYPE VARCHAR (integer)
CHARACTER VARYING
CHAR VARYING

��

ALTER TABLE

Chapter 5. Statements 399

|||

|

|

||
|
|

||
|
|
|

column-definition:

��
(1)

column-name data-type �

� �

�

NOT NULL
WITH

DEFAULT
constant
USER
CURRENT SQLID
NULL
(2)

cast-function-name (constant)
USER
CURRENT SQLID
NULL

(3)
GENERATED ALWAYS

BY DEFAULT as-identity-clause
references-clause
check-constraint
FIELDPROC program-name

,

(constant)

��

Notes:

1 The same clause must not be specified more than once.

2 The cast-function-name form of the DEFAULT value can only be used with a column that is
defined as a distinct type.

3 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that
is based on a ROWID data type), or the column is to be an identity column.

data-type:

��
(1)

built-in-data-type
distinct-type-name

��

Notes:

1 For the syntax, see “built-in-data-type” on page 604.

ALTER TABLE

400 SQL Reference

as-identity-clause:

��

�

AS IDENTITY
,

1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

CACHE 20
NO CACHE
CACHE integer
NO CYCLE
CYCLE

MAXVALUE numeric-constant
MINVALUE numeric-constant

��

unique-constraint:

�� �

,

PRIMARY KEY (column-name)
CONSTRAINT constraint-name UNIQUE

��

referential-constraint:

�� �

,
(1)

FOREIGN KEY (column-name)
CONSTRAINT constraint-name

references-clause ��

Notes:

1 For compatibility with prior releases, when the CONSTRAINT clause (shown above) is not
specified, a constraint-name may be specified following FOREIGN KEY.

references-clause:

�� REFERENCES table-name

�

,

(column-name)

ON DELETE RESTRICT
NO ACTION
CASCADE
SET NULL

��

ALTER TABLE

Chapter 5. Statements 401

|

|||||||||||||||||||||||||||||||||

|
|
|

|

|||||||||||||||||||||||||||||||

|

|

||
|
|
|

Description
table-name

Identifies the table to be altered. The name must identify a table that exists at
the current server. The name must not identify an auxiliary table, declared
temporary table, or view. If the name identifies a catalog table, DATA CAPTURE
CHANGES is the only clause that can be specified.

column-alteration

ALTER COLUMN column-alteration
Alters the definition of a column. Only the length attribute of an existing column
with a VARCHAR data type can be changed. A column cannot be altered if it is
used in a referential constraint or a view or has a field procedure routine. It also
cannot be altered if it belongs to a table that has edit or validation routine, is
defined with DATA CAPTURE CHANGES, or is a created temporary table.

column-name
Identifies the column to be altered. The name must not be qualified and
must identify an existing column in the table that has a VARCHAR data
type. The name must not identify a column that is being added in the same
ALTER TABLE statement.

SET DATA TYPE VARCHAR (integer)
Specifies the new length for the column. The value of integer must be equal
to or greater than the current maximum length of the column.

The new length must not make the total byte count of all columns in a row
exceed the maximum row size. (For information on byte counts of columns,
see “Byte counts” on page 624.) If the column is used in an index, the new
length must not make the sum of the length attributes of the specified index
columns greater than 255.

check-constraint:

��
CONSTRAINT constraint-name

CHECK (check-condition) ��

ALTER TABLE

402 SQL Reference

The length of more than one column can be changed in a single ALTER TABLE
statement if each ALTER COLUMN clause identifies a unique column of the
table. The ALTER COLUMN clause and ADD CHECK CONSTRAINT clause can
identify the same column.

End of column-alteration

column-definition

ADD column-definition
Adds a column to the table. Except for a ROWID column and an identity
column, all values of the column in existing rows are set to its default value. If
the table has n columns, the ordinality of the new column is n+1. The value of n
cannot be greater than 749. For a dependent table, n cannot be greater than
748.

The column cannot be added if the increase in the total byte count of the
columns exceeds the maximum row size. The maximum row size for the table
is eight less than the maximum record size as described in “Maximum record
size” on page 624. A column also cannot be added to a table that has an edit
procedure.

You can add a LOB column only if the table has a ROWID column. A table can
have only one ROWID column. You cannot add a LOB or ROWID column to a
created temporary table. For details about adding a LOB column, such as the
other objects that might be implicitly created or need to be explicitly created,
see “Creating a table with LOB columns” on page 623. For more information
about adding a ROWID column, see “Adding a ROWID column” on page 415.

You cannot add an identity column to a table that has an identity column, or to
a created temporary table. For more information about adding an identity
column, see “Adding an identity column” on page 415.

column-name
Is the name of the column you want to add to the table. Do not use the
name of an existing column of the table. Do not qualify column-name.

built-in-data-type
Specifies the data type of the column is one of the built-in data types. See
“built-in-data-type” on page 606 for detail.

distinct-type-name
Specifies the distinct type (user-defined data type) of the column. The
length and scale of the column are respectively the length and scale of the
source type of the distinct type. The privilege set must implicitly or explicitly
include the USAGE privilege on the distinct type.

The encoding scheme of the distinct type must be the same as the
encoding scheme of the table.

If the column is to be used in the definition of the foreign key of a referential
constraint, the data type of the corresponding column of the parent key
must have the same distinct type.

NOT NULL
Prevents the column from containing null values. If NOT NULL is specified,
the DEFAULT clause must be used to specify a nonnull default value for the
column unless the column has a row ID data type or is an identity column.
For a ROWID column, NOT NULL must be specified, and DEFAULT must

ALTER TABLE

Chapter 5. Statements 403

not be specified. For an identity column, although NOT NULL can be
specified, DEFAULT must not be specified.

DEFAULT
The default value assigned to the column in the absence of a value
specified on INSERT or LOAD. Do not specify DEFAULT for a ROWID
column or an identity column (a column that is defined AS IDENTITY); DB2
generates default values. If a value is not specified after the DEFAULT
keyword and the column is nullable, the default value is the null value. If a
value is not specified after the DEFAULT keyword and the column is not
nullable, the default value depends on the data type of the column as
indicated in the following table:

Data Type Default Value

Numeric 0

Fixed-length string Blanks

Varying-length string A string of length 0

Date For existing rows, a date corresponding to
1 January 0001. For added rows,
CURRENT DATE.

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For
added rows, CURRENT TIME.

Timestamp For existing rows, a date corresponding to
1 January 0001, and a time corresponding
to 0 hours, 0 minutes, 0 seconds, and 0
microseconds. For added rows, CURRENT
TIMESTAMP.

A default value other than the one that is listed above can be specified in
one of the following forms, except for a LOB column. The only form that can
be specified for a LOB column is DEFAULT NULL. Unlike other
varying-length strings, a LOB column can only have the default value of a
zero-length string as listed above or null.

constant
Specifies a constant as the default value for the column. The value of
the constant must conform to the rules for assigning that value to the
column.

USER
Specifies the value of the USER special register at the time of INSERT
or LOAD as the default for the column. If USER is specified, the data
type of the column must be a character string with a length greater than
or equal to the length attribute of the USER special register. For
existing rows, the value is that of the USER special register at the time
the ALTER TABLE statement is processed.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the
time of INSERT or LOAD as the default for the column. If CURRENT
SQLID is specified, the data type of the column must be a character
string with a length greater than or equal to the length attribute of the

ALTER TABLE

404 SQL Reference

CURRENT SQLID special register. For existing rows, the value is the
SQL authorization ID of the process at the time the ALTER TABLE
statement is processed.

NULL
Specifies null as the default value for the column.

cast-function-name
The name of the cast function that matches the name of the distinct
type for the column. A cast function can be specified only if the data
type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified
or implicitly resolved through function resolution, must be the same as
the explicitly or implicitly specified schema name of the distinct type.

In a given column definition:

v DEFAULT and FIELDPROC cannot both be specified.

v NOT NULL and DEFAULT NULL cannot both be specified.

v DEFAULT cannot be specified for a ROWID column or an identity
column.

v Omission of NOT NULL and DEFAULT for a column other than an
identity column is an implicit specification of DEFAULT NULL. For an
identity column, it is an implicit specification of NOT NULL, and DB2
generates default values.

GENERATED
Indicates that DB2 generates values for the column. You must specify
GENERATED if the column is to be considered an identity column (defined
with the AS IDENTITY clause) or the data type of the column is a ROWID
(or a distinct type that is based on a ROWID).

ALWAYS
Indicates that DB2 will generate a value for the column when a row is
inserted into the table. ALWAYS is the recommended value unless you
are using data propagation.

BY DEFAULT
Indicates that DB2 will generate a value for the column when a row is
inserted unless a value is specified.into the table only if a value is not
specified. Otherwise, DB2 uses the value that you specify.

For a ROWID column, DB2 uses a specified value only if it is a valid
row ID value that was previously generated by DB2 and the column has
a unique, single-column index. Until this index is created on the ROWID
column, the SQL INSERT statement and the LOAD utility cannot be
used to add rows to the table. If the value of special register CURRENT
RULES is 'STD' when the ALTER TABLE statement is processed, DB2
implicitly creates the index on the ROWID column. The name of this
index is 'I' followed by the first ten characters of the column name
followed by seven randomly generated characters. If the column name
is less than ten characters, DB2 adds underscore characters to the end
of the name until it has ten characters. The implicitly created index has
the COPY NO attribute.

For an identity column, DB2 inserts a specified value but does not verify
that it is a unique value for the column unless the identity column has a

ALTER TABLE

Chapter 5. Statements 405

unique, single-column index; without a unique index, DB2 can
guarantee unique values only among the set of system-generated
values.

BY DEFAULT is the recommended value only when you are using data
propagation.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can
have only one identity column. AS IDENTITY can be specified only if
the data type for the column is an exact numeric type with a scale of
zero (SMALLINT, INTEGER, DECIMAL with a scale of zero, or a
distinct type based on one of these types).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value that is generated for the identity column.
The value can be any positive or negative value that could be
assigned to the column without non-zero digits exisitng to the right
of the decimal point.

If a value is not explicitly specified when the identity column is
defined, the default is the MINVALUE for an ascending sequence
and the MAXVALUE for a descending sequence. This value is not
necessarily the value that a sequence would cycle to after reaching
the maximum or minimum value of the sequence. The START
WITH clause can be used to start a sequence outside the range
that is used for cycles. The range used for cycles is defined by
MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The value can be any positive or negative value that is not
0, does not exceed the value of a large integer constant, and could
be assigned to the column without any non-zero digits exisitng to
the right of the decimal point. The default is 1.

If the value is positive, the sequence of values for the identity
column ascends. If the value is negative, the sequence of values
descends.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the
performance of inserting rows into a table.

CACHE integer
Specifies the number of values of the identity column sequence
that DB2 preallocates and keeps in memory. The minimum
value that can be specified is 2, and the maximum is the largest
value that can be represented as an integer. The default is 20.

During a system failure, all cached identity column values that
are yet to be assigned are lost, and thus, will never be used.
Therefore, the value specified for CACHE also represents the
maximum number of values for the identity column that could
be lost during a system failure.

In a data sharing environment, each member gets its own
range of consecutive values to assign. For example, if CACHE

ALTER TABLE

406 SQL Reference

|
|
|
|
|
|
|
|

20 is specified, DB2A might get values 1-20 for a particular
sequence, and DB2B might get values 21-40. Therefore, if
transactions from different members generate values for the
same identity column, the values that are assigned might not be
in the order in which they are requested.

The minimum value is 2. The maximum is the largest value that
can be represented as an integer. The default is CACHE 20.

NO CACHE
Specifies that values for the identity column are not
preallocated.

In a data sharing environment, use NO CACHE if you need to
guarantee that the identity values are generated in the order in
which they are requested.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate
values after reaching either the maximum or minimum value of the
sequence.

CYCLE
Specifies that values continue to be generated for this column
after the maximum or minimum value has been reached. If this
option is used, after an ascending sequence reaches the
maximum value of the sequence, it generates its minimum
value. After a descending sequence reaches its minimum value
of the sequence, it generates its maximum value. The
maximum and minimum values for the column determine the
range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by
DB2 for an identity column. However, if a unique index exists
on the identity column, and a non-unique value is generated for
it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity
column once the maximum or minimum value for the sequence
has been reached. This is the default.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is
generated for this identity column. This value can be any positive or
negative value that could be assigned to this column, but the value
must be greater than the minimum value.

If a value is not explicitly specified when the identity column is
defined, this is the maximum value of the datatype (and precision, if
DECIMAL) for an ascending sequence; or the START WITH value,
or -1 if START WITH was not specified, for a descending sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is
generated for this identity column. This value can be any positive or
negative value that could be assigned to this column, but the value
must be less than the maximum value.

If a value is not explicitly specified when the identity column is
defined, this is the START WITH value, or 1 if START WITH was

ALTER TABLE

Chapter 5. Statements 407

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

not specified, for an ascending sequence; or the minimum value of
the data type (and precision, if DECIMAL) for a descending
sequence.

references-clause
The references-clause of a column-definition provides a shorthand method
of defining a foreign key composed of a single column. Thus, if
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column.

Do not specify references-clause in the definition of a LOB or ROWID
column because a LOB or ROWID column cannot be a foreign key.

check-constraint
The check-constraint of a column-definition has the same effect as
specifying a table check constraint in a separate ADD check-constraint
clause. For conformance with the SQL standard, a table check constraint
specified in the definition of column C should not reference any columns
other than C.

Do not specify a table check constraint in the definition of a LOB or ROWID
column.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the
column. Writing a field procedure exit routine is described in Appendix B
(Volume 2) of DB2 Administration Guide. Field procedures can only be
specified for short string columns that do not have a nonnull default value.

The field procedure encodes and decodes column values. Before a value is
inserted in the column, it is passed to the field procedure for encoding.
Before a value from the column is used by a program, it is passed to the
field procedure for decoding. A field procedure could be used, for example,
to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the ALTER
TABLE statement. When so invoked, the procedure provides DB2 with the
column’s field description. The field description defines the data
characteristics of the encoded values. By contrast, the information you
supply for the column in the ALTER TABLE statement defines the data
characteristics of the decoded values.

constant
Is a parameter that is passed to the field procedure when it is invoked.
A parameter list is optional. The nth parameter specified in the
FIELDPROC clause on ALTER TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the
parameter list is 255 bytes, including commas but excluding insignificant
blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

End of column-definition

unique-constraint

CONSTRAINT constraint-name
Names the primary key or unique key constraint. If a constraint name is not

ALTER TABLE

408 SQL Reference

|
|
|

|
|

|
|

specified, a unique constraint name is generated. If a name is specified, it must
be different from the names of any referential, check, primary key, or unique
key constraints previously specified on the table.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. Each column name
must be an unqualified name that identifies a column of the table except a LOB
or ROWID column, and the same column must not be identified more than
once. The number of identified columns must not exceed 64 and the sum of
their length attributes must not exceed 255. The table must not have a primary
key and the identified columns must be defined as NOT NULL.

The set of columns in the primary key cannot be the same as the set of
columns of another unique key.

The table must have a unique index with a key that is identical to the primary
key. The keys are identical only if they have the same number of columns and
the nth column name of one is the same as the nth column name of the other.

The identified columns are defined as the primary key of the table. The
description of the index is changed to indicate that it is a primary index. If the
table has more than one unique index with a key that is identical to the primary
key, the selection of the primary index is arbitrary.

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns with the specified
constraint-name. If a constraint-name is not specified, a name is generated.
Each column name must be an unqualified name that identifies a column of the
table except a LOB or ROWID column, and the same column must not be
identified more than once. Each identified column must be defined as NOT
NULL. The number of identified columns must not exceed 64 and the sum of
their length attributes must not exceed 255.

The set of columns in the unique key cannot be the same as the set of columns
of the primary key or another unique key. A unique key is a duplicate if it is the
same as the primary key or a previously defined unique key. The specification
of a duplicate unique key is ignored with a warning.

The table must have a unique index with a key that is identical to the unique
key. The keys are identical only if they have the same number of columns and
the nth column name of one is the same as the nth column name of the other.

The identified columns are defined as a unique key of the table. The description
of the index is changed to indicate that it is enforcing a unique key constraint. If
the table has more than one unique index with a key that is identical to the
unique key, the selection of the enforcing index is arbitrary.

End of unique-constraint

referential-constraint

CONSTRAINT constraint-name
Names the referential constraint. If a constraint name is not specified, a unique
constraint name is generated. If a name is specified, it must be different from
the names of any referential, check, primary key, or unique key constraints
previously specified on the table.

FOREIGN KEY (column-name,...) references-clause
Specifies a referential constraint with the specified constraint-name.

Let T1 denote the object table of the ALTER TABLE statement.

ALTER TABLE

Chapter 5. Statements 409

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T1 except a LOB or ROWID column, and the same column must not
be identified more than once. The number of identified columns must not
exceed 64 and the sum of their length attributes must not exceed 255 minus
the number of columns that allow null values. The referential constraint is a
duplicate if the FOREIGN KEY and the parent table are the same as the
FOREIGN KEY and parent table of an existing referential constraint on T1. The
specification of a duplicate referential constraint is ignored with a warning.

End of referential-constraint

references-clause

REFERENCES table-name (column-name,...)
The table name specified after REFERENCES must identify a table that exists
at the current server, but it must not identify a catalog table. Let T2 denote the
identified parent table and let T1 denote the table being altered (T1 and T2 can
be the same table).

T2 must have a unique index and the privilege set on T2 must include the
ALTER or REFERENCES privilege on the parent table, or the REFERENCES
privilege on the columns of the nominated parent key.

The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The identified column cannot be a LOB or a ROWID column. The
same column must not be identified more than once.

The list of column names in the parent key must be identical to the list of
column names in a primary key or unique index in the parent table T2. The
column names must be specified in the same order as in the primary key or
unique index. If the list of column names does not identify a primary key or
unique key in the parent table, a unique key constraint on the parent table is
created implicitly.

If a list of column names is not specified, then T2 must have a primary key.
Omission of a list of column names is an implicit specification of the columns of
the primary key for T2.

The specified foreign key must have the same number of columns as the parent
key of T2 and, except for their names, default values, null attributes and check
constraints, the description of the nth column of the foreign key must be
identical to the description of the nth column of the nominated parent key. If the
foreign key includes a column defined as a distinct type, the corresponding
column of the nominated parent key must be the same distinct type. If a column
of the foreign key has a field procedure, the corresponding column of the
nominated parent key must have the same field procedure and an identical field
description. A field description is a description of the encoded value as it is
stored in the database for a column that has been defined to have an
associated field procedure.

The table space that contains T1 must be available to DB2. If T1 is populated,
its table space is placed in a check pending status.28 A table in a segmented

28. The check pending status prevents further updating or reading by other SQL applications. It does not affect the application
process that issues ALTER TABLE. However, we do not recommend that a process create or alter a permanent table and then
access it.

ALTER TABLE

410 SQL Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

table space is populated if the table is not empty. A table in an nonsegmented
table space is considered populated if the table space has ever contained any
records.

The referential constraint specified by the FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A description of
the referential constraint is recorded in the catalog.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause. For
more on the concepts used here, see “Referential constaints” on page 7.

If T1 and T2 are the same table, CASCADE or NO ACTION must be specified.
SET NULL must not be specified unless some column of the foreign key allows
null values. Also, SET NULL must not be specified if any nullable column of the
foreign key is a column of the key of a partitioning index. The default value for
the rule depends on the value of the CURRENT RULES special register when
the CREATE TABLE statement is processed. If the value of the register is 'DB2',
the delete rule defaults to RESTRICT; if the value is 'SQL', the delete rule
defaults to NO ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p denote
such a row of T2.

v If RESTRICT or NO ACTION is specified, an error occurs and no rows are
deleted.

v If CASCADE is specified, the delete operation is propagated to the
dependents of p in T1.

v If SET NULL is specified, each nullable column of the foreign key of each
dependent of p in T1 is set to null.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself. Thus, if the relationship would form a cycle:

v The referential constraint cannot be defined if each of the existing
relationships that would be part of the cycle have a delete rule of CASCADE.

v CASCADE must not be specified if T2 is delete-connected to T1.

If T1 is delete-connected to T2 through multiple paths, those relationships in
which T1 is a dependent and which form all or part of those paths must have
the same delete rule and it must not be SET NULL. For example, assume that
T1 is a dependent of T3 in a relationship with a delete rule of r and that one of
the following is true:

v T2 and T3 are the same table.

v T2 is a descendent of T3 and the deletion of rows from T3 cascades to T2.

v T2 and T3 are both descendents of the same table and the deletion of rows
from that table cascades to both T2 and T3.

In this case, the referential constraint cannot be defined when r is SET NULL.
When r is other than SET NULL, the referential constraint can be defined, but
the delete rule that is implicitly or explicitly specified in the FOREIGN KEY
clause must be the same as r.

End of references-clause

check-constraint

ALTER TABLE

Chapter 5. Statements 411

CONSTRAINT constraint-name
Names the table check constraint. If constraint-name is not specified, a unique
constraint name is derived from the name of the first column in the
check-condition specified in the definition of the table check constraint. If a
name is specified, it must be different from the names of any referential, check,
primary key, or unique key constraints previously specified on the table.

CHECK (check-condition)
Defines a table check constraint. A check-condition can evaluate to unknown if
a column that is an operand of the predicate is null. A check-condition that
evaluates to unknown does not violate the check constraint. A check-condition
is a search condition, with the following restrictions:

v It can refer only to the columns of table table-name; however, the columns
cannot be LOB or ROWID columns.

v It can be up to 3800 bytes long, not including redundant blanks.

v It must not contain any of the following:
– Subselects
– Built-in or user-defined functions
– Cast functions other than those created when the distinct type was

created
– Host variables
– Parameter markers
– Special registers
– Columns that include a field procedure
– CASE expressions
– Quantified predicates
– EXISTS predicates

v If a check-condition refers to a long string column, the reference must occur
within a LIKE predicate.

v The AND and OR logical operators can be used between predicates. The
NOT logical operator cannot be used.

v The first operand of every predicate must be the column name of a column in
the table.

v The second operand in the check-condition must be either a constant or a
column name of a column in the table.
– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating
point.

- A decimal number, then the column data type must be either floating
point or decimal.

- An integer number, then the column data type must not be a small
integer.

- A small integer number, then the column data type must be small
integer.

- A decimal constant, then its precision must not be larger than the
precision of the column.

– If the second operand of a predicate is a column, then both columns of
the predicate must have:
- The same data type
- Identical descriptions with the exception that the specification of the

NOT NULL and DEFAULT clauses for the columns can be different, and
that string columns with the same data type can have different length
attributes

ALTER TABLE

412 SQL Reference

|
|
|
|
|
|

Effects of defining a check constraint on a populated table: When a check
constraint is defined on a populated table and the value of the special register
CURRENT RULES is 'DB2', the check constraint is not immediately enforced on
the table. The check constraint is added to the description of the table, and the
table space that contains the table is placed in a check pending status. For a
description of the check pending status and the implications for utility
operations, see Part 2 of DB2 Utility Guide and Reference.

When a check constraint is defined on a populated table and the value of the
special register CURRENT RULES is 'STD', the check constraint is checked
against all rows of the table. If no violations occur, the check constraint is added
to the table. If any rows violate the new check constraint, an error occurs and
the description of the table is unchanged.

End of check-constraint

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints in which
the primary key is a parent key. The table must have a primary key and the
privilege set must include the ALTER or REFERENCES privilege on every
dependent table of the table.

The description of the primary index is changed to indicate that it is not a
primary index.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint in which the table is the dependent table, and
the privilege set must include the ALTER or REFERENCES privilege on the
parent table of that relationship, or the REFERENCES privilege on the columns
of the parent table of that relationship.

DROP UNIQUE constraint-name
Drops the definition of the unique key constraint and all referential constraints in
which the unique key is a parent key. The table must have a unique key. The
privilege set must include the ALTER or REFERENCES privilege on every
dependent table of the table. The description of the enforcing index is changed
to indicate that it is not enforcing a unique key constraint.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify
an existing check constraint defined on the table.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing primary key, unique key, check, or referential constraint defined on the
table.

DROP CONSTRAINT must not be used on the same ALTER TABLE statement
as DROP PRIMARY KEY, DROP UNIQUE KEY, DROP FOREIGN KEY or
DROP CHECK.

VALIDPROC
Names a validation procedure for the table or inhibits the execution of any
existing validation procedure.

program-name
Designates program-name as the new validation exit routine for the table.
Validation exit routines are described in Appendix B (Volume 2) of DB2
Administration Guide.

ALTER TABLE

Chapter 5. Statements 413

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

The validation procedure can inhibit a load, insert, update, or delete
operation on any row of the table. Before the operation takes place, the row
is passed to the procedure. The values represented by any LOB columns in
the table are not passed. After examining the row, the procedure returns a
value that indicates whether the operation should proceed. A typical use is
to impose restrictions on the values that can appear in various columns.

A table can have only one validation procedure at a time. When you name
a new procedure, any existing procedure is no longer used. The new
procedure is not used to validate existing table rows. It is used only to
validate rows that are loaded, inserted, updated, or deleted after execution
of the ALTER TABLE statement.

NULL
Discontinues the use of any validation routine for the table.

AUDIT
Alters the auditing attribute of the table. For information about audit trace
classes, see Part 3 (Volume 1) of DB2 Administration Guide.

NONE
Specifies that no auditing is to be done when the table is accessed.

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation performed by each unit of recovery.
However, the auditing is done only if the appropriate audit trace class is
active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of work of a utility or
application process. However, the auditing is done only if the appropriate
audit trace class is active and the access is not performed with COPY,
RECOVER, REPAIR, or any stand-alone utility.

If the AUDIT attribute is changed to CHANGES or ALL, subsequent ALTER
TABLE statements will be audited if the appropriate audit trace class is active.

DATA CAPTURE
Specifies whether the logging of SQL INSERT, UPDATE, and DELETE
operations on the table is augmented by additional information. For guidance on
intended uses of the expanded log records, see:

v The description of data propagation to IMS in DataPropagator NonRelational
MVS/ESA Administration Guide

v The instructions for using Remote Recovery Data Facility (RRDF) in Remote
Recovery Data Facility Program Description and Operations

v The instructions for reading log records in Appendix C (Volume 2) of DB2
Administration Guide

NONE
Do not record additional information to the log.

CHANGES
Write additional data about SQL updates to the log. Information about the
values that are represented by any LOB columns is not available.

For details about the recording of additional data for logged updates to
catalog tables, see “Notes” on page 415.

ALTER TABLE

414 SQL Reference

ADD RESTRICT ON DROP
Restricts dropping the table and the database and table space that contain the
table.

DROP RESTRICT ON DROP
Removes the restriction on dropping the table and the database and table
space that contain the table.

Notes
Restrictions for adding columns: When using ALTER TABLE, you cannot add:
v A column to a table that has an edit procedure
v A LOB column unless the table has a ROWID column
v A ROWID column to a table that already has a ROWID column
v An identity column to a table that already has an identity column
v A LOB, ROWID, or identity column to a created temporary table
v A GRAPHIC, VARGRAPHIC, DBCLOB, or CHAR FOR MIXED DATA column,

when the setting for installation option MIXED DATA is NO

Because a distinct type is subject to the same restrictions as its source type, all the
syntactic rules that apply to LOB and ROWID columns apply to distinct type
columns that are sourced on LOBs and row IDs. For example, if a table has
ROWID column, you cannot add a column with a distinct type that is sourced on a
row ID.

Adding a column to table T only changes the description of T. If the catalog
description of T is used to create a table T' and a facility such as DSN1COPY is
used to effectively copy T into T', queries that refer to the added column in T' will
fail because the data does not match its description. To avoid this problem, run the
REORG utility against the table space of T before making the copy.

Adding a ROWID column: When you add a ROWID column to an existing table,
DB2 ensures that the same, unique row ID value is returned for a row whenever it
is accessed. Reorganizing a table space has no effect on the values in a ROWID
column.

Adding an identity column: When you add an identity column to a table that is not
empty, DB2 places the table space that contains the table in the REORG pending
state. When the REORG utility is subsequently run, DB2 generates the values for
the identity column in all existing rows and then removes the REORG pending
status. These values are guaranteed to be unique, and their order is
system-determined.

Altering the length of a column: Only the length of VARCHAR columns can be
changed. When changing the length of a column, be aware of the following
information about indexes, limit keys, check constraints, and invalidation.

v Restrictions. The length of a VARCHAR column cannot be changed if any of the
following conditions are true:
– The column is referenced in a referential constraint or view.
– The column has a field procedure routine.
– The table has an edit or validation routine.
– The table is defined with DATA CAPTURE CHANGES.
– The table is a created temporary table.

v Indexes. After the ALTER TABLE statement is executed, each index on the table
with a key that includes a column whose length was increased remains available.

ALTER TABLE

Chapter 5. Statements 415

|
|

However, SQL operations against such an index are not allowed until the
changes from the ALTER TABLE statement are committed.

The maximum number of distinct alters that increase the index key length is
sixteen or less. If the maximum number of alters is exceeded, SQLCODE -148 is
returned, and the index must be reorganized or rebuilt. An alter is considered
distinct when it occurs in a different unit of work than the previous alter. For
example, changing an index column length, committing database changes, and
changing the column length of that index column or another index column counts
as two distinct alters. Whereas, changing an index column length twice before
committing any changes counts as one distinct alter; the second changes replace
the first because it was in the same commit scope. Changing the length of two
different index columns before committing the changes also counts as one
distinct alter.

v Length of partitioned index keys. When a table is altered and the length of a
column in the index is changed, DB2 changes the length of the limit key (the
highest key value) for a partition, too. The length of the limit key is increased by
the same amount that the length of column is increased.

However, if the index was created in a release prior to Version 6 of DB2 for
OS/390 and z/OS, when the maximum length of the limit key was 40 bytes
instead of 255 bytes, the limit key length is not always changed. Its length
changes only if the new column length would require that data be relocated to a
different partition. Therefore, in general, DB2 changes the length of the limit key if
the column being altered is not the last column in the partitioning index, and the
sum of the lengths of the preceding columns in the index and the existing length
of the columns being altered is less than 40 bytes. The length of the limit key is
increased by the same amount that the length of column is increased.

v Check constraints. If a table check constraint refers to the column being altered,
the length of the column is also changed in the check constraint.

v Invalidation. When a table is altered to change the length of a VARCHAR
column, all plans, packages, and dynamic cached statements that reference the
table are invalidated.

Invalidation of plans and packages: When a table is altered, all the plans and
packages that refer to the table are invalidated if any one of the following conditions
is true:

v The AUDIT attribute of the table is changed.

v A DATE, TIME, or TIMESTAMP column is added and its default value for added
rows is CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP,
respectively.

v The length attribute of a VARCHAR column is changed.

v The table is a created temporary table.

When a referential constraint is defined with a delete rule of CASCADE or SET
NULL, all plans and packages that refer to the parent table of the constraint are
invalidated. Furthermore, all plans and packages that refer to tables from which
deletes cascade to this parent table are also invalidated.

Views: Adding a column to a table has no effect on existing views.

Order of processing of clauses: When there is more than one clause, they are
processed in the following order: VALIDPROC, AUDIT, DATA CAPTURE, DROP
clauses, ALTER COLUMN, and ADD clauses.

ALTER TABLE

416 SQL Reference

|
|
|

Running utilities: You cannot execute the ALTER TABLE statement while a utility
has control of the table space that contains the table.

Dropping constraints and check pending status: If a table space or partition is
in check pending status because it contains a table with rows that violate
constraints, dropping the constraints removes the check pending status.

Capturing changes to the DB2 catalog: To have logged changes to a DB2
catalog table augmented with information for data capture, specify ALTER TABLE
xxx DATA CAPTURE CHANGES where xxx is the name of a catalog table
(SYSIBM.xxx). Data capture of catalog table changes provides the possibility of
creating and managing a shadow of the catalog.

Activity to the catalog that is caused by DB2 utilities is not captured. For example,
log records from executing a utility on a catalog table, to record the event of
executing a utility, or for catalog changes that result from executing the RUNSTATS
utility on a user table will not have data capture information.

Examples
Example 1: Column DEPTNAME in table DSN8710.DEPT was created as a
VARCHAR(36). Increase its length to 50 bytes. Also, add the column BLDG to the
table DSN8710.DEPT. Describe the new column as a character string column that
holds SBCS data.

ALTER TABLE DSN8710.DEPT
ALTER COLUMN DEPTNAME SET DATA TYPE VARCHAR(50)
ADD BLDG CHAR(3) FOR SBCS DATA;

Example 2: Assign a validation procedure named DSN8EAEM to the table
DSN8710.EMP.

ALTER TABLE DSN8710.EMP
VALIDPROC DSN8EAEM;

Example 3: Disassociate the current validation procedure from the table
DSN8710.EMP. After the statement is executed, the table no longer has a validation
procedure.

ALTER TABLE DSN8710.EMP
VALIDPROC NULL;

Example 4: Define ADMRDEPT as the foreign key of a self-referencing constraint
on DSN8710.DEPT.

ALTER TABLE DSN8710.DEPT
FOREIGN KEY(ADMRDEPT) REFERENCES DSN8710.DEPT ON DELETE CASCADE;

Example 5: Add a check constraint to the table DSN8710.EMP which checks that
the minimum salary an employee can have is $10,000.

ALTER TABLE DSN8710.EMP
ADD CHECK (SALARY >= 10000);

Example 6: Alter the PRODINFO table to define a foreign key that references a
non-primary unique key in the product version table (PRODVER_1). The columns of
the unique key are VERNAME, RELNO.

ALTER TABLE PRODINFO
FOREIGN KEY (PRODNAME,PRODVERNO)

REFERENCES PRODVER_1 (VERNAME,RELNO) ON DELETE RESTRICT;

ALTER TABLE

Chapter 5. Statements 417

Example 7: Assume that table DEPT has a unique index defined on column
DEPTNAME. Add a unique key constraint named KEY_DEPTNAME consisting of
column DEPTNAME to the DEPT table:

ALTER TABLE DSN8710.DEPT
ADD CONSTRAINT KEY_DEPTNAME UNIQUE(DEPTNAME);

ALTER TABLE

418 SQL Reference

|
|
|

|
|

|

ALTER TABLESPACE
The ALTER TABLESPACE statement changes the description of a table space at
the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v Ownership of the table space
v DBADM authority for its database
v SYSADM or SYSCTRL authority

If BUFFERPOOL or USING STOGROUP is specified, additional privileges might be
required, as explained in the description of those clauses.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

ALTER TABLESPACE

Chapter 5. Statements 419

Syntax

Description
database-name.table-space-name

Identifies the table space to be altered. The name must identify a table space
that exists at the current server. Omission of database-name is an implicit
specification of DSNDB04.

If you identify a table space of a work file database, the database must be in
the stopped state. If you identify a partitioned table space, you can use the
PART clause as explained below.

�� ALTER TABLESPACE table-space-name
database-name.

�

� �
(1)

BUFFERPOOL bpname
LOCKSIZE ANY

TABLESPACE
TABLE
PAGE
ROW
LOB

LOCKMAX SYSTEM
integer

CLOSE YES
NO

PART integer
FREEPAGE integer
PCTFREE integer
USING VCAT catalog-name

STOGROUP stogroup-name
PRIQTY integer
SECQTY integer
ERASE YES

NO
COMPRESS YES

NO
GBPCACHE CHANGED

ALL
SYSTEM
NONE

LOCKPART YES
NO

MAXROWS integer
TRACKMOD YES

NO
LOG YES

NO
CCSID ccsid-value

��

Notes:

1 The same clause must not be specified more than once.

ALTER TABLESPACE

420 SQL Reference

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space. The bpname must
identify an activated buffer pool with the same page size as the table space.
See “Naming conventions” on page 34 for more details about bpname.

The privilege set must include SYSADM or SYSCTRL authority or the USE
privilege for the buffer pool.

The change to the description of the table space takes effect the next time the
data sets of the table space are opened. The data sets can be closed and
reopened by a STOP DATABASE command to stop the table space followed by
a START DATABASE command to start the table space.

In a data sharing environment, if you specify BUFFERPOOL, the table space
must be in the stopped state when the ALTER TABLESPACE statement is
executed.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also
the threshold at which lock escalation occurs. Do not specify LOCKSIZE for a
table space in a work file database or a TEMP database.

ANY
Specifies that DB2 can use any lock size. Currently, DB2 never chooses
row locks, but reserves the right to do so.

In most cases, DB2 uses LOCKSIZE PAGE LOCKMAX SYSTEM for
non-LOB table spaces and LOCKSIZE LOB LOCKMAX SYSTEM for LOB
table spaces. However, when the number of locks acquired for the table
space exceeds the maximum number of locks allowed for a table space (an
installation parameter), the page or LOB locks are released and locking is
set at the next higher level. If the table space is segmented, the next higher
level is the table. If the table space is nonsegmented, the next higher level
is the table space.

TABLESPACE
Specifies table space locks.

TABLE
Specifies table locks. Use TABLE only for a segmented table space.

PAGE
Specifies page locks. Do not use PAGE for a LOB table space.

ROW
Specifies row locks. Do not use ROW for a LOB table space.

LOB
Specifies LOB locks. Use LOB only for a LOB table space.

Let S denote an SQL statement that refers to a table in the table space:

v The LOCKSIZE change affects S if S is prepared and executed after the
change. This includes dynamic statements and static statements that are not
bound because of VALIDATE(RUN).

v If the size specified by the new LOCKSIZE is greater than the size of the old
LOCKSIZE, the change affects S if S is a static statement that is executed
after the change.

The hierarchy of lock sizes, starting with the largest, is as follows:
– table space lock
– table lock (only for segmented table spaces)
– page lock, row lock, and LOB lock (which are at the same level)

ALTER TABLESPACE

Chapter 5. Statements 421

v In all other cases, LOCKSIZE has no effect on S until S is rebound.

LOCKMAX
Specifies the maximum number of page, row, or LOB locks an application
process can hold simultaneously in the table space. If a program requests more
than that number, locks are escalated. The page, row, or LOB locks are
released and the intent lock on the table space or segmented table is promoted
to S or X mode. If you specify LOCKMAX a for table space in a TEMP
database, DB2 ignores the value because these types of locks are not used.

For an application that uses Sysplex query parallelism, a lock count is
maintained on each member.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

Zero (0) indicates that the number of locks on the table or table space are
not counted and escalation does not occur.

SYSTEM
Indicates that the value of field LOCKS PER TABLE(SPACE) on installation
panel DSNTIPJ specifies the maximum number of page, row, or LOB locks
a program can hold simultaneously in the table or table space.

If you change LOCKSIZE and omit LOCKMAX, the following results occur:

LOCKSIZE Resultant LOCKMAX

TABLESPACE or TABLE 0

PAGE, ROW, or LOB Unchanged

ANY SYSTEM

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

CLOSE
When the limit on the number of open data sets is reached, specifies the
priority in which data sets are closed.

YES
Eligible for closing before CLOSE NO data sets. This is the default unless
the table space is in a TEMP database.

NO
Eligible for closing after all eligible CLOSE YES data sets are closed.

For a table space in a TEMP database, DB2 uses CLOSE NO regardless of the
value specified

PART integer
Identifies a partition of the table space. For a table space that has n partitions,
you must specify an integer in the range 1 to n. You must not use this clause
for a nonpartitioned table space or for a LOB table space. You must use this
clause for a partitioned table space if you use any of the following clauses:

FREEPAGE
PCTFREE
USING
PRIQTY

ALTER TABLESPACE

422 SQL Reference

SECQTY
COMPRESS
ERASE
GBPCACHE
TRACKMOD

In this case, the changes specified by these clauses apply only to the identified
partition of the table space.

FREEPAGE integer
Specifies how often to leave a page of free space when the table space is
loaded or reorganized. One free page is left after every integer pages; integer
can range from 0 to 255. FREEPAGE 0 leaves no free pages. Do not specify
FREEPAGE for a LOB table space, or a table space in a work file database or
a TEMP database.

If the table space is segmented, the number of pages left free must be less
than the SEGSIZE value. If the number of pages to be left free is greater than
or equal to the SEGSIZE value, then the number of pages is adjusted
downward to one less than the SEGSIZE value.

The change to the description of the table space or partition has no effect until
it is loaded or reorganized.

PCTFREE integer
Specifies what percentage of each page to leave as free space when the table
space is loaded or reorganized. The first record on each page is loaded without
restriction. When additional records are loaded, at least integer percent of free
space is left on each page. integer can range from 0 to 99. Do not specify
PCTFREE for a LOB table space, or a table space in a work file database or a
TEMP database.

This change to the description of the table space or partition has no effect until
it is loaded or reorganized.

USING
Specifies whether a data set for the table space or partition is managed by the
user or managed by DB2. If the table space is partitioned, USING applies to the
data set for the partition identified in the PART clause. If the table space is not
partitioned, USING applies to every data set that is eligible for the table space.
(A nonpartitioned table space can have more than one data set if PRIQTY+118
× SECQTY is at least 2 gigabytes.)

If the USING clause is specified, the table space or partition must be in the
stopped state when the ALTER TABLESPACE statement is executed. See
“Altering storage attributes” on page 429 to determine how and when changes
take effect.

VCAT catalog-name
Specifies a user-managed data set with a name that starts with
catalog-name. You must specify the catalog name in the form of a short
identifier. Thus, you must specify an alias if the name of the integrated
catalog facility catalog is longer than eight characters. When the new
description of the table space is applied, the integrated catalog facility
catalog must contain an entry for the data set conforming to the DB2
naming conventions set forth in Part 2 (Volume 1) of DB2 Administration
Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those

ALTER TABLESPACE

Chapter 5. Statements 423

subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

STOGROUP stogroup-name
Specifies a DB2-managed data set that resides on a volume of the
identified storage group. The stogroup name must identify a storage group
that exists at the current server and the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for the storage group.
When the new description of the table space is applied, the description of
the storage group must include at least one volume serial number, each
volume serial number must identify a volume that is accessible to MVS for
dynamic allocation of the data set, and all identified volumes must be of the
same device type. Furthermore, the integrated catalog facility catalog used
for the storage group must not contain an entry for the data set.

If you specify USING STOGROUP and the current data set for the table
space or partition is DB2-managed:

v Omission of the PRIQTY clause is an implicit specification of the current
PRIQTY value.

v Omission of the SECQTY clause is an implicit specification of the current
SECQTY value.

v Omission of the ERASE clause is an implicit specification of the current
ERASE rule.

If you specify USING STOGROUP to convert from user-managed data sets
to DB2-managed data sets:

v Omission of the PRIQTY clause is an implicit specification of PRIQTY 12,
24, 48, or 96 for a table space with 4KB, 8KB, 16KB, or 32KB pages,
respectively (For LOB table spaces, the respective PRIQTY values are
200, 400, 800, and 1600).

v Omission of the SECQTY and PRIQTY clauses is an implicit specification
of SECQTY 12, 24, 48, or 96 for a table space with 4KB, 8KB, 16KB, or
32KB pages, respectively. (For LOB table spaces, the respective
SECQTY values are 200, 400, 800, and 1600).

If SECQTY is omitted and PRIQTY is specified, SECQTY is either 10%
of PRIQTY or 3 times the page size of the table space, whichever is
larger. (For LOB table spaces, SECQTY is either 10% of PRIQTY or 50
times the page size of the table space, whichever is larger.)

v Omission of the ERASE clause is an implicit specification of ERASE NO.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed data set of
the table space or partition. This clause can be specified only if the data set is
managed by DB2, and if one of the following is true:
v USING STOGROUP is specified.
v A USING clause is not specified.

If PRIQTY is specified, the primary space allocation is at least n kilobytes,
where n is the value of integer with the following exceptions:
v For 4KB page sizes, if integer is less than 12, n is 12.
v For 8KB page sizes, if integer is less than 24, n is 24.
v For 16KB page sizes, if integer is less than 48, n is 48.
v For 32KB page sizes, if integer is less than 96, n is 96.
v For any page size, if integer is greater than 4194304, n is 4194304.

For LOB table spaces, the exceptions are:

ALTER TABLESPACE

424 SQL Reference

v For 4KB pages sizes, if integer is less than 200, n is 200.
v For 8KB pages sizes, if integer is less than 400, n is 400.
v For 16KB pages sizes, if integer is less than 800, n is 800.
v For 32KB pages sizes, if integer is less than 1600, n is 1600.
v For any page size, if integer is greater than 4194304, n is 4194304.

If USING STOGROUP is specified and PRIQTY is omitted, the value of
PRIQTY is the default specified in the description of USING STOGROUP.

DB2 specifies the primary space allocation to access method services using the
smallest multiple of pKB not less than n, where p is the page size of the table
space. The allocated space can be greater than the amount of space requested
by DB2. For example, it could be the smallest number of tracks that will
accommodate the request. To more closely estimate the actual amount of
storage, see the description of the DEFINE CLUSTER command in
DFSMS/MVS: Access Method Services for the Integrated Catalog.

At least one of the volumes of the identified storage group must have enough
available space for the primary quantity. Otherwise, the primary space allocation
will fail.

See “Altering storage attributes” on page 429 to determine how and when
changes to PRIQTY take effect.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed data set
of the table space or partition. This clause can be specified only if the data set
is managed by DB2, and if one of the following is true:
v USING STOGROUP is specified.
v A USING clause is not specified.

If SECQTY is specified, the secondary space allocation is at least n kilobytes,
where n is the value of integer with the following exceptions:

If integer is greater than 4194304, n is 4194304. A value of 0 for integer
indicates that no data set can be extended.

For LOB table spaces the exceptions are:
v For 4KB page sizes, if integer is greater than 0 and less than 200, n is 200.
v For 8KB page sizes, if integer is greater than 0 and less than 400, n is 400.
v For 16KB page sizes, if integer is greater than 0 and less than 800, n is 800.
v For 32KB page sizes, if integer is greater than 0 and less than 1600, n is

1600.
v For any page size, if integer is greater than 4194304, n is 4194304.

If USING STOGROUP is specified and SECQTY is omitted, the value of
SECQTY is the default specified in the description of USING STOGROUP.

DB2 specifies the secondary space allocation to access method services using
the smallest multiple of pKB not less than n, where p is the page size of the
table space. The allocated space can be greater than the amount of space
requested by DB2. For example, it could be the smallest number of tracks that
will accommodate the request. To more closely estimate the actual amount of
storage, see the description of the DEFINE CLUSTER command in
DFSMS/MVS: Access Method Services for the Integrated Catalog.

ALTER TABLESPACE

Chapter 5. Statements 425

See “Altering storage attributes” on page 429 to determine how and when
changes to SECQTY take effect.

ERASE
Indicates whether the DB2-managed data sets for the table space or partition
are to be erased before they are deleted during the execution of a utility or an
SQL statement that drops the table space.

NO
Does not erase the data sets. Operations involving data set deletion will
perform better than ERASE YES. However, the data is still accessible,
though not through DB2.

YES
Erases the data sets. As a security measure, DB2 overwrites all data in the
data sets with zeros before they are deleted.

This clause can be specified only if the data set is managed by DB2, and if one
of the following is true:
v USING STOGROUP is specified.
v A USING clause is not specified.

If you specify ERASE, the table space or partition must be in the stopped state
when the ALTER TABLESPACE statement is executed. See “Altering storage
attributes” on page 429 to determine how and when changes take effect.

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition. Do not specify COMPRESS for a LOB table space.

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition.

NO
Specifies no data compression. Inserted rows will not be compressed.
Updated rows will be decompressed. The dictionary used for compression
will be erased when the LOAD REPLACE, LOAD RESUME NO, or REORG
utility is run. See Part 5 (Volume 2) of DB2 Administration Guide for more
information about the dictionary and data compression.

GBPCACHE
In a data sharing environment, specifies what pages of the table space or
partition are written to the group buffer pool in a data sharing environment. In a
non-data-sharing environment, you can specify GBPCACHE for a table space
other than one in a work file or TEMP database, but it is ignored. Do not specify
GBPCACHE for a table space in a work file database or in a TEMP database in
either environment (data sharing or not). In addition, you cannot alter the
GBPCACHE value of some DB2 catalog table spaces; for a list of these table
spaces, see “SQL statements allowed on the catalog” on page 955.

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update.

ALTER TABLESPACE

426 SQL Reference

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), CHANGED is ignored and no
pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

Hiperpools are not used for table spaces or partitions that are defined with
GBPCACHE ALL.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), ALL is ignored and no pages are
cached to the group buffer pool.

SYSTEM
Indicates that only changed system pages within the LOB table space are
to be cached to the group buffer pool. A system page is a space map page
or any other page that does not contain actual data values.

SYSTEM is the default for a LOB table space. Use SYSTEM only for a LOB
table space.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2
uses the group buffer pool only for cross-invalidation.

If you specify NONE, the table space or partition must not be in recover
pending status when the ALTER TABLESPACE statement is executed.

If you specify GBPCACHE in a data sharing environment, the table space or
partition must be in the stopped state when the ALTER TABLESPACE
statement is executed.

LOCKPART
Indicates whether selective partition locking (SPL) is to be used when locking a
partitioned table space.

YES If all the conditions that are required for SPL are met, specifies that only
the partitions accessed will be locked. If all the conditions that are
required for SPL are not met, every partition of the table space is
locked. LOCKPART YES is not allowed with LOCKSIZE TABLESPACE.

NO Specifies that selective partition locking is not used. The table space is
locked with a single lock on the last partition. This has the effect of
locking all partitions in the table space.

To alter the LOCKPART option, you must stop the entire table space with the
STOP DATABASE command. Use LOCKPART only for partitioned table spaces.

MAXROWS integer
Specifies the maximum number of rows that DB2 will consider placing on each
data page. The integer can range from 1 through 255.

The change takes effect immediately for new rows added. However, the space
class settings for some pages may be incorrect and could cause unproductive
page visits. It is highly recommended to reorganize the table space after
altering MAXROWS.

ALTER TABLESPACE

Chapter 5. Statements 427

If you specify MAXROWS, the table space must be in the stopped state when
the ALTER TABLESPACE statement is executed. Do not specify MAXROWS for
a LOB table space, a table space in a work file database, or the DB2 catalog
table spaces that are listed under “SQL statements allowed on the catalog” on
page 955..

TRACKMOD
Specifies whether DB2 tracks modified pages in the space map pages of the
table space or partition. Do not specify TRACKMOD for a LOB table space. For
a table space in a TEMP database, DB2 uses TRACKMOD NO regardless of
the value specified.

YES
DB2 tracks changed pages in the space map pages to improve the
performance of incremental image copy.

NO
DB2 does not track changed pages in the space map pages. It uses the
LRSN value in each page to determine whether a page has been changed.

LOG
Specifies whether changes to a LOB column in the table space are to be written
to the log. Use LOG only for a LOB table space.

YES
Indicates that changes to a LOB column are to be written to the log. You
cannot use YES if the auxiliary table in the table space stores a LOB
column that is greater than 1 gigabyte in length.

When you change the value of LOG to YES, the LOB table space is placed
in copy pending status.

NO
Indicates that changes to a LOB column are not to be written to the log.

LOG NO has no effect on a commit or rollback operation; the consistency of
the database is maintained regardless of whether the LOB value is logged.
All committed changes and changes that are rolled back reflect the
expected results.

Even when LOG NO is specified, changes to system pages and to the
auxiliary index are logged. During the log apply operation of the RECOVER
utility, LPL recovery, or GPB recovery, all LOB values that were not logged
are marked invalid and cannot be accessed by a SELECT or FETCH
statement. Invalid LOB values can be updated or deleted.

CCSID ccsid-value
Identifies the CCSID value to be used for the table space. ccsid-value must
identify a CCSID value that is compatible with the current value of the
CCSID for the table space. See “Notes” on page 341 for a list that shows
the CCSID to which a given CCSID can be changed and details about
changing it.

Do not specify CCSID for a LOB table space or a table space in a TEMP
database.

Notes
Running utilities: You cannot execute the ALTER TABLESPACE statement while a
DB2 utility has control of the table space.

ALTER TABLESPACE

428 SQL Reference

Altering more than one partition: To change FREEPAGE, PCTFREE, USING,
PRIQTY, SECQTY, COMPRESS, ERASE, or GBPCACHE for more than one
partition, you must use separate ALTER TABLESPACE statements.

Altering storage attributes: The USING, PRIQTY, SECQTY, and ERASE clauses
define the storage attributes of the table space or partition. However, if you specify
USING or ERASE when altering storage attributes, the table space or partition must
be in the stopped state when the ALTER TABLESPACE statement is executed. You
can use a STOP DATABASE...SPACENAM... command to stop the table space or
partition.

If the catalog name changes, the changes take effect after you move the data and
start the table space or partition using the START DATABASE...SPACENAM...
command. The catalog name can be implicitly or explicitly changed by the ALTER
TABLESPACE statement. The catalog name also changes when you move the data
to a different device. See the procedures for moving data in Part 2 (Volume 1) of
DB2 Administration Guide.

Changes to the secondary space allocation (SECQTY) take effect the next time
DB2 extends the data set; however, the new value is not reflected in the integrated
catalog until you use the REORG, RECOVER, or LOAD REPLACE utility on the
table space or partition. The changes to the other storage attributes take effect the
next time the page set is reset. For a non-LOB table space, the page set is reset
when you use the REORG, RECOVER, or LOAD REPLACE utilities on the table
space or partition. For a LOB table space, the page set is reset when RECOVER is
run on the LOB table space or LOAD REPLACE is run on its associated base table
space. If there is not enough storage to satisfy the primary space allocation, a
REORG might fail. If you change the primary space allocation parameters or erase
rule, you can have the changes take effect earlier if you move the data before you
start the table space or partition.

Altering table spaces for DB2 catalog tables: For details on altering options on
catalog tables, see “SQL statements allowed on the catalog” on page 955.

Examples
Example 1: Alter table space DSN8S71E in database DSN8D71A. CLOSE NO
means that the data sets of the table space are not to be closed when there are no
current users of the table space.

ALTER TABLESPACE DSN8D71A.DSN8S71E
CLOSE NO;

Example 2: Alter table space DSN8S71D in database DSN8D71A. BP2 is the buffer
pool associated with the table space. PAGE is the level at which locking is to take
place.

ALTER TABLESPACE DSN8D71A.DSN8S71D
BUFFERPOOL BP2
LOCKSIZE PAGE;

ALTER TABLESPACE

Chapter 5. Statements 429

ASSOCIATE LOCATORS
The ASSOCIATE LOCATORS statement gets the result set locator value for each
result set returned by a stored procedure.

Invocation
This statement can be embedded in an application program. It is an executable
statement that can be dynamically prepared. It cannot be issued interactively.

Authorization
None required.

Syntax

Description
rs-locator-variable

Identifies a result set locator variable that has been declared according to the
rules for declaring result set locator variables.

One result set locator variable is required for each result set that the stored
procedure returns. If the stored procedure returns fewer result sets than the
number of result set locator variables specified, the extra variables are assigned
a value of 0.

WITH PROCEDURE procedure-name or host-variable
Identifies the stored procedure that returned result set locators by the specified
procedure name or the procedure name contained in the host variable.

A procedure name is a qualified or unqualified name. Each part of the name
must be composed of SBCS characters:

v A fully qualified procedure name is a three-part name. The first part is a long
identifier that contains the location name that identifies the DBMS at which
the procedure is stored. The second part is a short identifier that contains the
schema name of the stored procedure. The last part is a long identifier that
contains the name of the stored procedure. A period must separate each of
the parts. Any or all of the parts can be a delimited identifier.

v A two-part procedure name has one implicit qualifier. The implicit qualifier is
the location name of the current server. The two parts identify the schema
name and the name of the stored procedure. A period must separate the two
parts.

v An unqualified procedure name is a one-part name with one implicit qualifier.
The implicit qualifier is the location name of the current server. An implicit
schema name is not needed as a qualifier. Successful execution of the
ASSOCIATE LOCATOR statement only requires that the unqualified
procedure name in the statement is the same as the procedure name in the

�� ASSOCIATE
RESULT SET

LOCATOR
LOCATORS

�

,

(rs-locator-variable) �

� WITH PROCEDURE procedure-name
host-variable

��

ASSOCIATE LOCATORS

430 SQL Reference

most recently executed CALL statement that was specified with an
unqualified procedure name. (The implicit schema name for the unqualified
name in the CALL statement is not considered in the match.) The rules for
how the procedure name must be specified are described below.

If a host variable is used:

v It must be a character string variable with a length attribute that is not greater
than 255.

v It must not be followed by an indicator variable.

v The value of the host variable is a specification that depends on the server.
Regardless of the server, the specification must:
– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the host

variable

When the ASSOCIATE LOCATORS statement is executed, the procedure name
or specification must identify a stored procedure that the requester has already
invoked using the CALL statement.

The procedure name in the ASSOCIATE LOCATORS statement must be
specified the same way that it was specified on the CALL statement. For
example, if a two-part name was specified on the CALL statement, you must
use a two-part name in the ASSOCIATE LOCATORS statement. However, there
is one condition under which the names do not have to match. If the CALL
statement was made with a three-part name and the current server is the same
as the location in the three-part name, you can omit the location name and
specify a two-part name.

Notes
More than one locator can be assigned to a result set. You can issue the same
ASSOCIATE LOCATORS statement more than once with different result set locator
variables.

If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is less than the number of locators returned by the stored
procedure, all variables in the statement are assigned a value, and a warning is
issued.

If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is greater than the number of locators returned by the stored
procedure, the extra variables are assigned a value of 0.

The ASSOCIATE LOCATORS statement assigns result set locator values from the
SQLVAR sections of the SQLDA to result set locator variables. For languages other
than REXX, the first SQLDATA field is assigned to the first locator variable, the
second SQLDATA field to the second locator variable, and so on. For REXX, the
first SQLLOCATOR field is assigned to the first locator variables, the second
SQLLOCATOR field to the second locator variable, and so on.

If a stored procedure is called more than once with a one-part name at the same
location, only the most recent result sets are accessible.

If the ASSOCIATE LOCATORS statement contains host variables, the following
conditions apply:

ASSOCIATE LOCATORS

Chapter 5. Statements 431

|
|

v If the statement is executed statically, the contents of the host variables are
assumed to be in the encoding scheme that was specified in the ENCODING
parameter when the package or plan that contains the statement was bound.

v If the statement is executed dynamically, the contents of the host variables are
assumed to be in the encoding scheme that is specified in the APPLICATION
ENCODING bind option.

Examples
The statements in the following examples are assumed to be in PL/I programs.

Example 1: Use result set locator variables LOC1 and LOC2 to get the result set
locator values for the two result sets returned by stored procedure P1. Assume that
the stored procedure is called with a one-part name from current server SITE2.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL P1;
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify
an explicit schema name for the stored procedure to ensure that stored procedure
P1 in schema MYSCHEMA is used.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL MYSCHEMA.P1;
EXEC SQL ASSOCIATE RESULT SET LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE MYSCHEMA.P1;

Example 3: Use result set locator variables LOC1 and LOC2 to get the result set
locator values for the two result sets that are returned by the stored procedure
named by host variable HV1. Assume that host variable HV1 contains the value
SITE2.MYSCHEMA.P1 and the stored procedure is called with a three-part name.

EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

The preceding example would be invalid if host variable HV1 had contained the
value MYSCHEMA.P1, a two-part name. For the example to be valid with that
two-part name in host variable HV1, the current server must be the same as the
location name that is specified on the CALL statement as the following statements
demonstrate. This is the only condition under which the names do not have to be
specified the same way and a three-part name on the CALL statement can be used
with a two-part name on the ASSOCIATE LOCATORS statement.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

ASSOCIATE LOCATORS

432 SQL Reference

|
|
|

|
|
|

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
The BEGIN DECLARE SECTION statement can be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It is used to indicate the beginning of a host variable declaration
section. A host variable section ends with an END DECLARE SECTION statement,
described in “END DECLARE SECTION” on page 721.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) precompiler option is specified:
v A variable referred to in an SQL statement must be declared within a host

variable declaration section of the source program
v BEGIN DECLARE SECTION and END DECLARE SECTION statements must be

paired and must not be nested.
v Host variable declaration sections can contain only host variable declarations,

SQL INCLUDE statements that include host variable declarations, or DECLARE
VARIABLE statements.

Notes
Host variable declaration sections are only required if the STDSQL(YES) option is
specified or the host language is C. However, declare sections can be specified for
any host language so that the source program can conform to IBM SQL. If declare
sections are used, but not required, variables declared outside a declare section
must not have the same name as variables declared within a declare section.

Example
EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

�� BEGIN DECLARE SECTION ��

BEGIN DECLARE SECTION

Chapter 5. Statements 433

|
|
|

CALL
The CALL statement invokes a stored procedure.

Invocation
This statement can be embedded in an application program. This statement can
also be dynamically prepared, but only from an ODBC or CLI driver that supports
dynamic CALL statements. IBM’s ODBC and CLI drivers provide this capability.

Authorization
Invoking a stored procedure requires the EXECUTE privilege on the following:

v The stored procedure

You do not need the EXECUTE privilege on a stored procedure that was created
prior to Version 6 of DB2 for OS/390 and z/OS.

v The stored procedure package and most packages that run under the stored
procedure

The authorization that is required for which packages is explained in detail below
under “Authorization to execute packages under the stored procedure”.

Authorization to execute the stored procedure

The authorization ID that must have the EXECUTE privilege on the stored
procedure depends on the form of the CALL statement:

v For static SQL programs that use the syntax CALL procedure, the owner of the
plan or package that contains the CALL statement must have one of the
following:
– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– SYSADM authority

v For static SQL programs that use the syntax CALL host variable (ODBC
applications use this form of the CALL statement), the authorization ID of the
plan or package that contains the CALL statement must have one of the
following:
– The EXECUTE privilege on the stored procedure
– Ownership of the stored procedure
– SYSADM authority

The DYNAMICRULES behavior for the plan or package that contains the CALL
statement determines both the authorization ID and the privilege set that is held
by that authorization ID:

Run behavior The privilege set is the union of the set of
privileges held by the SQL authorization ID and
each authorization ID of the process.

Bind behavior The privilege set is the privileges that are held by
the primary authorization ID of the owner of the
package or plan.

Define behavior The privilege set is the privileges that are held by
the authorization ID of the owner (definer) of the
stored procedure or user-defined function that
issued the CALL statement.

Invoke behavior The privilege set is the privileges that are held by
the authorization ID of the invoker of the stored

CALL

434 SQL Reference

procedure or user-defined function that issued
the CALL statement. However, if the invoker is
the primary authorization ID of the process or the
CURRENT SQLID value, the privilege set is the
union of the set of privileges that are held by
each authorization ID.

For a list of the DYNAMICRULES values that specify run, bind, define, or invoke
behavior, see Table 2 on page 44.

Authorization to execute packages under the stored procedure

The authorization that is required to run the stored procedure package and any
packages that are used under the stored procedure apply to any form of the CALL
statement as follows:

v Stored procedure package
One of the authorization IDs that are defined below under “Set of authorization
IDs” on page 436 must have at least one of the following on the stored procedure
package:
– The EXECUTE privilege on the package
– Ownership of the package
– PACKADM authority for the package’s collection
– SYSADM authority

A PKLIST entry is not required for the stored procedure package.

v Packages other than user-defined function, trigger, and stored procedure
packages
One of the authorization IDs that are defined below under “Set of authorization
IDs” on page 436 must have at least one of the following on any packages other
than user-defined function and trigger packages that are used under the stored
procedure:
– The EXECUTE privilege on the package
– Ownership of the package
– PACKADM authority for the package’s collection
– SYSADM authority

PKLIST entries are required for any of these packages that are used under the
stored procedure.

v User-defined function packages and trigger packages
If a stored procedure or any application under the stored procedure invokes a
user-defined function, DB2 requires only the owner (the definer) and not the
invoker of the user-defined function to have EXECUTE authority on the
user-defined function package. However, the authorization ID of the SQL
statement that invokes the user-defined function must have EXECUTE authority
on the function. Similarly, if a trigger is used under a stored procedure, DB2 does
not require EXECUTE authority on the trigger package; however, the
authorization ID of the SQL statement that activates the trigger must have
EXECUTE authority on the trigger. For more information about the EXECUTE
authority for user-defined functions, triggers, and user-defined function packages,
see Part 3 of DB2 Administration Guide.

PKLIST entries are not required for any user-defined function packages or trigger
packages that are used under the stored procedure.

CALL

Chapter 5. Statements 435

Set of authorization IDs: DB2 checks the following authorization IDs in the order
in which they are listed for the required authorization to execute the stored
procedure package and any packages other than user-defined function and trigger
packages as described above:

v The owner (the definer) of the stored procedure

v The owner of the plan that contains the statement that invokes the package if the
application is local, the application is distributed and DB2 for OS/390 and z/OS is
both the requester and the server, or the application uses Recoverable
Resources Management Services attachment facility (RRSAF) and has no plan.

v The owner of the package that contains the statement that invokes the package
if the application is distributed and DB2 for OS/390 and z/OS is the server but
not the requester

v The authorization ID as determined by the value of the DYNAMICRULES bind
option for the plan or package that contains the CALL statement if the CALL
statement is in the form of CALL host variable

Syntax

Description
procedure-name or host-variable

Identifies the stored procedure to call. The procedure name can be specified as
a character string constant or within a host variable.

A procedure name is a qualified or unqualified name. Each part of the name
must be composed of SBCS characters:

v A fully qualified procedure name is a three-part name. The first part is a long
identifier that contains the location name that identifies the DBMS at which
the procedure is stored. The second part is a short identifier that contains the
schema name of the stored procedure. The last part is a long identifier that
contains the name of the stored procedure. A period must separate each of
the parts. Any or all of the parts can be a delimited identifier.

v A two-part procedure name has one implicit qualifier. The implicit qualifier is
the location name of the current server. The two parts identify the schema
name and the name of the stored procedure. A period must separate the two
parts.

v An unqualified procedure name is a one-part name with two implicit
qualifiers. The first implicit qualifier is the location name of the current server.
The second implicit qualifier depends on the server. If the server is DB2 for
OS/390 and z/OS, the implicit qualifier is the schema name. DB2 uses the
SQL path to determine the value of the schema name.

�� CALL procedure-name
host-variable

�

()
,

expression
NULL
TABLE transition-table-name

USING DESCRIPTOR descriptor-name

��

CALL

436 SQL Reference

– If the procedure name is specified as a literal on the CALL statement
(CALL procedure-name), the SQL path is the value of the PATH bind
option that is associated with the calling package or plan.

– If a host variable is specified for the procedure name on the CALL
statement (CALL host-variable), the SQL path is the value of the
CURRENT PATH special register.

DB2 searches the schema names in the SQL path from left to right until a
stored procedure with the specified schema name is found in the DB2
catalog. When a matching schema.procedure-name is found, the search
stops only if the following conditions are true:
– The user is authorized to call the stored procedure.
– The number of parameters in the definition of the stored procedure

matches the number of parameters specified on the CALL statement.
– The create timestamp for the stored procedure must be older than the

bind timestamp for the package or plan in which the procedure is invoked.

If the list of schemas in the SQL path is exhausted before the procedure
name is resolved, an error is returned.

If a host variable is used:

v It must be a character string variable with a length attribute that is not greater
than 255.

v It must not be followed by an indicator variable.

v The value of the host variable is a specification that depends on the server.
Regardless of the server, the specification must:
– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the host

variable

In addition, the specification can:
– Contain upper and lowercase characters. Lowercase characters are not

folded to uppercase.
– Use a delimited identifier for any part of a the three-part procedure name.

If the server is DB2 for OS/390 and z/OS, the specification must be a
procedure name as defined above.

When the CALL statement is executed, the procedure name or specification
must identify a stored procedure that exists at the server.

When the package that contains the CALL statement is bound, the stored
procedure that is invoked must be created if VALIDATE(BIND) is specified.
Although the stored procedure does not need to be created at bind time if
VALIDATE(RUN) is specified, it must be created when the CALL statement is
executed.

Parameters (expression, NULL, TABLE transition-table-name)
Identifies a list of values to be passed as parameters to the stored procedure. If
USING DESCRIPTOR is specified, each host variable described by the
identified SQLDA is a parameter, or part of an expression that is a parameter, of
the CALL statement. If host structures are not specified in the CALL statement,
the nth parameter of the CALL statement corresponds to the nth parameter in
the stored procedure, and the number of parameters in each must be the same.
Otherwise, each reference to a host structure is replaced by a reference to

CALL

Chapter 5. Statements 437

each of the variables contained in that host structure, and the resulting number
of parameters must be the same as the number of parameters defined for the
stored procedure.

However, a character FOR BIT DATA parameter cannot be passed as input for
a parameter that is not defined as character FOR BIT DATA. Likewise, a
character argument that is not FOR BIT DATA cannot be passed as input for a
parameter that is defined as character FOR BIT DATA.

Each parameter of a stored procedure is described at the server. In addition to
attributes such as data type and length, the description of each parameter
indicates how the stored procedure uses it:
v IN means as an input value
v OUT means as an output value
v INOUT means both as an input and an output value

When the CALL statement is executed, the value of each of its parameters is
assigned to the corresponding parameter of the stored procedure. In cases
where the parameters of the CALL statement are not an exact match to the
data types of the parameters of the stored procedure, each parameter specified
in the CALL statement is converted to the data type of the corresponding
parameter of the stored procedure at execution. The conversion occurs
according to the same rules as assignment to columns. For details on the rules
used to assign parameters, see “Assignment and comparison” on page 64.

Conversion can occur when precision, scale, length, encoding scheme, or
CCSID differ between the parameter specified in the CALL statement and the
data type of the corresponding parameter of the stored procedure. Conversion
might occur for a character string parameter specified in the CALL statement
when the corresponding parameter of the stored procedure has a different
encoding scheme or CCSID. For example, an error occurs when the CALL
statement passes mixed data that actually contains DBCS characters as input
to a parameter of the stored procedure that is declared with an SBCS subtype.
Likewise, an error occurs when the stored procedure returns mixed data that
actually contains DBCS characters in the parameter of the CALL statement that
has an SBCS subtype.

Control is passed to the stored procedure according to the calling conventions
of the host language. When execution of the stored procedure is complete, the
value of each parameter of the stored procedure is assigned to the
corresponding parameter of the CALL statement defined as OUT or INOUT.

expression
The parameter is the result of the specified expression, which is evaluated
before the stored procedure is invoked.

If expression is a single host variable, the corresponding parameter of the
procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. In
addition, the host variable can identify a structure. Any host variable or
structure that is specified must be described in the application program
according to the rules for declaring host structures and variables. A
reference to a host structure is replaced by a reference to each of the
variables contained in the host structure.

If the result of the expression can be the null value, either the description of
the procedure must allow for null parameters or the corresponding
parameter of the stored procedure must be defined as OUT.

CALL

438 SQL Reference

|
|
|
|
|
|

The following additional rules apply depending on how the corresponding
parameter was defined in the CREATE PROCEDURE statement for the
procedure:

v IN expression can contain references to multiple host variables. In
addition to the rules stated in “Expressions” on page 110 for expression,
expression cannot include a column name or column function or a
user-defined function that is sourced on a column function.

v INOUT or OUT expression can only be a single host variable.

NULL
The parameter is a null value. The corresponding parameter of the
procedure must be defined as IN and the description of the procedure must
allow for null parameters.

TABLE transition-table-name
The parameter is a transition table, and it is passed to the procedure as a
table locator. You can use the CALL statement with the TABLE clause only
within the definition of the triggered action of a trigger. The name of a
transition table must be specified in the CALL statement if the
corresponding parameter of the procedure was defined in the TABLE LIKE
clause of the CREATE PROCEDURE statement. For information about
creating a trigger, see “CREATE TRIGGER” on page 647 and DB2
Application Programming and SQL Guide.

There is no effect on the transition table on the return from the procedure
regardless of whether the parameter was defined as IN, INOUT, or OUT.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the host variables
that are to be passed as parameters to the stored procedure. If the stored
procedure has no parameters, an SQLDA is ignored.

Before the CALL statement is processed, the user must set the following
fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA. This number must not be less than SQLD. This field is not part
of the REXX SQLDA and therefore does not need to be set for REXX
programs.

v SQLDABC to indicate the number of bytes of storage allocated for the
SQLDA. This number must be not be less than SQLN*44+16. This field
is not part of the REXX SQLDA and therefore does not need to be set for
REXX programs.

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement. This number must be the same as the number
of parameters of the stored procedure.

v SQLVAR occurrences to indicate the attributes of the variables.

There are additional considerations for setting the fields of the SQLDA
when a variable that is passed as a parameter to the stored procedure has
a LOB data type or is a LOB locator. For more information, see “SQL
descriptor area (SQLDA)” on page 930.

The SQL CALL statement ignores distinct type information in the SQLDA.
Only the base SQL type information is used to process the input and output
parameters described by the SQLDA.

CALL

Chapter 5. Statements 439

|
|
|

|
|
|
|

|

See “Identifying an SQLDA in C or C⁺⁺” on page 947 for how to represent
descriptor-name in C.

Notes
Improving performance: The capability of calling stored procedures is provided to
improve the performance of DRDA distributed access (DB2 private protocol access
is not supported). The capability is also useful for local operations. The server can
be the local DB2. In which case, packages are still required.

All values of all parameters are passed from the requester to the server. To improve
the performance of this operation, host variables that correspond to OUT
parameters and have lengths of more than a few bytes should be set to null before
the CALL statement is executed.

Using the CALL statement in a trigger: When a trigger issues a CALL statement
to invoke a stored procedure, the parameters that are specified in the CALL
statement cannot be host variables and the USING DESCRIPTOR clause cannot
be specified.

Nesting CALL statements: A program that is executing as a stored procedure, a
user-defined function, or a trigger can issue a CALL statement. When a stored
procedure, user-defined function, or trigger calls a stored procedure, user-defined
function, or trigger, the call is considered to be nested. Stored procedures,
user-defined functions, and triggers can be nested up to 16 levels deep on a single
system. Nesting can occur within a single DB2 subsystem or when a stored
procedure or user-defined function is invoked at a remote server.

If a stored procedure returns any query result sets, the result sets are returned to
the caller of the stored procedure. If the SQL CALL statement is nested, the result
sets are visible only to the program that is at the previous nesting level. For
example, Figure 6 illustrates a scenario in which a client program calls stored
procedure PROCA, which in turn calls stored procedure PROCB. Only PROCA can
access any result sets that PROCB returns; the client program has no access to the
query result sets. The number of query result sets that PROCB returns does not
count toward the maximum number of query results that PROCA can return.

Some stored procedures cannot be nested. A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the COMMIT
ON RETURN attribute. A stored procedure can call another stored procedure only if
they execute in the same type of address space; they must both execute in a
DB2-established address space or in a WLM-established address space.

Figure 6. Nested CALL statements

CALL

440 SQL Reference

Using host variables: If the CALL statement contains host variables, the contents
of the host variables are assumed to be in the encoding scheme that was specified
in the ENCODING parameter when the package or plan that contains the statement
was bound.

Example
A PL/I application has been precompiled on DB2 ALPHA and a package was
created at DB2 BETA with the BIND subcommand. A CREATE PROCEDURE
statement was issued at BETA to define the procedure SUMARIZE, which allows
nulls and has two parameters. The first parameter is defined as IN and the second
parameter is defined as OUT. Some of the statements that the application that runs
at DB2 ALPHA might use to call stored procedure SUMARIZE include:

EXEC SQL CONNECT TO BETA;
V1 = 528671;
IV = -1;
EXEC SQL CALL SUMARIZE(:V1,:V2 INDICATOR :IV);

CALL

Chapter 5. Statements 441

|
|
|
|

CLOSE
The CLOSE statement closes a cursor. If a temporary copy of a result table was
created when the cursor was opened, that table is destroyed.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 665 for the authorization required to use a
cursor.

Syntax

Description
cursor-name

Identifies the cursor to be closed. The cursor name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 665. When the CLOSE
statement is executed, the cursor must be in the open state.

Notes
Any open cursors of an application process option are implicitly closed at the
termination of a unit of work. However, explicitly closing cursors as soon as possible
can improve performance. CLOSE does not cause a commit or rollback operation.

The cursor could have been allocated. See “ALLOCATE CURSOR” on page 338.

Example
A cursor is used to fetch one row at a time into the application program variables
DNUM, DNAME, and MNUM. Finally, the cursor is closed. If the cursor is reopened,
it is again located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8710.DEPT
WHERE ADMRDEPT = 'A00'
END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

�� CLOSE cursor-name ��

CLOSE

442 SQL Reference

GET-REST-OF-DEPT.
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

CLOSE

Chapter 5. Statements 443

COMMENT
The COMMENT statement adds or replaces comments in the descriptions of
various objects in the DB2 catalog at the current server. The objects that can have
comments are aliases, columns, distinct types, stored procedures, tables, triggers,
user-defined functions, views, and indexes.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
For a comment on a table, view, alias, index, or column, the privilege set that is
defined below must include at least one of the following:
v Ownership of the table, view, alias, or index
v Ownership of the table on which the index is defined (indexes only)
v DBADM authority for its database (tables and indexes only)
v SYSADM or SYSCTRL authority

For a comment on a distinct type, stored procedure, trigger, or user-defined
function, the privilege set that is defined below must include at least one of the
following:
v Ownership of the distinct type, stored procedure, trigger, or user-defined function
v The ALTERIN privilege for the schema or all schemas (for the addition of

comments)
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the ALTERIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is determined
by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 34 on page 334. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43.)

COMMENT

444 SQL Reference

|

|
#

Syntax

�� COMMENT ON �

�

�

�

ALIAS alias-name IS string-constant
COLUMN table-name .column-name

view-name
(1)

DISTINCT TYPE distinct-type-name
FUNCTION function-name

,

()
parameter-type

INDEX index-name
PROCEDURE procedure-name
SPECIFIC FUNCTION specific-name
TABLE table-name

view-name
TRIGGER trigger-name

,

table-name (column-name IS string-constant)
view-name

��

Notes:

1 DATA can be used as a synonym for DISTINCT.

parameter-type

�� data-type
(1)

AS LOCATOR

��

Notes:

1 AS LOCATOR can be specified only for a LOB data type or a distinct type that is based on a LOB
data type.

data-type

�� built-in-data-type
distinct-type-name

��

COMMENT

Chapter 5. Statements 445

Description
ALIAS alias-name

Identifies the alias to which the comment applies. alias-name must identify an

built-in-data-type

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID EBCDIC

(integer) MIXED ASCII
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

VARCHAR
CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID EBCDIC

CLOB (integer) MIXED ASCII
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID EBCDIC

(integer) ASCII
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 The values that are specified for length, precision, or scale attributes must match the values that
were specified when the function was created. Coding specific values is optional. Empty
parentheses, (), can be used instead to indicate that DB2 ignores the attributes when
determining whether data types match.

2 The value that is specified does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE). 1<=integer<= 21
indicates REAL and 22<=integer<=53 indicates DOUBLE. Coding a specific value is optional.
Empty parentheses cannot be used.

COMMENT

446 SQL Reference

alias that exists at the current server. The comment is placed in the REMARKS
column of the SYSIBM.SYSTABLES catalog table for the row that describes the
alias.

COLUMN table-name.column-name or view-name.column-name
Identifies the column to which the comment applies. The name must identify a
column of a table or view that exists at the current server. The name must not
identify a column of a declared temporary table. The comment is placed into the
REMARKS column of the SYSIBM.SYSCOLUMNS catalog table, for the row
that describes the column.

Do not use TABLE or COLUMN to comment on more than one column in a
table or view. Give the table or view name and then, in parentheses, a list in
the form:

column-name IS string-constant,
column-name IS string-constant,...

The column names must not be qualified, each name must identify a column of
the specified table or view, and that table or view must exist at the current
server.

DISTINCT TYPE distinct-type-name
Identifies the distinct type to which the comment applies. distinct-type-name
must identify a distinct type that exists at the current server. The comment is
placed in the REMARKS column of the SYSIBM.SYSDATATYPES catalog table
for the row that describes the distinct type.

FUNCTION
Identifies the function to which the comment applies. The function must exist at
the current server, and it must be a function that was defined with the CREATE
FUNCTION statement or a cast function that was generated by a CREATE
DISTINCT TYPE statement. The comment is placed in the REMARKS column
of the SYSIBM.SYSROUTINES catalog table for the row that describes the
function.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the input
parameters is a transition table), the function signature cannot be used to
identify the function. Instead, identify the function with its function name, if
unique, or with its specific name.

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly one
function with function-name.

FUNCTION function-name (parameter-type,...)
Provides the function signature, which uniquely identifies the function.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

The data types of the parameters must match the data types that were
specified on the CREATE FUNCTION statement in the corresponding
position. The number of data types and the logical concatenation of the
data types are used to identify the specific function.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

COMMENT

Chapter 5. Statements 447

v Empty parentheses indicate that DB2 ignores the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have exactly match the
defined value of the source function because 1<=n<= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 601.

For data types with a subtype or encoding scheme attribute, specifying
the FOR DATA clause or CCSID clause is optional. Omission of either
clause indicates that DB2 ignores the attribute when determining
whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

SPECIFIC FUNCTION specific-name
Identifies the particular function using the specific name either specified or
defaulted to when the function was created.

INDEX index-name
Identifies the index to which the comment applies. index-name must identify an
index that exists at the current server. The comment is placed in the REMARKS
column of the SYSIBM.SYSINDEXES catalog table for the row that describes
the index.

PROCEDURE procedure-name
Identifies the stored procedure to which the comment applies. procedure-name
must identify a stored procedure that has been defined with the CREATE
PROCEDURE statement at the current server. The comment is placed in the
REMARKS column of the SYSIBM.SYSROUTINES catalog table for the row
that describes the stored procedure.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. table-name or
view-name must identify a table, auxiliary table, or view that exists at the
current server. table-name must not identify a declared temporary table. The
comment is placed in the REMARKS column of the SYSIBM.SYSTABLES
catalog table for the row that describes the table or view.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. trigger-name must identify a

COMMENT

448 SQL Reference

|
|
|
|
|

trigger that exists at the current server. The comment is placed in the
REMARKS column of the SYSIBM.SYSTRIGGERS catalog table for the row
that describes the trigger.

IS string-constant
Introduces the comment that you want to make. string-constant can be any SQL
character string constant of up to 254 characters.

Examples
Example 1: Enter a comment on table DSN8710.EMP.

COMMENT ON TABLE DSN8710.EMP
IS 'REFLECTS 1ST QTR 81 REORG';

Example 2: Enter a comment on view DSN8710.VDEPT.
COMMENT ON TABLE DSN8710.VDEPT

IS 'VIEW OF TABLE DSN8710.DEPT';

Example 3: Enter a comment on the DEPTNO column of table DSN8710.DEPT.
COMMENT ON COLUMN DSN8710.DEPT.DEPTNO

IS 'DEPARTMENT ID - UNIQUE';

Example 4: Enter comments on the two columns in table DSN8710.DEPT.
COMMENT ON DSN8710.DEPT

(MGRNO IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER',
ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT');

Example 5: Assume that you are SMITH and that you created the distinct type
DOCUMENT in schema SMITH. Enter comments on DOCUMENT.

COMMENT ON DISTINCT TYPE DOCUMENT
IS 'CONTAINS DATE, TABLE OF CONTENTS, BODY, INDEX, and GLOSSARY';

Example 6: Assume that you are SMITH and you know that ATOMIC_WEIGHT is
the only function with that name in schema CHEM. Enter comments on
ATOMIC_WEIGHT.

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
IS 'TAKES ATOMIC NUMBER AND GIVES ATOMIC WEIGHT';

Example 7: Assume that you are SMITH and that you created the function CENTER
in schema SMITH. Enter comments on CENTER, using the signature to uniquely
identify the function instance.

COMMENT ON FUNCTION CENTER (INTEGER, FLOAT)
IS 'USES THE CHEBYCHEV METHOD';

Example 8: Assume that you are SMITH and that you created another function
named CENTER in schema JOHNSON. You gave the function the specific name
FOCUS97. Enter comments on CENTER, using the specific name to identify the
function instance.

COMMENT ON SPECIFIC FUNCTION JOHNSON.FOCUS97
IS 'USES THE SQUARING TECHNIQUE';

Example 9: Assume that you are SMITH and that stored procedure OSMOSIS is in
schema BIOLOGY. Enter comments on OSMOSIS.

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
IS 'CALCULATIONS THAT MODEL OSMOSIS';

COMMENT

Chapter 5. Statements 449

Example 11: Assume that you are SMITH and that trigger BONUS is in your
schema. Enter comments on BONUS.

COMMENT ON TRIGGER BONUS
IS 'LIMITS BONUSES TO 10% OF SALARY;

COMMENT

450 SQL Reference

COMMIT
The COMMIT statement ends a unit of recovery and commits the relational
database changes that were made in that unit of recovery. If relational databases
are the only recoverable resources used by the application process, COMMIT also
ends the unit of work.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It cannot be used in
the IMS or CICS environment.

Authorization
None required.

Syntax

Description
The unit of recovery in which the statement is executed is ended and a new unit of
recovery is effectively started for the process. All changes made by ALTER,
COMMENT ON, CREATE, DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL
ON, RENAME, REVOKE, and UPDATE statements executed during the unit of
recovery are committed, and all savepoints that were set within the unit of recovery
are released. SQL connections are ended when any of the following apply:

v The connection is in the release pending status

v The connection is not in the release pending status but it is a remote connection
and:

– The DISCONNECT(AUTOMATIC) bind option is in effect, or

– The DISCONNECT(CONDITIONAL) bind option is in effect and an open
WITH HOLD cursor is not associated with the connection.

For existing connections, all LOB locators are disassociated, except for those
locators for which a HOLD LOCATOR statement has been issued without a
corresponding FREE LOCATOR statement. All open cursors that were declared
without the WITH HOLD option are closed. All open cursors that were declared with
the WITH HOLD option are preserved, along with any SELECT statements that
were prepared for those cursors. All other prepared statements are destroyed
unless dynamic caching is enabled for your system. In that case, all prepared
SELECT, INSERT, UPDATE, and DELETE statements that are bound with
DYNAMICKEEP(YES) are kept past the commit.

Prepared statements cannot be kept past a commit if any of the following is true:
v SQL RELEASE has been issued for that site.
v Bind option DISCONNECT(AUTOMATIC) was used.
v Bind option DISCONNECT(CONDITIONAL) was used and there are no hold

cursors for that site.

��
WORK

COMMIT ��

COMMIT

Chapter 5. Statements 451

All implicitly acquired locks are released, except:
v Locks that are required for the cursors that were not closed
v Table and table space locks when the RELEASE parameter on the bind

command was not RELEASE(COMMIT)
v LOB locks and LOB table space locks that are required for held LOB locators

For an explanation of the duration of explicitly acquired locks, see Part 5 (Volume 2)
of DB2 Administration Guide.

All rows of every created temporary table of the application process are deleted
with the exception that the rows of a created temporary table are not deleted if any
program in the application process has an open WITH HOLD cursor that is
dependent on that table. In addition, if RELEASE(COMMIT) is in effect, the logical
work files for the created temporary tables whose rows are deleted are also
deleted.

All rows of every declared temporary table of the application process are deleted
with these exceptions:

v The rows of a declared temporary table that is defined with the ON COMMIT
PRESERVE ROWS attribute are not deleted.

v The rows of a declared temporary table that is defined with the ON COMMIT
DELETE ROWS attribute are not deleted if any program in the application
process has an open WITH HOLD cursor that is dependent on that table.

Notes
The COMMIT statement cannot be used in the IMS or CICS environment. To cause
a commit operation in these environments, SQL programs must use the call
prescribed by their transaction manager. The effect of these commit operations on
DB2 data is the same as that of the SQL COMMIT statement.

In all DB2 environments, the normal termination of a process is an implicit commit
operation.

The COMMIT statement cannot be used in a stored procedure if the procedure is in
the calling chain of a user-defined function or a trigger or if the caller is using a
two-phase commit.

Example
Commit all DB2 database changes made since the unit of recovery was started.

COMMIT WORK;

COMMIT

452 SQL Reference

|
|
|

CONNECT
The CONNECT statement connects the application process to a designated server.
This server is then the current server for the process. The statement can be a Type
1 or a Type 2 CONNECT statement. “When an application process has a current
server” on page 454 describes what happens when the process has a current
server and “Establishing a different server” on page 455 describes using a different
server than the current server.

CONNECT (Type 1) and CONNECT (Type 2) differences
The two types of CONNECT statements have same syntax but different semantics,
as summarized below. Both types of the CONNECT statement are used for DRDA
access; however, the level of function available for each type is different. For a
description of an individual type of CONNECT, see:

“CONNECT (Type 1)” on page 456
“CONNECT (Type 2)” on page 462

The following table summarizes the differences between CONNECT (Type 1) and
CONNECT (Type 2) rules:

Table 36. CONNECT (Type 1) and CONNECT (Type 2) differences

Type 1 rules Type 2 rules

CONNECT statements can be executed only
when the application process is in the
connectable state. Only one CONNECT
statement can be executed within the same
unit of work.

More than one CONNECT statement can be
executed within the same unit of work. There
are no rules about the connectable state.

If a CONNECT statement fails because the
application process is not in the connectable
state, the SQL connection status of the
application process is unchanged.

If a CONNECT statement fails for any other
reason, the application process is placed in
the unconnected state.

If a CONNECT statement fails, the current
SQL connection is unchanged and any
subsequent SQL statements are executed by
that server, unless the failure prevents the
execution of SQL statements by that server.

CONNECT ends any existing connections of
the application process. Accordingly,
CONNECT also closes any open cursors of
the application process. (The only cursors
that can possibly be open when CONNECT is
successfully executed are those defined with
the WITH HOLD option.)

CONNECT does not end connections and
does not close cursors.

CONNECT

Chapter 5. Statements 453

Table 36. CONNECT (Type 1) and CONNECT (Type 2) differences (continued)

Type 1 rules Type 2 rules

A CONNECT to the current server is
executed like any other CONNECT (Type 1)
statement.

If the SQLRULES(STD) bind option is in
effect, a CONNECT to an existing SQL
connection of the application process is an
error. Thus, a CONNECT to the current
server is an error. For example, an error
occurs if the first CONNECT is a CONNECT
TO x where x is the local DB2.

If the SQLRULES(DB2) bind option is in
effect, a CONNECT to an existing SQL
connection is not an error. Thus, if x is an
existing SQL connection of the application
process, CONNECT TO x makes x its current
connection. If x is already the current
connection, CONNECT TO x has no effect on
the state of any connections.

Determining the CONNECT rules that apply: The following table explains how to
determine the CONNECT rules that apply:

v The package from which SQL statements are taken is determined by the name of
the application program executing the SQL statement, the package list of the
application plan, and CURRENT PACKAGESET.

The last part of the package name is the same as the name of the application
program, unless a member name is specified during the bind process along with
the DBRMLIB DD statement. The qualifier of the package name (the collection
ID) can be determined by the package list or by the CURRENT PACKAGESET
special register. For more information, see “SET CURRENT PACKAGESET” on
page 856.

v Dynamic and static SQL statements that refer to objects at the server are
executed at the server. Statements that refer to objects at yet another DB2
(which is possible only if the server is a DB2 subsystem) are executed at that
DB2 rather than at the server.

Establishing a different server
The initial server of an application process is the local DB2 subsystem. A different
server can be established by the explicit or implicit execution of a CONNECT
statement.

The CURRENTSERVER bind option can affect which CONNECT rule is in effect.
When an application process executes an SQL statement other than COMMIT,
CONNECT TO, CONNECT RESET, SET CONNECTION, or ROLLBACK, a
CONNECT (Type 1) statement is implicitly executed if both of the following rules
apply:

v The CURRENTSERVER bind option was specified when the application plan was
bound or rebound and the identified server is not the local DB2.

v An implicit or explicit CONNECT statement has not been executed by the
application process.

For example, if CURRENTSERVER x was specified and the first SQL statement
executed by the application process is an OPEN statement, a CONNECT TO x
(Type 1) is executed before the OPEN statement is executed. If the implicit
CONNECT fails, the application process is in the unconnected state. Regardless of
whether or not the implied CONNECT is successful, the application process cannot
execute a CONNECT (Type 2) statement because CONNECT (Type 1) rules are in
effect.

In new distributed applications, use CONNECT (Type 2) and do not use the
CURRENTSERVER bind option.

CONNECT

Chapter 5. Statements 455

CONNECT (Type 1)
The CONNECT (Type 1) statement connects the application process to a
designated server. This server is then the current server for the process. The
CONNECT (Type 1) statement is used for DRDA access using the restricted level of
function available in DB2 Version 2 Release 3. Differences between the two types
of statements are described in “CONNECT (Type 1) and CONNECT (Type 2)
differences” on page 453.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
The primary authorization ID of the process or the authorization ID specified on the
CONNECT statement must be authorized to connect to the identified server or to
the local DB2. The server or the local DB2 performs the authorization check and
determines the specific authorization required. See Part 3 (Volume 1) of DB2
Administration Guide for further information.

Syntax

Description
TO location-name or host-variable

Identifies the server by the specified location name or the location name
contained in the host variable. If a host variable is specified:

v It must be a character string variable with a length attribute that is not greater
than 16. (A C NUL-terminated character string can be up to 17 bytes long.)

v It must not be followed by an indicator variable.

v The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

v If the length of the location name is less than the length of the host variable,
it must be padded on the right with blanks.

When the CONNECT statement is executed:

�� CONNECT
TO location-name

host-variable authorization
RESET
authorization

��

authorization:

�� USER host-variable USING host-variable ��

CONNECT (Type 1)

456 SQL Reference

|

|||||||||||||
|
|
|

|
|
|

v The location name must identify a server known to the local DB2 subsystem.
Hence, it must either be the location name of the local DB2 subsystem or it
must appear in the LOCATION column of the SYSIBM.LOCATIONS table.

v The application process must be in a connectable state. (Connection states
are explained in “Connection states” on page 459.)

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location
name of the local DB2 subsystem.

authorization
Specifies an authorization ID and a password that is used to verify that the
authorization ID is authorized to connect to the server. Authorization may not be
specified when the connection type is IMS or CICS. An attempt to do so causes
an SQL error.

USER host-variable
Identifies the user ID trying to connect to the server. The host-variable may
be up to 255 characters, must be a character string variable with a length
attribute that is not greater than 255, must be left-justified, and must not
include an indicator variable. In addition, if the length of the location name
is less than the length of the host variable, it must be padded on the right
with blanks.

For a connection to the local DB2, a user ID of greater than 8 characters
causes an SQL error.

USING host-variable
Identifies the password of the user ID trying to connect to the server. The
host-variable may be up to 255 characters, must be a character string
variable with a length attribute not greater than 255, must be left-justified,
and must not include an indicator variable. In addition, if the length of the
location name is less than the length of the host variable, it must be padded
on the right with blanks.

For a connection to the local DB2, a password of greater than 8 characters
causes an SQL error.

CONNECT USER/USING is equivalent to CONNECT TO x USER/USING where
x is the location name of the local DB2 subsystem (which has the semantic of
CONNECT RESET).

If the server is the local DB2, then:

v DB2 invokes RACF via the RACROUTE macro with REQUEST=VERIFY to
verify the password.

v If the password is verified, DB2 then invokes RACF again via the
RACROUTE macro with REQUEST=AUTH, to check whether the
authorization ID is allowed to use DB2 resources defined to RACF.

v DB2 then invokes the connection exit routine if one has been defined.

v The connection then has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID.

If the server is not the local DB2, the following rules apply.

v The SECURITY_OUT column in SYSIBM.LUNAMES for SNA or the
SECURITY_OUT column in SYSIBM.IPNAMES for TCP/IP must have the
values ’A’ (already verified) or ’P’ (password). When the value is ’A’, the user
ID and password specified on the CONNECT is still sent.

CONNECT (Type 1)

Chapter 5. Statements 457

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|
|
|

|

|
|

|

|
|
|
|

v For SNA, the ENCRYPTPSWDS column in SYSIBM.SYSLUNAMES must be
not contain ’Y’.

v The server must support at least DRDA Level 3.

v The authorization ID and password are verified at the server.

v In all cases, outbound translation as specified in SYSIBM.USERNAMES is
not done.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server. The information is returned in the SQLERRP field of the SQLCA as
described above. This form of CONNECT:
v Does not require the application process to be in the connectable state
v Does not change the connection state
v Does not close cursors
v Returns blanks if the application process is in the unconnected state

Notes
Successful connection: If execution of the CONNECT statement is successful:

v The application process is connected to the identified server.

v The existing connections of the application process are ended. (The existing
connections include the previous SQL connection, if any, and all DB2 private
connections, if any.) When a connection is ended, all resources acquired by the
application process through the connection and all resources used to create and
maintain the connection are deallocated. Thus, all cursors are closed, all
prepared statements are destroyed, and so on.

v The location name is placed in the CURRENT SERVER special register.

v Information about the server is placed in the SQLERRP field of the SQLCA. If the
server is an IBM relational database product, the information has the form
pppvvrrm, where:

– ppp is:
ARI for DB2 Server for VSE & VM
DSN for DB2 for MVS
QSQ for OS/400®

SQL for all other DB2 products

– vv is a two-digit version identifier such as '07'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

For example, if the server is Version 7 of DB2 for OS/390 and z/OS with the
latest maintenance, the value of SQLERRP is 'DSN07011'.

Unsuccessful connection: If execution of the CONNECT statement is
unsuccessful, the SQLERRP field of the SQLCA is set to the name of the DB2
requester module that detected the error.

If execution of the CONNECT statement is unsuccessful because the application
process is not in the connectable state, the connection state of the application
process is unchanged. If execution of the CONNECT statement is unsuccessful for
any other reason, CURRENT SERVER is set to blanks and the application process
is placed in the connectable and unconnected state.

CONNECT (Type 1)

458 SQL Reference

|
|

|

|

|
|

Connection states: In the following description of the connection states,
CONNECT means CONNECT TO, CONNECT RESET, or CONNECT authorization,
not the form of CONNECT with no operand. At any time, an application process is
in one of four states:
v Connectable and connected
v Unconnectable and connected
v Unconnectable and unconnected
v Connectable and unconnected

The following diagram shows the state transitions:

In the connectable and connected state, an application process is connected to a
server and can execute CONNECT statements. This is the initial state. The process
also enters this state when:

v It executes a rollback operation or successful commit from the unconnectable
and connected state.

v It executes a successful CONNECT from the connectable and unconnected
state.

In the unconnectable and connected state, an application process is connected
to a server but cannot execute a CONNECT statement (SQLCODE -752). The
process enters this state from the connectable and connected state when it
executes any SQL statement other than CONNECT, COMMIT, ROLLBACK, or local
SET (SET CURRENT PACKAGESET or SET host-variable = CURRENT
PACKAGESET or CURRENT SERVER). A process cannot enter this state from the
connectable and unconnected nor the unconnectable and unconnected states.

In the unconnectable and unconnected state, an application process is not
connected to a server and cannot execute a CONNECT statement. The process
enters this state from the unconnectable and connected state when the execution of

Connectable
and
Connected

CONNECT with system failure
Connectable
and
UnconnectedSuccessful CONNECT

ROLLBACK
only

Begin process

SQL other than
CONNECT, COMMIT
ROLLBACK, and
local SETs

System failure except
during COMMIT or ROLLBACK

System failure
during COMMIT
or ROLLBACK

ROLLBACK or

COMMIT
successful

Unconnectable
and
Connected

Unconnectable
and
Unconnected

Figure 7. Connect state transitions

CONNECT (Type 1)

Chapter 5. Statements 459

|

an SQL statement other than COMMIT or ROLLBACK is unsuccessful because of a
system failure that results in a rollback and deallocation of the conversation. The
only SQL statement that can be successfully executed in this state is ROLLBACK.
Any attempt to execute other SQL statements results in an error (SQLCODE -918).

In the connectable and unconnected state, an application process is not
connected to a server. The process enters this state when:

v The execution of CONNECT is unsuccessful for any reason other than the
application process not being in the connectable state.

v A system failure occurs during the execution of a COMMIT or ROLLBACK
statement from the unconnectable and connected state.

v A ROLLBACK statement is executed from the unconnectable and unconnected
state.

The only SQL statements that can be successfully executed in this state are
CONNECT, COMMIT, ROLLBACK, and local SET statements. Any attempt to
execute other SQL statements results in an error (SQLCODE -900). SET
host-variable = CURRENT SERVER will set the host variable to blanks.

Additional rules: It is not an error to execute consecutive CONNECT statements
because CONNECT itself does not remove the application process from the
connectable state. It is an error to execute any SQL statement other than
CONNECT, COMMIT, ROLLBACK, or local SET, and then execute CONNECT. To
avoid the error, execute a commit or rollback operation before executing the
CONNECT.

A CONNECT to the current server is treated like any other CONNECT. Such a
CONNECT can cause the closing of cursors and the redundant deallocation and
allocation of a conversation.

It may be the case that the SQL CONNECT statement returns, and indicates a
successful execution when no physical connection yet exists. DB2 delays the
physical connection process, when possible, to economize on the number of
messages sent. Therefore, errors in CONNECT statement processing may be
reported following the next executable SQL statement, not immediately following the
CONNECT statement.

When CONNECT is used to connect back to the local DB2, the CURRENT SQLID
special register is not reinitialized.

SET CONNECTION and RELEASE do not change the state of the application
process from connectable to unconnectable.

The SQLRULES bind option has no effect on CONNECT (Type 1) statements.

If the CONNECT statement contains host variables, the contents of the host
variables are assumed to be in the encoding scheme that was specified in the
ENCODING parameter when the package or plan that contains the statement was
bound.

Examples
Example 1: Connect the application to a DBMS whose location identifier is in the
character-string variable LOCNAME.

EXEC SQL CONNECT TO :LOCNAME;

CONNECT (Type 1)

460 SQL Reference

|
|
|
|

Example 2: Use the CONNECT statement to obtain information about the current
server. The information is then stored in the SQLERRP field of the SQLCA.

EXEC SQL CONNECT;

Example 3: An application has connected to a DB2 server that is not the local
DBMS. During the connection, the application has opened a cursor and fetched
rows from the cursor’s result table. To connect to the local DBMS, the application
executes the following statements:

EXEC SQL COMMIT WORK;
EXEC SQL CONNECT RESET;

The commit operation is required because the OPEN statement for the cursor has
caused the application to enter the unconnectable and connected state. If the
cursor had been declared with WITH HOLD and had not been closed with a
CLOSE statement, it would still be open after the execution of the COMMIT, but
would be closed with the execution of the CONNECT.

Example 4: Connect the application to a DBMS whose location identifier is in the
character-string variable LOC using the authorization identifier in the
character-string variable AUTHID and the password in the character-string variable
PASSWORD.

EXEC SQL CONNECT TO :LOC USER :AUTHID USING :PASSWORD;

CONNECT (Type 1)

Chapter 5. Statements 461

|
|
|
|

|

|

CONNECT (Type 2)
The CONNECT (Type 2) statement connects the application process to a
designated server. This server is then the current server for the process.
Differences between the two types of statements are described in “CONNECT
(Type 1) and CONNECT (Type 2) differences” on page 453. Refer to “Connection
management for DRDA access and DB2 private protocol” on page 17 for more
information about connection states.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
The primary authorization ID of the process or the authorization ID specified on the
CONNECT statement must be authorized to connect to the identified server or to
the local DB2. The authorization check is performed by the database server when
the statement is executed, and the specific authorization required is determined by
that server. See Part 3 (Volume 1) of DB2 Administration Guide for further
information.

Syntax

Description
TO location-name or host-variable

Identifies the server by the specified location name or the location name
contained in the host variable. If a host variable is specified:

v It must be a character string variable with a length attribute that is not greater
than 16. (A C NUL-terminated character string can be up to 17 bytes long.)

v It must not be followed by an indicator variable.

v The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

v If the length of the location name is less than the length of the host variable,
it must be padded on the right with blanks.

Let S denote the specified location name or the location name contained in the
host variable.

�� CONNECT
TO location-name

host-variable authorization
RESET
authorization

��

authorization:

�� USER host-variable USING host-variable ��

CONNECT (Type 2)

462 SQL Reference

|

|||||||||||||
|
|
|

|
|
|

S must not identify a DB2 private connection of the application process. If the
SQLRULES(STD) bind option is in effect, S must not identify an existing SQL
connection of the application process.

S must identify a server known to the local DB2 subsystem. Hence, S must be
the location name of the local DB2 subsystem or it must appear in the
LOCATION column of the SYSIBM.LOCATIONS table.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the location
name of the local DB2 subsystem.

v If the SQLRULES(DB2) bind option is in effect, CONNECT RESET
establishes the local DB2 subsystem as the current SQL connection

v If the SQLRULES(STD) bind option is in effect, CONNECT RESET
establishes the local DB2 subsystem as the current SQL connection only if
the connection does not exist.

authorization
Specifies an authorization ID and a password that is used to verify that the
authorization ID is authorized to connect to the server. Authorization may not be
specified when the connection type is IMS or CICS. An attempt to do so causes
an SQL error.

USER host-variable
Identifies the user ID trying to connect to the server. The host-variable may
be up to 255 characters, must be a character string variable with a length
attribute that is not greater than 255, must be left-justified, and must not
include an indicator variable. In addition, if the length of the location name
is less than the length of the host variable, it must be padded on the right
with blanks.

For a connection to the local DB2, a user ID of greater than 8 characters
causes an SQL error.

USING host-variable
Identifies the password of the user ID trying to connect to the server. The
host-variable may be up to 255 characters, must be a character string
variable with a length attribute not greater than 255, must be left-justified,
and must not include an indicator variable. In addition, if the length of the
location name is less than the length of the host variable, it must be padded
on the right with blanks.

For a connection to the local DB2, a password of greater than 8 characters
causes an SQL error.

CONNECT USER/USING is equivalent to CONNECT TO x USER/USING where
x is the location name of the local DB2 subsystem (which has the semantic of
CONNECT RESET).

If a connection to the server exists and the server is not DB2 for OS/390 and
z/OS or another server that can reuse threads, the existing connection is
terminated and a new connection is established using the specified
USER/USING.

If the server is the local DB2, then:

v DB2 invokes RACF via the RACROUTE macro with REQUEST=VERIFY to
verify the password.

CONNECT (Type 2)

Chapter 5. Statements 463

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|
|

v If the password is verified, DB2 then invokes RACF again via the
RACROUTE macro with REQUEST=AUTH, to check whether the
authorization ID is allowed to use DB2 resources defined to RACF.

v DB2 then invokes the connection exit routine if one has been defined.

v The connection then has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID.

If the server is not the local DB2, the following rules apply.

v The SECURITY_OUT column in SYSIBM.LUNAMES for SNA or the
SECURITY_OUT column in SYSIBM.IPNAMES for TCP/IP must have the
values ’A’ (already verified) or ’P’ (password). When the value is ’A’, the user
ID and password specified on the CONNECT is still sent.

v For SNA, the ENCRYPTPSWDS column in SYSIBM.SYSLUNAMES must be
not contain ’Y’.

v The server must support at least DRDA Level 3.

v The authorization ID and password are verified at the server.

v In all cases, outbound translation as specified in SYSIBM.USERNAMES is
not done.

In general, a CONNECT statement with the TO clause and the USER/USING
clause can be executed only if there is no current or dormant connection to the
named server. However, if the named server is the local DB2 subsystem and
the CONNECT statement is the first SQL statement that is executed after the
DB2 thread is created, the CONNECT statement executes successfully. In
general, a CONNECT statement without the TO clause but with the
USER/USING clause can be executed only if no current or dormant connection
to the local DB2 subsystem exit. However, if the CONNECT statement is the
first SQL statement that is executed after the DB2 thread is created, the
CONNECT statement executes successfully.

If the authorization check fails, the connection is placed in the connectable and
unconnected state.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states. The information is returned in
the SQLERRP field of the SQLCA as described above. SQLERRP is set to
blanks if the application process is in the unconnected state.

Notes
When CONNECT is used to connect back to the local DB2, the CURRENT SQLID
special register is not reinitialized unless USERID/USING is specified.

If the CONNECT statement is successful:

v S becomes the current connection of the application process in one of the
following ways:

– If S is not an existing SQL connection of the application process, an SQL
connection to server S is created and placed in the current and held states.
The previously current SQL connection, if any, is placed in the dormant state.

– If S is a dormant SQL connection of the application process and the
SQLRULES(DB2) option is in effect, S is placed in the current state. The
previously current SQL connection, if any, is placed in the dormant state.

CONNECT (Type 2)

464 SQL Reference

|
|
|

|

|
|

|

|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

– If S is the current SQL connection of the application process and the
SQLRULES(DB2) option is in effect, the states of S and all other connections
of the application process are unchanged.

v The location name is placed in the CURRENT SERVER special register.

v Information about server S is placed in the SQLERRP field of the SQLCA. If the
server is an IBM relational database product, the information has the form
pppvvrrm, where:

– ppp is:
ARI for DB2 Server for VSE & VM
DSN for DB2 for OS/390 and z/OS
QSQ for OS/400
SQL for all other DB2 products

– vv is a two-digit version identifier such as '07'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

For example, if the server is Version 7 of DB2 for OS/390 and z/OS with the
latest maintenance, the value of SQLERRP is 'DSN07011'.

If the CONNECT statement is unsuccessful, the connection state of the application
process and the states of its SQL connections are unchanged unless the failure
was because an authorization check failed. If this is the case, the connection is
placed in the connectable and unconnected state.

If the CONNECT statement contains host variables, the contents of the host
variables are assumed to be in the encoding scheme that was specified in the
ENCODING parameter when the package or plan that contains the statement was
bound.

Examples
Example 1: Execute SQL statements at TOROLAB1 and TOROLAB2. The first
CONNECT statement creates the TOROLAB1 connection. The second CONNECT
statement creates the TOROLAB2 connection and places the TOROLAB1
connection in the dormant state.

EXEC SQL CONNECT TO TOROLAB1;

(execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(execute statements referencing objects at TOROLAB2)

Example 2: Connect to a remote server specifying a user ID and password, perform
work for the user and then re-use the connection with a different user ID and
password.

EXEC SQL CONNECT USER :AUTHID USING :PASSWORD;

(execute SQL statements accessing data on the server)

EXEC SQL COMMIT;

(set AUTHID and PASSWORD to new values)

EXEC SQL CONNECT USER :AUTHID USING :PASSWORD;

(execute SQL statements accessing data on the server)

CONNECT (Type 2)

Chapter 5. Statements 465

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

CREATE ALIAS
The CREATE ALIAS statement defines an alias for a table or view. The definition is
recorded in the DB2 catalog at the current server. The table or view does not have
to be described in that catalog.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATEALIAS privilege
v SYSADM or SYSCTRL authority
v DBADM or DBCTRL authority on the database that contains the table

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that held by the authorization ID of the owner of the plan or
package. If the specified alias name includes a qualifier that is not the same as this
authorization ID, the privilege set must include on of the following authorities:

v SYSADM or SYSCTRL authority

v DBADM or DBCTRL authority on the database that contains the table

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. If the specified alias name includes
a qualifier that is not the same as this authorization ID:

v The privilege set must include SYSADM or SYSCTRL authority

v The privilege set includes DBADM or DBCTRL authority on the database that
contains the table or view.

v The qualifier must be the same as one of the authorization IDs of the process
and the privileges that are held by that authorization ID must include the
CREATEALIAS privilege. This is an exception to the rule that the privilege set is
the privileges that are held by the SQL authorization ID of the process.

Syntax

Description
alias-name

Names the alias. The name must not identify a table, view, alias, or synonym
that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of the field DB2 LOCATION NAME
on installation panel DSNTIPR at the current server. (If the current server is not
the local DB2, this name is not necessarily the name in the CURRENT

�� CREATE ALIAS alias-name FOR table-name
view-name

��

CREATE ALIAS

466 SQL Reference

||||||||||||||||||||

|
|
|

|

|

|

|
|

SERVER special register.) Whether the name is two-part or three-part, the
authorization ID that qualifies the name is the owner of the alias.

If the alias name is unqualified and the statement is embedded in an application
program, the owner of the alias is the authorization ID that serves as the implicit
qualifier for unqualified object names. This is the authorization ID in the
QUALIFIER operand when the plan or package was created or last rebound. If
QUALIFIER was not used, the owner of the alias is the owner of the package or
plan.

If the alias name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the alias.

The owner has the privilege to drop the alias.

FOR table-name or view-name
Identifies the table or view for which the alias is defined. If a table is identified, it
must not be an auxiliary table or a declared temporary table. The table or view
need not exist at the time the alias is defined. If it does exist, it can be at the
current server or at another server. The name must not be the same as the
alias name and must not identify an alias that exists at the current server.

Notes
An alias can be defined for a table, view, or alias that is not at the current server.
When so defined, the existence of the referenced object is not verified at the time
the alias is created. But the object must exist when a statement that contains the
alias is executed. And if that object is also an alias, it must refer to a table or view
at the server where that alias is defined.

A warning occurs if an alias is defined for a table or view that is local to the current
server but does not exist.

When a table is moved from one location to another, the alias for that table must be
dropped and then re-created with the new location name. When an application is
moved from one location to another location, aliases must exist at the new location
for all tables that are referred to by the application. Aliases at the old location can
be dropped if they are no longer needed.

Example
Create an alias for a catalog table at a DB2 with location name
DB2USCALABOA5281.

CREATE ALIAS LATABLES FOR DB2USCALABOA5281.SYSIBM.SYSTABLES;

CREATE ALIAS

Chapter 5. Statements 467

|
|
|
|
|

CREATE AUXILIARY TABLE
The CREATE AUXILIARY TABLE statement creates an auxiliary table at the current
server for storing LOB data.

Invocation
Do not use this statement if the value of special register CURRENT RULES is 'STD'
when the statement is executed. When the register’s value is 'STD' and a base
table is created with LOB columns or altered such that LOB columns are added,
DB2 automatically creates the LOB table space, auxiliary table, and index on the
auxiliary table for each LOB column. DB2 chooses the names and characteristics of
these objects. For more information about the names and the characteristics, see
“Creating a table with LOB columns” on page 623.

This statement can be embedded in an application program or issued interactively if
the value of special register CURRENT RULES is 'DB2' when the statement is
executed. It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:

v The CREATETAB privilege for the database implicitly or explicitly specified by the
IN clause

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the specified table name includes a qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM or SYSCTRL authority,
DBADM authority for the database, or DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. However, if the specified table
name includes a qualifier that is not the same as this authorization ID, the following
rules apply:

1. If the privilege set includes SYSADM or SYSCTRL authority, DBADM authority
for the database, or DBCTRL authority for the database, any qualifier is valid.

2. If the privilege set does not include any of the authorities listed in item 1 above,
the qualifier is valid only if it is the same as one of the authorization IDs of the
process and the privilege set that are held by that authorization ID includes all29

privileges needed to create the table.

29. Exception: The CREATETAB privilege is checked on the SQL authorization ID of the process.

CREATE AUXILIARY TABLE

468 SQL Reference

Syntax

Description
AUXILIARY or AUX

Specifies a table that is used to store the LOB data for a LOB column (or a
column with a distinct type that is based on a LOB data type).

aux-table-name
Names the auxiliary table. The name must not identify a table, view, alias, or
synonym that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of field DB2 LOCATION NAME on
installation panel DSNTIPR at the current server. (If the current server is not the
local DB2, this name is not necessarily the name in the CURRENT SERVER
special register.) Whether the name is two-part or three-part, the authorization
ID that qualifies the name is the table’s owner.

If the table name is unqualified and the statement is embedded in a program,
the owner of the table is the authorization ID that serves as the implicit qualifier
for unqualified object names. This is the authorization ID in the QUALIFIER
operand when the plan or package was created or last rebound. If QUALIFIER
was not used, the owner of the table is the owner of the package or plan.

If the table name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the table.

IN database-name.table-space-name or IN table-space-name
Identifies the table space in which the auxiliary table is created. The name must
identify an empty LOB table space that currently exists at the current server.

If you specify a database and a table space, the table space must belong to the
specified database. If you specify only a table space, it must belong to
database DSNDB04.

STORES table-name COLUMN column-name
Identifies the base table and the column of that table that is to be stored in the
auxiliary table. If the base table is nonpartitioned, an auxiliary table must not
already exist for the specified column. If the base table is partitioned, an
auxiliary table must not already exist for the specified column and specified
partition.

The encoding scheme for the LOB data stored in the auxiliary table is the same
as the encoding scheme for the base table. It is either ASCII, EBCDIC, or
UNICODE depending on the value of the CCSID clause when the base table
was created.

The auxiliary table can store a BLOB, CLOB, or DBCLOB value that is greater
than 1 gigabyte in length only if the LOB table space for the auxiliary table was
defined with LOG NO.

�� CREATE AUXILIARY
AUX

TABLE aux-table-name IN
database-name.

table-space-name �

� STORES table-name COLUMN column-name
PART integer

��

CREATE AUXILIARY TABLE

Chapter 5. Statements 469

|
|

PART integer
Specifies the partition of the base table for which the auxiliary table is to store
the specified column. You can specify PART only if the base table is defined in
a partitioned table space, and no other auxiliary table exists for the same LOB
column of the base table.

Notes
Determining the number of auxiliary tables to create: The number of auxiliary
tables to create depends on the number of LOB columns in the base table and
whether the base table is partitioned. If the base table is nonpartitioned, you need
one LOB table space and one auxiliary table for each LOB column in the base
table. If the base table is partitioned, you need one LOB table space and one
auxiliary table for each partition for each LOB column. For example if the base table
has four partitions and two LOB columns, you need to create a total of eight
auxiliary tables in eight different LOB table spaces.

Example
Assume that a column named EMP_PHOTO with a data type of BLOB(110K) has
been added to sample employee table DSN8710.EMP for each employee’s photo.
Create auxiliary table EMP_PHOTO_ATAB to store the BLOB data for the BLOB
column in LOB table space DSN8D71A.PHOTOLTS.

CREATE AUX TABLE EMP_PHOTO_ATAB
IN DSN8D71A.PHOTOLTS
STORES DSN8710.EMP
COLUMN EMP_PHOTO;

CREATE AUXILIARY TABLE

470 SQL Reference

CREATE DATABASE
The CREATE DATABASE statement defines a DB2 database at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATEDBA privilege
v The CREATEDBC privilege
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the privileges
that are held by the SQL authorization ID of the process.

See “Notes” on page 473 for the authorization effect of a successful CREATE
DATABASE statement.

Syntax

Description
database-name

Names the database. The name must not start with DSNDB and must not
identify a database that exists at the current server. If the database is to be a
work file database in a data sharing environment, DSNDB07 is an acceptable
work file database name. However, only one member of a data sharing group
can use DSNDB07 as the name of its work file database.

BUFFERPOOL bpname
Specifies the default buffer pool name to be used for table spaces created

�� CREATE DATABASE database-name �
(1)

BUFFERPOOL bpname
INDEXBP bpname
AS WORKFILE

TEMP FOR member-name
SYSDEFLT

STOGROUP stogroup-name
CCSID ASCII

EBCDIC
UNICODE

��

Notes:

1 The same clause must not be specified more than once.

CREATE DATABASE

Chapter 5. Statements 471

within the database. If the database is a work file database, 8KB and 16KB
buffer pools cannot be specified. See “Naming conventions” on page 34 for
more details about bpname.

If you omit the BUFFERPOOL clause, the buffer pool specified for user data on
installation panel DSNTIP1 is used. The default value for the user data field on
that panel is BP0.

INDEXBP bpname
Specifies the default buffer pool name to be used for the indexes created within
the database. The name must identify a 4KB buffer pool. See “Naming
conventions” on page 34 for more details about bpname. If the database is a
work file database, INDEXBP cannot be specified.

If you omit the INDEXBP clause, the buffer pool specified for user indexes on
installation panel DSNTIP1 is used. The default value for the user indexes field
on that panel is BP0.

AS WORKFILE or AS TEMP
Indicates that this is a work file database or a database for declared temporary
tables (a TEMP database).

AS WORKFILE
Specifies the database is a work file database. AS WORKFILE can be
specified only in a data sharing environment. Only one work file database
can be created for each DB2 member.

AS TEMP
Specifies the database is for declared temporary tables only. AS TEMP
must be specified to create a database that will be used for declared
temporary tables; otherwise, the database will not be used for declared
temporary tables. Only one TEMP database can be created for each DB2
subsystem or data sharing member. A TEMP database cannot be shared
between DB2 subsystems or data sharing members.

PUBLIC implicitly receives the CREATETAB privilege (without GRANT
authority) to define a declared temporary table in the TEMP database. This
implicit privilege is not recorded in the DB2 catalog and cannot be revoked.

FOR member-name
Specifies the member for which this database is to be created. Specify FOR
member-name only in a data sharing environment.

If FOR member-name is not specified, the member is the DB2 subsystem
on which the CREATE DATABASE statement is executed.

The CCSID clause is not supported for a work file database or a TEMP
database. A TEMP database can contain a mixture of encoding schemes. If you
specify AS WORKFILE or AS TEMP, do not use the CCSID clause.

STOGROUP stogroup-name
Specify the storage group to be used, as required, as a default storage group to
support DASD space requirements for table spaces and indexes within the
database. The default is SYSDEFLT.

CCSID encoding-scheme
Specifies the default encoding scheme for data stored in the database. The
default applies to table spaces created in the database. All tables stored within
a table space must use the same encoding scheme.

ASCII Specifies that the data must be encoded using the ASCII CCSIDs of the
server.

CREATE DATABASE

472 SQL Reference

EBCDIC
Specifies that the data must be encoded using the EBCDIC CCSIDs of
the server.

UNICODE
Specifies that the data must be encoded using the UNICODE CCSIDs
of the server.

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or UNICODE data is used.

The option defaults to the value of field DEF ENCODING SCHEME on
installation panel DSNTIPF.

Do not use the CCSID clause if you specify the AS WORKFILE or AS TEMP
clause.

Notes
If the statement is embedded in an application program, the owner of the plan or
package is the owner of the database. If the statement is dynamically prepared, the
SQL authorization ID of the process is the owner of the database.

If the owner of the database has the CREATEDBA, SYSADM, or SYSCTRL
authority, the owner acquires DBADM authority for the database. DBADM authority
for a database includes table privileges on all tables in that database. Thus, if a
user with SYSCTRL authority creates a database, that user has table privileges on
all tables in that database. This is an exception to the rule that SYSCTRL authority
does not include table privileges.

If the owner of the database has the CREATEDBC privilege, but not the
CREATEDBA privilege, the owner acquires DBCTRL authority for the database. In
this case, no authorization ID has DBADM authority for the database until it is
granted by an authorization ID with SYSADM authority.

Examples
Example 1: Create database DSN8D71P. Specify DSN8G710 as the default storage
group to be used for the table spaces and indexes in the database. Specify 8KB
buffer pool BP8K1 as the default buffer pool to be used for table spaces in the
database, and BP2 as the default buffer pool to be used for indexes in the
database.

CREATE DATABASE DSN8D71P
STOGROUP DSN8G710
BUFFERPOOL BP8K1
INDEXBP BP2;

Example 2: Create database DSN8TEMP. Use the defaults for the default storage
group and default buffer pool names. Specify ASCII as the default encoding scheme
for data stored in the database.

CREATE DATABASE DSN8TEMP
CCSID ASCII;

CREATE DATABASE

Chapter 5. Statements 473

|
|
|

|

CREATE DISTINCT TYPE
The CREATE DISTINCT TYPE statement defines a distinct type, which is a data
type that a user defines. A distinct type must be sourced on one of the built-in data
types. Successful execution of the statement also generates:
v A function to cast between the distinct type and its source type
v A function to cast between the source type and its distinct type
v As appropriate, support for the use of comparison operators with the distinct type

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified distinct type name
can include a schema name (a qualifier). However, if the schema name is not the
same as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Syntax

�� CREATE DISTINCT TYPE distinct-type-name AS source-data-type
(1)

WITH COMPARISONS ��

Notes:

1 The WITH COMPARISONS clause is required for all source-data-types, except LOBs, which do
not support the clause.

CREATE DISTINCT TYPE

474 SQL Reference

Description
distinct-type-name

Names the distinct type. The name is implicitly or explicitly qualified by a
schema name. The name, together with the implicit or explicit schema name,
must not identify a distinct type that exists at the current server.

v The unqualified form of distinct-type-name is a long SQL identifier.

distinct-type-name must not be the name of a built-in data type, BOOLEAN,
or any of following system-reserved keywords even if you specify them as
delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

source-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT (integer)
CHAR K FOR SBCS DATA CCSID ASCII

CLOB M MIXED EBCDIC
G UNICODE

BINARY LARGE OBJECT (integer)
BLOB K

M
G

GRAPHIC
(integer) CCSID ASCII

VARGRAPHIC (integer) EBCDIC
DBCLOB (integer) UNICODE

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

CREATE DISTINCT TYPE

Chapter 5. Statements 475

The unqualified name is implicitly qualified with a schema name according to
the following rules:

If the CREATE DISTINCT TYPE statement is embedded in a program,
the schema name is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not specified, the schema name is the owner of the plan or package.

If the CREATE DISTINCT TYPE statement is dynamically prepared, the
schema name is the SQL authorization ID in the CURRENT SQLID
special register.

v The qualified form of distinct-type-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

A schema name must not begin with ’SYS’ unless the schema name is
’SYSADM’.

The owner of the distinct type is determined by how the CREATE DISTINCT
TYPE statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

Although the information is not recorded in the catalog, the owner is given the
USAGE privilege on the distinct type. The owner is also given the EXECUTE
privilege with the GRANT option on each of the generated cast functions.

source-data-type
Specifies the data type that is used as the basis for the internal representation
of the distinct type. The data type must be a built-in data type. You can use any
of the built-in data types that are allowed for the CREATE TABLE statement
except LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

If you do not specify a specific value for the data types that have length,
precision, or scale attributes (CHAR, GRAPHIC, DECIMAL, NUMERIC, FLOAT),
the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For more information on built-in data types, see “built-in-data-type” on page 606.

If the distinct type is sourced on a character string data type, the FOR clause
indicates the subtype. If you do not specify the FOR clause, the distinct type is
defined with the default subtype. For ASCII or EBCDIC data, the default is
SBCS when the value of field MIXED DATA on installation panel DSNTIPF is
NO. The default is MIXED when the value is YES. For UNICODE character
data, the default subtype is mixed.

If the distinct type is sourced on a string data type, the CCSID clause indicates
whether the encoding scheme of the data is ASCII, EBCDIC or UNICODE. If
you do not specify CCSID ASCII, CCSID EBCDIC, or UNICODE, the encoding
scheme is the value of field DEF ENCODING SCHEME on installation panel
DSNTIPF.

CREATE DISTINCT TYPE

476 SQL Reference

|
|
|
|

|
|

WITH COMPARISONS
Specifies that system-generated comparison operators are to be created for
comparing two instances of the distinct type. Do not specify WITH
COMPARISONS if the source data type is BLOB, CLOB, or DBCLOB;
otherwise, a warning occurs and the comparison operators are not generated.
You must specify WITH COMPARISONS for all other source data types.

DB2 implicitly creates comparison functions for the following comparison
operators for use with the distinct type:
BETWEEN IS NULL < ¬<
NOT BETWEEN IS NOT NULL > ¬>
IN = <= >=
NOT IN ¬= <>

The name of the function is the same as the comparison operator. You cannot
invoke the comparison functions using function notation syntax, for example,
'<'(C1,C2). Instead, use the syntax C1 < C2.

You must not specify the comparison operations for distinct types that are
sourced on a CLOB, BLOB, or DBCLOB.

Notes
Source data types with DBCS or mixed data: When the implicit or explicit
encoding scheme is ASCII or EBCDIC and the source data type is graphic or a
character type is MIXED DATA, then the value of field FOR MIXED DATA on
installation panel DSNTIPF must be YES; otherwise, an error occurs.

Generated cast functions: The successful execution of the CREATE DISTINCT
TYPE statement causes DB2 to generate the following cast functions:
v A function to convert from the distinct type to its source data type
v A function to convert from the source data type to the distinct type
v A function to cast from a data type A to distinct type DT, where A is promotable

to the source data type S of distinct type DT

For some source data types, DB2 supports an additional function to convert from:
– INTEGER to the distinct type if the source type is SMALLINT
– VARCHAR to the distinct type if the source type is CHAR
– VARGRAPHIC to the distinct type if the source type is GRAPHIC
– DOUBLE to the distinct type if the source type is REAL

The cast functions are created as if the following statements were executed:
CREATE FUNCTION source-type-name (distinct-type-name)

RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)
RETURNS distinct-type-name ...

Even if you specified a length, precision, or scale for the source data type in the
CREATE DISTINCT TYPE statement, the name of the cast function that converts
from the distinct type to the source type is simply the name of the source data type.
The data type of the value that the cast function returns includes any length,
precision, or scale values that you specified for the source data type. (See Table 38
on page 478 for details.)

The name of the cast function that converts from the source type to the distinct type
is the name of the distinct type. The input parameter of the cast function has the
same data type as the source data type, including the length, precision, and scale.

CREATE DISTINCT TYPE

Chapter 5. Statements 477

For example, assume that a distinct type named T_SHOESIZE is created with the
following statement:

CREATE DISTINCT TYPE CLAIRE.T_SHOESIZE AS VARCHAR(2) WITH COMPARISONS

When the statement is executed, DB2 also generates the following cast functions.
VARCHAR converts from the distinct type to the source type, and T_SHOESIZE
converts from the source type to the distinct type.

FUNCTION CLAIRE.VARCHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.VARCHAR (2)
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that function VARCHAR returns a value with a data type of VARCHAR(2)
and that function T_SHOESIZE has an input parameter with a data type of
VARCHAR(2).

The schema of the generated cast functions is the same as the schema of the
distinct type. No other function with the same name and function signature must
already exist in the database.

In the preceding example, if T_SHOESIZE had been sourced on a SMALLINT,
CHAR, or GRAPHIC data type instead of a VARCHAR data type, another cast
function would have been generated in addition to the two functions to cast
between the distinct type and the source data type. For example, assume that
T_SHOESIZE is created with this statement:

CREATE DISTINCT TYPE CLAIRE.T_SHOESIZE AS CHAR(2) WITH COMPARISONS

When the statement is executed, DB2 generates these cast functions:
FUNCTION CLAIRE.CHAR (CLAIRE.T_SHOESIZE) RETURNS SYSIBM.CHAR (2)
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.CHAR (2)) RETURNS CLAIRE.T_SHOESIZE
FUNCTION CLAIRE.T_SHOESIZE (SYSIBM.VARCHAR (2)) RETURNS CLAIRE.T_SHOESIZE

Notice that the third function enables the casting of a VARCHAR(2) to
T_SHOESIZE. This additional function is created to enable casting a constant, such
as 'AB', directly to the distinct type. Without the additional function, you would have
to first cast 'AB', which has a data type of VARCHAR, to a data type of CHAR and
then cast it to the distinct type.

You cannot explicitly drop a generated cast function. The cast functions that are
generated for a distinct type are implicitly dropped when the distinct type is dropped
with the DROP statement.

For each built-in data type that can be the source data type for a distinct type,
Table 38 gives the names of the generated cast functions, the data types of the
input parameters, and the data types of the values that the functions returns.

Table 38. CAST functions on distinct types

Source type name Function name Parameter-type Return-type

CHAR
CHARACTER

distinct CHAR (n) distinct

CHAR distinct CHAR (n)

distinct VARCHAR (n) distinct

VARCHAR
CHARACTER VARYING
CHAR VARYING

distinct VARCHAR (n) distinct

VARCHAR distinct VARCHAR (n)

CREATE DISTINCT TYPE

478 SQL Reference

Table 38. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

CLOB distinct CLOB (n) distinct

CLOB distinct CLOB (n)

BLOB distinct BLOB (n) distinct

BLOB distinct BLOB (n)

GRAPHIC distinct GRAPHIC (n) distinct

GRAPHIC distinct GRAPHIC (n)

distinct VARGRAPHIC (n) distinct

VARGRAPHIC distinct VARGRAPHIC (n) distinct

VARGRAPHIC distinct VARGRAPHIC (n)

DBCLOB distinct DBCLOB (n) distinct

DBCLOB distinct DBCLOB (n)

SMALLINT distinct SMALLINT distinct

distinct INTEGER distinct

SMALLINT distinct SMALLINT

INTEGER distinct INTEGER distinct

INTEGER distinct INTEGER

DECIMAL distinct DECIMAL (p,s) distinct

DECIMAL distinct DECIMAL (p,s)

NUMERIC distinct DECIMAL (p,s) distinct

DECIMAL distinct DECIMAL (p,s)

REAL distinct REAL distinct

distinct DOUBLE distinct

REAL distinct REAL

FLOAT(n) where n<=24 distinct REAL distinct

distinct DOUBLE distinct

REAL distinct REAL

FLOAT(n) where n>24 distinct DOUBLE distinct

DOUBLE distinct DOUBLE

FLOAT distinct DOUBLE distinct

DOUBLE distinct DOUBLE

DOUBLE distinct DOUBLE distinct

DOUBLE distinct DOUBLE

DOUBLE PRECISION distinct DOUBLE distinct

DOUBLE distinct DOUBLE

DATE distinct DATE distinct

DATE distinct DATE

TIME distinct TIME distinct

TIME distinct TIME

TIMESTAMP distinct TIMESTAMP distinct

TIMESTAMP distinct TIMESTAMP

CREATE DISTINCT TYPE

Chapter 5. Statements 479

Table 38. CAST functions on distinct types (continued)

Source type name Function name Parameter-type Return-type

ROWID distinct ROWID distinct

ROWID distinct ROWID

Notes: In the table, distinct represents distinct-type-name.

NUMERIC and FLOAT are not recommended when creating a distinct type for a portable application. Use DECIMAL
and DOUBLE (or REAL) instead.

Built-in functions: When a distinct type is defined, the built-in functions (such as
AVG, MAX, and LENGTH) are not automatically supported for the distinct type. You
can use a built-in function on a distinct type only after a sourced user-defined
function, which is based on the built-in function, has been created for the distinct
type. For information on defining sourced user-defined functions, see “CREATE
FUNCTION (sourced)” on page 521.

Examples
Example 1: Create a distinct type named SHOESIZE that is sourced on an
INTEGER data type.

CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS;

The successful execution of this statement also generates two cast functions.
Function INTEGER(SHOESIZE) returns a value with data type INTEGER, and
function SHOESIZE(INTEGER) returns a value with distinct type SHOESIZE.

Example 2: Create a distinct type named MILES that is sourced on a DOUBLE data
type.

CREATE DISTINCT TYPE MILES AS DOUBLE WITH COMPARISONS;

The successful execution of this statement also generates two cast functions.
Function DOUBLE(MILES) returns a value with data type DOUBLE, and function
MILES(DOUBLE) returns a value with distinct type MILES.

CREATE DISTINCT TYPE

480 SQL Reference

CREATE FUNCTION
The CREATE FUNCTION statement registers a user-defined function with a
database server. You can register four different types of functions with this
statement, each of which is described separately.

v External scalar

The function is written in a programming language and returns a scalar value.
The external executable is registered with a database server along with various
attributes of the function. See “CREATE FUNCTION (external scalar)” on
page 482.

v External table

The function is written in a programming language and returns a complete table.
The external executable is registered with a database server along with various
attributes of the function. See “CREATE FUNCTION (external table)” on
page 504.

v Sourced

The function is implemented by invoking another function (either built-in, external,
or sourced) that is already registered with a database server. See “CREATE
FUNCTION (sourced)” on page 521.

v SQL

The function content is specified in the RETURN clause of the CREATE
FUNCTION statement. See “CREATE FUNCTION (SQL scalar)” on page 535.

CREATE FUNCTION

Chapter 5. Statements 481

|

|
|

CREATE FUNCTION (external scalar)
This CREATE FUNCTION statement registers a user-defined external scalar
function with a database server.

A scalar function returns a single value each time it is invoked.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Additional privileges are required if the function uses a table as a parameter, refers
to a distinct type, or is to run in a MVS workload manager (WLM) environment.
These privileges are:

v The SELECT privilege on any table that is an input parameter to the function.

v The USAGE privilege on each distinct type that the function references.

v Authority to create programs in the specified WLM environment. This
authorization is obtained from an external security product, such as RACF.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR, the Java ARchive file.

CREATE FUNCTION (external scalar)

482 SQL Reference

|
|

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

�
(1)

RETURNS data-type2
(2)

AS LOCATOR
data-type3 CAST FROM data-type4

(2)
AS LOCATOR

option-list ��

Notes:

1 This clause and the clauses that follow in the option-list can be specified in any order.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

parameter-declaration:

��
parameter-name

parameter-type ��

parameter-type:

��
(1)

data-type
(2)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 A LOB data type or distinct type based on a LOB data type must be no greater than 1M unless a
locator is passed.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 483

data-type:

�� built-in-data-type
distinct-type-name

��

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID ASCII

CLOB K MIXED EBCDIC
M UNICODE
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer) CCSID ASCII

VARGRAPHIC (integer) EBCDIC
DBCLOB UNICODE

(integer)
K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

CREATE FUNCTION (external scalar)

484 SQL Reference

option-list:

��
(1)

SPECIFIC specific-name
PARAMETER CCSID ASCII

EBCDIC
UNICODE

�

� EXTERNAL
(2)

NAME ’string’
identifier

LANGUAGE ASSEMBLE
C
COBOL

(3)
JAVA
PLI

PARAMETER STYLE DB2SQL

(3)
PARAMETER STYLE JAVA

�

�
NOT DETERMINISTIC (4)

DETERMINISTIC

FENCED RETURNS NULL ON NULL INPUT (5)

CALLED ON NULL INPUT
�

�
READS SQL DATA

NO SQL
MODIFIES SQL DATA
CONTAINS SQL

EXTERNAL ACTION

NO EXTERNAL ACTION

NO SCRATCHPAD

100
SCRATCHPAD

length

NO FINAL CALL

FINAL CALL
�

�
(6)

ALLOW PARALLEL
DISALLOW PARALLEL

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER
DEFINER

RUN OPTIONS run-time-options
�

�
INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS
��

Notes:

1 The clauses in the option-list can be specified in any order.

2 With LANGUAGE JAVA, use a valid external-java-routine-name.

3 When either LANGUAGE JAVA or PARAMETER STYLE JAVA is specified, the other must be also
be specified.

4 Synonyms include VARIANT for NOT DETERMINISTIC and NOT VARIANT for DETERMINISTIC.

5 Synonyms include NOT NULL CALL for RETURNS NULL ON NULL INPUT and NULL CALL for
CALLED ON NULL INPUT.

6 If NOT DETERMINISTIC, EXTERNAL ACTION, SCRATCHPAD, or FINAL CALL is specified,
DISALLOW PARALLEL is the default.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 485

Description
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by
a schema name. The combination of name, schema name, the number of
parameters, and the data type of each parameter30 (without regard for any
length, precision, scale, subtype or encoding scheme attributes of the data type)
must not identify a user-defined function that exists at the current server.

You can use the same name for more than one function if the function signature
of each function is unique.

v The unqualified form of function-name is a long SQL identifier.

The name must not be any of the following system-reserved keywords even
if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =

30. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

external-java-routine-name:

jar-name:
method-name

method-signature

jar-name:

schema-name.
jar-id

method-name:

�

package-id .
(1)

/

class-id .
(2)

!

method-id

method-signature:

�

()
,

java-datatype

Notes:

1 The slash (/) is supported for compatibility with DB2 for OS/390 Version 5 and Version 6.

2 The exclamation point (!) is supported for compatibility with DB2 UWO.

CREATE FUNCTION (external scalar)

486 SQL Reference

|

|||||||||||||||||||||||

|

|

||||||||||||||||

|

|

||

|

|

|||||||||||||||||||||||||||

|

|

||

||
|
|

BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The unqualified function name is implicitly qualified with a schema name
according to the following rules:

– If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

– If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of function-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

The owner of the function is determined by how the CREATE FUNCTION
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the data
type of each parameter. All the parameters for a function are input parameters.
There must be one entry in the list for each parameter that the function expects
to receive. Although not required, you can give each parameter a name.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is a long SQL
identifier, and each name in the parameter list must not be the same as any
other name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-data-type
The data type of the input parameter is a built-in data type. You can use
the same built-in data types as for the CREATE TABLE statement
except LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 487

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For information on the data types, including the subtype of character
data types (the FOR subtype DATA clause), see “built-in-data-type” on
page 606.

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, DB2
resolves the schema name by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all the parameters
with a string data type must be the same—either all ASCII, all EBCDIC, or
all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:

v A datetime type parameter is passed as a character data type, and the
data is passed in ISO format.

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB

CREATE FUNCTION (external scalar)

488 SQL Reference

|
|

|
|

|
|
|

data type. Passing locators instead of values can result in fewer bytes
being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked from
the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table.
It specifies that the transition table has the same number of columns as the
identified table or view. The columns have the same data type, length,
precision, scale, subtype, and encoding scheme as the identified table or
view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE.

The name specified after TABLE LIKE must identify a table or view that
exists at the current server. The name must not identify a declared
temporary table. The name does not have to be the same name as the
table that is associated with the transition table for the trigger. An
unqualified table or view name is implicitly qualified according to the
following rules:

v If the CREATE FUNCTION statement is embedded in a program, the
implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SQLID
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definiton occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table
that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition is
defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 489

|
|
|
|
|
|
|
|

RETURNS
Identifies the output of the function. Consider this clause in conjunction with the
optional CAST FROM clause.

data-type2
Specifies the data type of the output.

The same considerations that apply to the data type of input parameter, as
described under “data-type” on page 487, apply to the data type of the
output of the function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data
type.

data-type3 CAST FROM data-type4
Specifies the data type of the output of the function (data-type4) and the
data type in which that output is returned to the invoking statement
(data-type3). The two data types can be different. For example, for the
following definition, the function returns a DOUBLE value, which DB2
converts to a DECIMAL value and then passes to the statement that
invoked the function:

CREATE FUNCTION SQRT(DECIMAL(15,0))
RETURNS DECIMAL(15,0) CAST FROM DOUBLE
...

The value of data-type4 must not be a distinct type and must be castable to
data-type3. The value for data-type3 can be any built-in data type or distinct
type. (For information on casting data types, see “Casting between data
types” on page 62.) The encoding scheme of the parameters, if they are
string data types, must be the same.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
value. You can specify AS LOCATOR only if data-type4 is a LOB data
type or a distinct type based on a LOB data type.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must not
identify the specific name of another function that exists at the current server.

The unqualified form of specific-name is a long SQL identifier. The qualified
form is a short SQL identifier (the schema name) followed by a period and a
long SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a unique
specific name or if the function name is a single asterisk, DB2 generates a
specific name in the form of:
SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

CREATE FUNCTION (external scalar)

490 SQL Reference

|

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function in
several SQL statements (such as ALTER FUNCTION, COMMENT ON, DROP,
GRANT, and REVOKE) and must be used in DB2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the
function cannot be invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in
the CCSID clauses of the parameter list or RETURNS clause, or in the field
DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for all
string parameters. If individual CCSID clauses are specified for individual
parameters in addition to this PARAMETER CCSID clause, the value specified
in all of the CCSID clauses must be the same value that is specified in this
clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

EXTERNAL
Specifies the program that runs when the function is invoked.

DB2 loads the load module when the function is invoked. The load module is
created when the program that contains the function body is compiled and
link-edited. The load module does not need to exist when the CREATE
FUNCTION statement is executed. However, it must exist and be accessible by
the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME ’string’ or identifier
Identifies the user-written code that implements the user-defined function.

If LANGUAGE is JAVA, ’string’ must be specified and enclosed in single
quotation marks, with no extraneous blanks within the single quotation
marks. It must specify a valid external-java-routine-name. If multiple ’string’s
are specified, the total length of all of them must not be greater than 1305
bytes and they must be separated by a space or a line break. Do not
specify a JAR for a JAVA function for which NO SQL is also specified.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR when it was installed in the
database. The name contains jar-id, which can optionally be qualified
with a schema. Examples are ″myJar″ and ″mySchema.myJar.″ The
unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

CREATE FUNCTION (external scalar)

Chapter 5. Statements 491

|
|
|
|
|

|
|
|
|
|

|
|
|

#
#
#
#
#
#

|

|
|
|
|
|
|

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the package or
plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SQLID special register.

If jar-name is specified, it must exist when the CREATE FUNCTION
statement is processed.

If jar-name is not specified, the function is loaded from the class file
directly instead of being loaded from a JAR file. DB2 for DB2 for
OS/390 and z/OS searches the directories in the CLASSPATH
associated with the WLM Environment. Environmental variables for
Java routines are specified in a dataset identified in a JAVAENV DD
card on the JCL used to start the address space for a WLM-managed
function.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method ID’s are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies the package list that the class identifier is part of. If the
class is part of a package, the method name must include the
complete package prefix, such as ″myPacks.UserFuncs.″ The Java
virtual machine looks in the directory ″/myPacks/UserFuncs/″ for the
classes.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature
if the user-defined function involves any input or output parameters that
can be NULL. When the function being created is called, DB2 searches
for a Java method with the exact method-signature. The number of
java-datatype elements specified indicates how many parameters that
the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java
method-signature is not specified, DB2 searches for a Java method with
a signature derived from the default JDBC types associated with the
SQL types specified in the parameter list of the CREATE FUNCTION
statement.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters or a short identifier. It must conform to the
naming conventions for MVS load modules. Alphabetical extenders for
national languages can be used as the first character and as subsequent
characters in the load module name.

CREATE FUNCTION (external scalar)

492 SQL Reference

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

If you do not specify the NAME clause, ’NAME function-name’ is implicit. In
this case, function-name must not be longer than 8 characters.

LANGUAGE
Specifies the application programming language in which the function program
is written. All programs must be designed to run in IBM’s Language
Environment environment.

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++.

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

JAVA
The user-defined function is written in Java byte code and is executed in
the OS/390 Java Virtual Machine. When LANGUAGE JAVA is specified, the
EXTERNAL NAME clause must also be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified
with JAVA.

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL,
DBINFO, PROGRAM TYPE MAIN, or RUN OPTIONS is specified.

PLI
The function is written in PL/I.

PARAMETER STYLE
Specifies the linkage convention that the function program uses to receive input
parameters from and pass return values to the invoking SQL statement.

DB2SQL
Indicates that parameters for indicator variables are associated with each
input and return value to allow for null values. The parameters that are
passed between the invoking SQL statement and the function include:
v The first n parameters are the input parameters that are specified for the

function
v A parameter for the result of the function
v n parameters for the indicator variables for the input parameters
v A parameter for the indicator variable for the result
v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2

Zero to three additional parameters might also be passed:
v The scratchpad, if SCRATCHPAD is specified
v The call type, if NO FINAL CALL is specified
v The DBINFO structure, if DBINFO is specified

JAVA
Indicates that the user-defined function uses a convention for passing
parameters that conforms to the Java and SQLJ specifications.
PARAMETER STYLE JAVA can be specified only if LANGUAGE is JAVA.
JAVA must be specified for PARAMETER STYLE when LANGUAGE is
JAVA.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 493

|
|
|
|
|
|

#
#

|
|
|
|
|

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments.

NOT DETERMINISTIC
The function might not return the same result for identical input arguments.
The function depends on some state values that affect the results. DB2
uses this information when processing a SELECT, UPDATE, DELETE, or
INSERT statement to disable merging of views that refer to the function. An
example of a function that is not deterministic is one that generates random
numbers, or any function that contains SQL statements.

NOT DETERMINISTIC is the default.

Some functions that are not deterministic can receive incorrect results if the
function is executed by parallel tasks. Specify the DISALLOW PARALLEL
clause for these functions.

DETERMINISTIC
The function always returns the same result for identical input arguments.
DB2 can use this information to optimize view processing for SELECT,
UPDATE, DELETE, or INSERT statements. An example of a deterministic
function is a function that calculates the square root of the input.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

FENCED
Specifies that the external function runs in an external address space to prevent
the function from corrupting DB2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

RETURNS NULL ON INPUT
The function is not called if any of the input arguments is null. The result is
the null value. RETURNS NULL ON INPUT is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments is
null, making the function responsible for testing for null argument values.
The function can return a null or nonnull value.

NO SQL, MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Indicates whether the function can execute any SQL statements and, if so, what
type. DB2 verifies that the SQL issued by the function is consistent with this
specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

NO SQL
The function does not execute SQL statements. Do not specify NO SQL for
a JAVA function that uses a JAR.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that
are not supported in any function. Do not specify MODIFIES SQL DATA
when ALLOW PARALLEL is specified.

CREATE FUNCTION (external scalar)

494 SQL Reference

#
#

|
|
|

READS SQL DATA
The function does not execute SQL statements that modify data. SQL
statements that are not supported in any function return a different error.

READS SQL DATA is the default.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.
SQL statements that are not supported in any function return a different
error.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for external functions, DB2 can
participate in two-phase commit with any other resource manager that uses
RRS. For resource managers that do not use RRS, there is no coordination of
commit or rollback operations on non-DB2 resources.

EXTERNAL ACTION
The function can take an action that changes the state of an object that
DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, DB2:

v Materializes the views in SELECT, UPDATE, DELETE or INSERT
statements that refer to the function.

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 can use this information to optimize the
processing of views for SELECT, UPDATE, DELETE or INSERT
statements.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 is to provide a scratchpad for the function. It is strongly
recommended that external functions be reentrant, and a scratchpad provides
an area for the function to save information from one invocation to the next.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 495

NO SCRATCHPAD
A scratchpad is not allocated and passed to the function. NO
SCRATCHPAD is the default.

SCRATCHPAD length
When the function is invoked for the first time, DB2 allocates memory for a
scratchpad. A scratchpad has the following characteristics:

v length must be between 1 and 32767. The default value is 100 bytes.

v DB2 initializes the scratchpad to all binary zeros (X'00'’s).

v The scope of a scratchpad is the SQL statement. For each reference to
the function in an SQL statement, there is one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that will not work correctly with parallelism.

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2
initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so that
the function can free those system resources.

Each time the function invoked, DB2 passes an additional argument to the
function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

Do not specify SCRATCHPAD when LANGUAGE JAVA is specified.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the
function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the
function acquires system resource and anchors them in the scratchpad.

CREATE FUNCTION (external scalar)

496 SQL Reference

|

NO FINAL CALL
A final call is not made to the function. The function does not receive an
additional argument that specifies the type of call. NO FINAL CALL is the
default.

FINAL CALL
A final call is made to the function. To differentiate between final calls and
other calls, the function receives an additional argument that specifies the
type of call. The types of calls are:

Normal call
SQL arguments are passed and the function is expected to return a
result.

First call
The first call to the function for this reference to the function in this
SQL statement. A first call is a normal call—SQL arguments are
passed and the function is expected to return a result.

Final call
The last call to the function to enable the function to free resources.
A final call is not a normal call. If an error occurs, DB2 attempts to
make the final call unless the function abended. A final call occurs
at these times:

v End of statement: When the cursor is closed for cursor-oriented
statements, or the execution of the statement has completed.

v End of a parallel task: When the function is executed by parallel
tasks.

v End of transaction: When normal end of statement processing
does not occur. For example, the logic of an application, for
some reason, bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD
is open, a final call is made when the cursor is closed or the
application ends. If a commit occurs at the end of a parallel task, a
final call is made regardless of whether a cursor defined as WITH
HOLD is open.

If a commit, rollback, or abort operation causes the final call, the function
cannot issue any SQL statements when it is invoked.

Some functions that use a final call can receive incorrect results if parallel
tasks execute the function. For example, if a function sends a note for each
final call to it, one note is sent for each parallel task instead of once for the
function. Specify the DISALLOW PARALLEL clause for functions that have
inappropriate actions when executed in parallel.

Do not specify FINAL CALL when LANGUAGE JAVA is specified.

ALLOW or DISALLOW PARALLEL
For a single reference to the function, specifies whether parallelism can be used
when the function is invoked. Although parallelism can be used for most scalar
functions, some functions such as those that depend on a single copy of the
scratchpad cannot be invoked with parallel tasks. Consider these characteristics
when determining which clause to use:

v If all invocations of the function are completely independent from one
another, specify ALLOW PARALLEL.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 497

|

v If each invocation of the function updates the scratchpad, providing values
that are of interest to the next invocation, such as incrementing a counter,
specify DISALLOW PARALLEL.

v If the scratchpad is used only so that some expensive initialization
processing is performed a minimal number of times, specify ALLOW
PARALLEL.

v If the function performs some external action that should apply to only one
partition, specify DISALLOW PARALLEL.

v If the function is defined with MODIFIES SQL DATA, specify DISALLOW
PARALLEL, not ALLOW PARALLEL.

ALLOW PARALLEL
Specifies that DB2 can consider parallelism for the function. Parallelism is
not forced on the SQL statement that invokes the function or on any SQL
statement in the function. Existing restrictions on parallelism apply.

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

The default is DISALLOW PARALLEL, if you specify one or more of the
following clauses:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v FINAL CALL
v MODIFIES SQL DATA
v SCRATCHPAD

Otherwise, ALLOW PARALLEL is the default.

NO DBINFO or DBINFO
Specifies whether specific information that DB2 knows is passed to the function
when it is invoked.

NO DBINFO
No additional information is passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application
run-time authorization ID, the schema name, the name of a table or column
that the function might be inserting into or updating, and identification of the
database server that invoked the function. For details about the argument
and its structure, see DB2 Application Programming and SQL Guide.

Do not specify DBINFO when LANGUAGE JAVA is specified.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function program is bound.

NO COLLID
The package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, the package collection is the value of the
CURRENT PACKAGESET special register.

NO COLLID is the default.

CREATE FUNCTION (external scalar)

498 SQL Reference

|
|

|

COLLID collection-id
The name of the package collection that is to be used when the function is
executed.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) application environment in which
the function is to run. The name of the WLM environment is a long identifier.

If you do not specify WLM ENVIRONMENT, the function runs in the
WLM-established stored procedure address space that is specified at
installation time.

name
The WLM environment in which the function must run. If another
user-defined function or a stored procedure calls the function and that
calling routine is running in an address space that is not associated with the
WLM environment, DB2 routes the function request to a different MVS
address space.

(name,*)
When an SQL application program directly invokes the function, the WLM
environment in which the function runs.

If another user-defined function or a stored procedure calls the function, the
function runs in same environment that the calling routine uses. In this
case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the
specified WLM environment. For an example of a RACF command that
provides this authorization, see “Running external functions in WLM
environments” on page 502.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a function, setting a limit can be helpful if the function
gets caught in a loop. For information on service units, see OS/390 MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2GB.
If the function uses more service units than the specified value, DB2
cancels the function.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends.

NO
The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions. NO is the default.

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 499

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

SUB
The function runs as a subroutine. SUB is the default.

MAIN
The function runs as a main routine. Do not specify PROGRAM TYPE
MAIN when LANGUAGE JAVA is specified.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID that is associated with the
WLM-established stored procedure address space.

DB2 is the default.

USER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the primary authorization ID of the process
that invoked the function.

DEFINER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the authorization ID of the owner of the
function.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the
function. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults. For a description of the
Language Environment run-time options, see OS/390 Language Environment
for OS/390 & VM Programming Reference.

Do not specify RUN OPTIONS when LANGUAGE JAVA is specified.

INHERIT SPECIAL REGISTERS
Indicates that the values of special registers are inherited according to the rules
listed in the table for characteristics of special registers in a user-defined
function in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as indicated
by the rules in the table for characteristics of special registers in a user-defined
function in Table 19 on page 92.

Notes
Choosing data types for parameters: When you choose the data types of the
input and output parameters for your function, consider the rules of promotion that
can affect the values of the parameters. (See “Promotion of data types” on
page 61). For example, a constant that is one of the input arguments to the function
might have a built-in data type that is different from the data type that the function

CREATE FUNCTION (external scalar)

500 SQL Reference

#
#

|

|
|
|
|

|
|
|
|

expects, and more significantly, might not be promotable to that expected data type.
Based on the rules of promotion, using the following data types for parameters is
recommended:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms that are not DB2 for OS/390 and z/OS,
do not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters: The implicitly or explicitly
specified encoding scheme of all the parameters with a string data type (both input
and output parameters) must be the same—either all ASCII or all EBCDIC.

Determining the uniqueness of functions in a schema: At the current server, the
function signature of each function, which is the qualified function name combined
with the number and data types of the input parameters, must be unique. If the
function has more than 30 input parameters, only the data types of the first 30 are
used to determine uniqueness. This means that two different schemas can each
contain a function with the same name that have the same data types for all of their
corresponding data types. However, a single schema must not contain multiple
functions with the same name that have the same data types for all of their
corresponding data types.

When determining whether corresponding data types match, DB2 does not consider
any length, precision, scale, subtype or encoding scheme attributes in the
comparison. DB2 considers the synonyms of data types (DECIMAL and NUMERIC,
REAL and FLOAT, and DOUBLE and FLOAT) a match. Therefore, CHAR(8) and
CHAR(35) are considered to be the same, as are DECIMAL(11,2), DECIMAL(4,3),
and NUMERIC(4,2).

Assume that the following statements are executed to create four functions in the
same schema. The second and fourth statements fail because they create functions
that are duplicates of the functions that the first and third statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Overriding a built-in function: Giving an external function the same name as a
built-in function is not a recommended practice unless you are trying to change the
functionality of the built-in function.

If you do intend to create an external function with the same name as a built-in
function, be careful to maintain the uniqueness of its function signature. If your
function has the same name and data types of the corresponding parameters of the
built-in function but implements different logic, DB2 might choose the wrong function
when the function is invoked with an unqualified function name. Thus, the
application might fail, or perhaps even worse, run successfully but provide an
inappropriate result.

CREATE FUNCTION (external scalar)

Chapter 5. Statements 501

Running external functions in WLM environments: You can use the WLM
ENVIRONMENT clause to identify the MVS address space in which a function or is
to run. Using different WLM environments lets you isolate one group of programs
from another. For example, you might choose to isolate programs based on security
requirements and place all payroll applications in one WLM environment because
those applications deal with data, such as employee salaries.

To prevent a user from defining functions in sensitive WLM environments, DB2
invokes the external security manager to determine whether the user has
authorization to issue CREATE FUNCTION statements that refer to the specified
WLM environment. The following example shows the RACF command that
authorizes DB2 user DB2USER1 to register a function on DB2 subsystem DB2A
that runs in the WLM environment named PAYROLL.

PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Scrollable cursors specified with user-defined functions: A row can be fetched
more than once with a scrollable cursor. Therefore, if a scrollable cursor is defined
with a non-deterministic function in the select list of the cursor, a row can be
fetched multiple times with different results for each fetch. (However, the value of a
non-deterministic function in the WHERE clause of a scrollable cursor is captured
when the cursor is opened and remains unchanged until the cursor is closed.)
Similarly, if a scrollable cursor is defined with a user-defined function with external
action, the action is executed with every fetch.

Examples
Example 1: Assume that you want to write an external function program in C that
implements the following logic:

output = 2 * input - 4

The function should return a null value if and only if one of the input arguments is
null. The simplest way to avoid a function call and get a null result when an input
value is null is to specify RETURNS NULL ON NULL INPUT on the CREATE
FUNCTION statement or allow it to be the default. Write the statement needed to
register the function, using the specific name MINENULL1.

CREATE FUNCTION NTEST1 (SMALLINT)
RETURNS SMALLINT
EXTERNAL NAME 'NTESTMOD'
SPECIFIC MINENULL1
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION;

Example 2: Assume that user Smith wants to register an external function named
CENTER in schema SMITH. The function program will be written in C and will be
reentrant. Write the statement that Smith needs to register the function, letting DB2
generate a specific name for the function.

CREATE FUNCTION CENTER (INTEGER, FLOAT)
RETURNS FLOAT
EXTERNAL NAME 'MIDDLE'
LANGUAGE C
DETERMINISTIC
NO SQL

CREATE FUNCTION (external scalar)

502 SQL Reference

|
|
|
|
|
|
|
|

FENCED
PARAMETER STYLE DB2SQL
NO EXTERNAL ACTION
STAY RESIDENT YES;

Example 3: Assume that user McBride (who has administrative authority) wants to
register an external function named CENTER in the SMITH schema. McBride plans
to give the function specific name FOCUS98. The function program uses a
scratchpad to perform some one-time only initialization and save the results. The
function program returns a value with a FLOAT data type. Write the statement
McBride needs to register the function and ensure that when the function is
invoked, it returns a value with a data type of DECIMAL(8,4).

CREATE FUNCTION SMITH.CENTER (FLOAT, FLOAT, FLOAT)
RETURNS DECIMAL(8,4) CAST FROM FLOAT
EXTERNAL NAME 'CMOD'
SPECIFIC FOCUS98
LANGUAGE C
DETERMINISTIC
NO SQL
FENCED
PARAMETER STYLE DB2SQL
NO EXTERNAL ACTION
SCRATCHPAD
NO FINAL CALL;

Example 4: The following example registers a Java user-defined function that
returns the position of the first vowel in a string. The user-defined function is written
in Java, is to be run fenced, and is the FINDVWL method of class JAVAUDFS.

CREATE FUNCTION FINDV (CLOB(100K))
RETURNS INTEGER
FENCED
LANGUAGE JAVA
PARAMETER STYLE JAVA
EXTERNAL NAME 'JAVAUDFS.FINDVWL'
NO EXTERNAL ACTION
CALLED ON NULL INPUT
DETERMINISTIC
NO SQL;

CREATE FUNCTION (external scalar)

Chapter 5. Statements 503

|
|
|

|
|
|
|
|
|
|
|
|
|

|

CREATE FUNCTION (external table)
This CREATE FUNCTION statement registers a user-defined external table function
with a database server.

A table function can be used in the FROM clause of a SELECT. It returns a table to
the SELECT one row at a time.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Additional privileges are required if the function uses a table as a parameter, refers
to a distinct type, or is to run in an MVS workload manager (WLM) environment.
These privileges are:

v The SELECT privilege on any table that is an input parameter to the function.

v The USAGE privilege on each distinct type that the function references.

v Authority to create programs in the specified WLM environment. This
authorization is obtained from an external security product, such as RACF.

CREATE FUNCTION (external table)

504 SQL Reference

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

� �

,
(1)

RETURNS TABLE (column-name data-type)
(2)

AS LOCATOR

option-list ��

Notes:

1 This clause and the clauses that follow in the option-list can be specified in any order.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

parameter-declaration:

��
parameter-name

parameter-type ��

parameter-type:

��

data-type:

�� built-in-data-type
distinct-type-name

��

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID EBCDIC
CHARACTER VARYING (integer) MIXED ASCII
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID EBCDIC

CLOB K MIXED ASCII
M UNICODE
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer) CCSID EBCDIC

VARGRAPHIC (integer) ASCII
DBCLOB UNICODE

(integer)
K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

CREATE FUNCTION (external table)

506 SQL Reference

Description
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by
a schema name. The combination of name, schema name, the number of

option-list:

��
(1)

SPECIFIC specific-name
PARAMETER CCSID ASCII

EBCDIC
UNICODE

�

� EXTERNAL
NAME ’string’

identifier

LANGUAGE ASSEMBLE
C
COBOL
PLI

PARAMETER STYLE DB2SQL �

�
NOT DETERMINISTIC (2)

DETERMINISTIC

FENCED RETURNS NULL ON NULL INPUT (3)

CALLED ON NULL INPUT

READS SQL DATA

NO SQL
CONTAINS SQL

�

�
EXTERNAL ACTION

NO EXTERNAL ACTION

NO SCRATCHPAD

100
SCRATCHPAD

length

NO FINAL CALL

FINAL CALL
DISALLOW PARALLEL �

�
NO DBINFO

DBINFO CARDINALITY integer

NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name)

ASUTIME NO LIMIT

ASUTIME LIMIT integer
�

�
STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE SUB

PROGRAM TYPE MAIN

SECURITY DB2

SECURITY USER
DEFINER

�

�
RUN OPTIONS run-time-options

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS
��

Notes:

1 The clauses in the option-list can be specified in any order.

2 Synonyms include VARIANT for NOT DETERMINISTIC, and NOT VARIANT for DETERMINISTIC.

3 Synonyms include NOT NULL CALL for RETURNS NULL ON NULL INPUT, and NULL CALL for
CALLED ON NULL INPUT.

CREATE FUNCTION (external table)

Chapter 5. Statements 507

parameters, and the data type of each parameter31 (without regard for any
length, precision, scale, subtype or encoding scheme attributes of the data type)
must not identify a user-defined function that exists at the current server.

You can use the same name for more than one function if the function signature
of each function is unique.

v The unqualified form of function-name is a long SQL identifier.

The name must not be any of the following system-reserved keywords even
if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The unqualified function name is implicitly qualified with a schema name
according to the following rules:

– If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

– If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of function-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

The owner of the function is determined by how the CREATE FUNCTION
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the data
type of each parameter. All the parameters for a function are input parameters.
There must be one entry in the list for each parameter that the function expects
to receive. Although not required, you can give each parameter a name.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

31. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

CREATE FUNCTION (external table)

508 SQL Reference

parameter-name
Specifies the name of the input parameter. The name is a long SQL
identifier, and each name in the parameter list must not be the same as any
other name. The same name cannot be used for a parameter-name and a
column name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-data-type
The data type of the input parameter is a built-in data type. You can use
the same built-in data types as for the CREATE TABLE statement
except LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For information on the data types, including the subtype of character
data types (the FOR subtype DATA clause), see “built-in-data-type” on
page 606.

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, DB2
resolves the schema name by searching the schemas in the SQL path.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:

v A datetime type parameter is passed as a character data type, and the
data is passed in ISO format.

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters

CREATE FUNCTION (external table)

Chapter 5. Statements 509

#
#

|
|

|
|

are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type that is based on a
LOB data type. Passing locators instead of values can result in fewer
bytes being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked from
the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table.
It specifies that the transition table has the same number of columns as the
identified table or view. The columns have the same data type, length,
precision, scale, subtype, and encoding scheme as the identified table or
view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE.

The name specified after TABLE LIKE must identify a table or view that
exists at the current server. The name must not identify a declared
temporary table. The name does not have to be the same name as the
table that is associated with the transition table for the trigger. An
unqualified table or view name is implicitly qualified according to the
following rules:

v If the CREATE FUNCTION statement is embedded in a program, the
implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SQLID
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definition occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table

CREATE FUNCTION (external table)

510 SQL Reference

|
|
|
|
|

that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition is
defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

RETURNS TABLE(column-name data-type ...)
Identifies that the output of the function is a table. The parentheses that follow
the keyword enclose the list of names and data types of the columns of the
table.

column-name
Specifies the name of the column. The name is a long identifier and must
be unique within the RETURNS TABLE clause for the function.

data-type
Specifies the data type of the column. The data type can be any built-in
data type, except LONG VARCHAR or LONG VARGRAPHIC. The data type
can also be any distinct type.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only for a LOB data type or
a distinct type based on a LOB data type.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must not
identify the specific name of another function that exists at the current server.

The unqualified form of specific-name is a long SQL identifier. The qualified
form is a short SQL identifier (the schema name) followed by a period and a
long SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a unique
specific name or if the function name is a single asterisk, DB2 generates a
specific name in the form of:
SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function in
several SQL statements (such as ALTER FUNCTION, COMMENT ON, DROP,
GRANT, and REVOKE) and in DB2 commands (START FUNCTION, STOP
FUNCTION, and DISPLAY FUNCTION). However, the function cannot be
invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in
the CCSID clauses of the parameter list or RETURNS clause, or in the field
DEF ENCODING SCHEME on installation panel DSNTIPF.

CREATE FUNCTION (external table)

Chapter 5. Statements 511

|
|
|

|

|
|
|
|
|

This clause provides a convenient way to specify the encoding scheme for all
string parameters. If individual CCSID clauses are specified for individual
parameters in addition to this PARAMETER CCSID clause, the value specified
in all of the CCSID clauses must be the same value that is specified in this
clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

EXTERNAL
Specifies that the function being registered is based on code that is written in
an external programming language and adheres to the documented linkage
conventions and interface of that language.

If you do not specify the NAME clause, ’NAME function-name’ is implicit. In this
case, function-name must not be longer than 8 characters.

NAME ’string’ or identifier
Identifies the name of the MVS load module that contains the user-written
code that implements the logic of the function.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters or a short identifier. It must conform to the
naming conventions for MVS load modules. Alphabetical extenders for
national languages can be used as the first character and as subsequent
characters in the load module name.

DB2 loads the load module when the function is invoked. The load module is
created when the program that contains the function body is compiled and
link-edited. The load module does not need to exist when the CREATE
FUNCTION statement is executed. However, it must exist and be accessible by
the current server when the function is invoked.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

LANGUAGE
Specifies the application programming language in which the function program
is written. All programs must be designed to run in IBM’s Language
Environment environment.

ASSEMBLE
The function is written in Assembler.

C The function is written in C or C++.

COBOL
The function is written in COBOL, including the object-oriented language
extensions.

PLI
The function is written in PL/I.

CREATE FUNCTION (external table)

512 SQL Reference

|
|
|
|
|

|
|
|

PARAMETER STYLE DB2SQL
Specifies the linkage convention that the function program uses to receive input
parameters from and pass return values to the invoking SQL statement.

DB2SQL indicates that parameters for indicator variables are associated with
each input and return value to allow for null values. The parameters that are
passed between the invoking SQL statement and the function include:
v The first n parameters are the input parameters that are specified for the

function
v A parameter for the result of the function
v n parameters for the indicator variables for the input parameters
v A parameter for the indicator variable for the result
v The SQLSTATE to be returned to DB2
v The qualified name of the function
v The specific name of the function
v The SQL diagnostic string to be returned to DB2

Zero to three additional parameters might also be passed:
v The scratchpad, if SCRATCHPAD is specified
v The call type, if NO FINAL CALL is specified
v The DBINFO structure, if DBINFO is specified

For complete details about the structure of the parameter list that is passed,
see DB2 Application Programming and SQL Guide.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments.

NOT DETERMINISTIC
The function might not return the same result for identical input arguments.
The function depends on some state values that affect the results. DB2
uses this information when processing a SELECT, UPDATE, DELETE, or
INSERT statement to disable merging of views that refer to the function. An
example of a function that is not deterministic is one that generates random
numbers, or any function that contains SQL statements.

NOT DETERMINISTIC is the default.

Some functions that are not deterministic can receive incorrect results if the
function is executed by parallel tasks. Specify the DISALLOW PARALLEL
clause for these functions.

DETERMINISTIC
The function always returns the same result for identical input arguments.
DB2 can use this information to optimize view processing for SELECT,
UPDATE, DELETE, or INSERT statements. An example of a deterministic
function is a function that calculates the square root of the input.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

FENCED
Specifies that the function runs in an external address space to prevent the
function from corrupting DB2 storage.

FENCED is the default.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at
execution time.

CREATE FUNCTION (external table)

Chapter 5. Statements 513

RETURNS NULL ON NULL INPUT
The function is not called if any of the input arguments is null. The result is
an empty table, which is a table with no rows. RETURNS NULL ON INPUT
is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments is
null, making the function responsible for testing for null argument values.
The function can return an empty table, depending on its logic.

NO SQL, READS SQL DATA, or CONTAINS SQL
Indicates whether the function can execute any SQL statements and, if so, what
type. DB2 verifies that the SQL issued by the function is consistent with this
specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

NO SQL
The function does not execute SQL statements.

READS SQL DATA
The function does not execute SQL statements that modify data. SQL
statements that are not supported in any function return a different error.

READS SQL DATA is the default.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.
SQL statements that are not supported in any function return a different
error.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

Because DB2 uses the RRS attachment for functions, DB2 can participate in
two-phase commit with any other resource manager that uses RRS. For
resource managers that do not use RRS, there is no coordination of commit or
rollback operations on non-DB2 resources.

EXTERNAL ACTION
The function can take an action that changes the state of an object that
DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, DB2:

v Materializes the views in SELECT, UPDATE, DELETE or INSERT
statements that refer to the function.

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

CREATE FUNCTION (external table)

514 SQL Reference

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 can use this information to optimize the
processing of views for SELECT, UPDATE, DELETE or INSERT
statements.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether DB2 is to provide a scratchpad for the function. It is strongly
recommended that functions be reentrant, and a scratchpad provides an area
for the function to save information from one invocation to the next.

NO SCRATCHPAD
A scratchpad is not allocated and passed to the function. NO
SCRATCHPAD is the default.

SCRATCHPAD length
When the function is invoked for the first time, DB2 allocates memory for a
scratchpad. A scratchpad has the following characteristics:

v length must be between 1 and 32767. The default value is 100 bytes.

v DB2 initializes the scratchpad to all binary zeros (X'00'’s).

v The scope of a scratchpad is the SQL statement. For each reference to
the function in an SQL statement, there is one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to
UDFX in the following SQL statement:

SELECT A, UDFX(A) FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19;

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses
the scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that will not work correctly with parallelism.

v The scratchpad is persistent. DB2 preserves its content from one
invocation of the function to the next. Any changes that the function
makes to the scratchpad on one call are still there on the next call. DB2
initializes the scratchpads when it begins to execute an SQL statement.
DB2 does not reset scratchpads when a correlated subquery begins to
execute.

v The scratchpad can be a central point for the system resources that the
function acquires. If the function acquires system resources, specify
FINAL CALL to ensure that DB2 calls the function one more time so that
the function can free those system resources.

Each time the function invoked, DB2 passes an additional argument to the
function that contains the address of the scratchpad.

If you specify SCRATCHPAD, DB2:

CREATE FUNCTION (external table)

Chapter 5. Statements 515

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until the
cursor is closed. This is also applicable for cursors declared WITH HOLD.

NO FINAL CALL or FINAL CALL
Specifies whether a first call and a final call are made to the function.

NO FINAL CALL
A first call and final call are not made to the function. NO FINAL CALL is
the default.

FINAL CALL
A first call and final call are made to the function in addition to one or more
open, fetch, or close calls.

The types of calls are:

First call
A first call occurs only if the function was defined with FINAL CALL.
Before a first call, the scratchpad is set to binary zeros. Argument
values are passed to the function, and the function might acquire
memory or perform other one-time only resource initialization. However,
the function should not return any data to DB2, but it can set return
values for the SQL-state and diagnostic-message arguments.

Open call
An open call occurs unless the function returns an error. The
scratchpad is set to binary zeros only if the function was defined with
NO FINAL CALL. Argument values are passed to the function, and the
function might perform any one-time initialization actions that are
required. However, the function should not return any data to DB2.

Fetch call
A fetch call occurs unless the function returns an error during the first
call or open call. Argument values are passed to the function, and DB2
expects the function to return a row of data or the end-of-table
condition. If a scratchpad is also passed to the function, it remains
untouched from the previous call.

Close call
A close call occurs unless the function returns an error during the first
call, open call, or fetch call. No SQL-argument or SQL-argument-ind
values are passed to the function, and if the function attempts to
examine these values, unpredictable results may occur. If a scratchpad
is also passed to the function, it remains untouched from the previous
call.

The function should not return any data to DB2, but it can set return
values for the SQL-state and diagnostic-message arguments. Also on
close call, a function that is defined with NO FINAL CALL should
release any system resources that it acquired. (A function that is
defined with FINAL CALL should release any acquired resources on the
final call.)

Final The final call balances the first call, and like the first call, occurs only if
the function was defined with FINAL CALL. The function can set return
values for the SQL-state and diagnostic-message arguments. The
function should also release any system resources that it acquired. A
final call occurs at these times:

CREATE FUNCTION (external table)

516 SQL Reference

|
|
|

|
|
|

v End of statement: When the cursor is closed for cursor-oriented
statements, or the execution of the statement has completed.

v End of transaction: When normal end of statement processing does
not occur. For example, the logic of an application, for some reason,
bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD is
open, a final call is made when the cursor is closed or the application
ends. If a commit occurs at the end of a parallel task, a final call is
made regardless of whether a cursor defined as WITH HOLD is open.

If a commit, rollback, or abort operation causes the final call, the function
cannot issue any SQL statements when it is invoked.

DISALLOW PARALLEL
Specifies that DB2 does not consider parallelism for the function.

NO DBINFO or DBINFO
Specifies whether specific information that is known by DB2 is passed to the
function when it is invoked.

NO DBINFO
No additional information is passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the function is invoked. The
argument is a structure that contains information such as the application
run-time authorization ID, the schema name, the name of a table or column
that the function might be inserting into or updating, and identification of the
database server that invoked the function. For details about the argument
and its structure, see DB2 Application Programming and SQL Guide.

CARDINALITY integer
Specifies an estimate of the expected number of rows that the function returns.
The number is used for optimization purposes. The value of integer must range
from 0 to 2147483647.

If you do not specify CARDINALITY, DB2 assumes a finite value. The finite
value is the same value that DB2 assumes for tables for which the RUNSTATS
utility has not gathered statistics.

If a function has an infinite cardinality—the function never returns the
“end-of-table” condition and always returns a row, then a query that requires the
“end-of-table” to work correctly will need to be interrupted. Thus, avoid using
such functions in queries that involve GROUP BY and ORDER BY.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the function is
executed. This is the package collection into which the DBRM that is associated
with the function program is bound.

NO COLLID
The package collection for the function is the same as the package
collection of the program that invokes the function. If a trigger invokes the
function, the collection of the trigger package is used. If the invoking
program does not use a package, the package collection is the value of the
CURRENT PACKAGESET special register.

NO COLLID is the default.

CREATE FUNCTION (external table)

Chapter 5. Statements 517

COLLID collection-id
The name of the package collection that is to be used when the external is
executed.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) application environment in which
the function is to run. The name of the WLM environment is a long identifier.

If you do not specify WLM ENVIRONMENT, the function runs in the
WLM-established stored procedure address space that is specified at
installation time.

name
The WLM environment in which the function must run. If another
user-defined function or a stored procedure calls the function and that
calling routine is running in an address space that is not associated with the
WLM environment, DB2 routes the function request to a different MVS
address space.

name,*
When an SQL application program directly invokes the function, the WLM
environment in which the function runs.

If another user-defined function or a stored procedure calls the function, the
function runs in same environment that the calling routine uses. In this
case, authorization to run the function in the WLM environment is not
checked because the authorization of the calling routine suffices.

Users must have the appropriate authorization to execute functions in the
specified WLM environment. For an example of a RACF command that
provides this authorization, see “Running external functions in WLM
environments” on page 502.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of the function can run. The value is unrelated to the ASUTIME
column of the resource limit specification table.

When you are debugging a function, setting a limit can be helpful if the function
gets caught in a loop. For information on service units, see OS/390 MVS
Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2GB.
If the function uses more service units than the specified value, DB2
cancels the function.

STAY RESIDENT
Specifies whether the load module for the function is to remain resident in
memory when the function ends.

NO
The load module is deleted from memory after the function ends. Use NO
for non-reentrant functions. NO is the default.

YES
The load module remains resident in memory after the function ends. Use
YES for reentrant functions.

CREATE FUNCTION (external table)

518 SQL Reference

PROGRAM TYPE
Specifies whether the function program runs as a main routine or a subroutine.

SUB
The function runs as a subroutine. SUB is the default.

MAIN
The function runs as a main routine.

SECURITY
Specifies how the function interacts with an external security product, such as
RACF, to control access to non-SQL resources.

DB2
The function does not require an external security environment. If the
function accesses resources that an external security product protects, the
access is performed using the authorization ID that is associated with the
WLM-established stored procedure address space.

DB2 is the default.

USER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the primary authorization ID of the process
that invoked the function.

DEFINER
An external security environment should be established for the function. If
the function accesses resources that the external security product protects,
the access is performed using the authorization ID of the owner of the
function.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the
function. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults.

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

INHERIT SPECIAL REGISTERS
Indicates that the values of special registers are inherited according to the rules
listed in the table for characteristics of special registers in a user-defined
function in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as indicated
by the rules in the table for characteristics of special registers in a user-defined
function in Table 19 on page 92.

Notes
See “Notes” on page 500 for information about:
v Choosing data types for parameters
v Specifying the encoding scheme for parameters
v Determining the uniqueness of functions in a schema
v Overriding a built-in function
v Running external functions in WLM environments

CREATE FUNCTION (external table)

Chapter 5. Statements 519

|
|
|
|

|
|
|
|

v Specifying non-deterministic or external action functions in the definition of a
scrollable cursor

Example
The following example registers a table function written to return a row consisting of
a single document identifier column for each known document in a text
management system. The first parameter matches a given subject area and the
second parameter contains a given string.

Within the context of a single session, the table function always returns the same
table; therefore, it is defined as DETERMINISTIC. In addition, the DISALLOW
PARALLEL keyword is added because table functions cannot operate in parallel.

Although the size of the output for DOCMATCH is highly variable, CARDINALITY 20
is a representative value and is specified to help DB2.

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))

EXTERNAL NAME ABC
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20;

CREATE FUNCTION (external table)

520 SQL Reference

CREATE FUNCTION (sourced)
This CREATE FUNCTION statement registers a user-defined function that is based
on an existing scalar or column function with a database server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Additional privileges are required for the source function, and other privileges are
also needed if the function uses a table as a parameter, or refers to a distinct type.
These privileges are:

v The EXECUTE privilege for the function that the SOURCE clause references.

v The SELECT privilege on any table that is an input parameter to the function.

v The USAGE privilege on each distinct type that the function references.

CREATE FUNCTION (sourced)

Chapter 5. Statements 521

Syntax

�� CREATE FUNCTION function-name

�

(1)
()

,

parameter-declaration

�

� RETURNS data-type2
(2)

AS LOCATOR
SPECIFIC specific-name

�

�
PARAMETER CCSID ASCII

EBCDIC
UNICODE

�

SOURCE function-name
SPECIFIC specific-name
function-name ()

,

parameter-type

��

Notes:

1 RETURNS, SPECIFIC, and SOURCE can be specified in any order.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

parameter-declaration:

��
parameter-name

parameter-type ��

parameter-type:

��
(1)

data-type
(2)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 A LOB data type or distinct type based on a LOB data type must be no greater than 1M unless a
locator is passed.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

CREATE FUNCTION (sourced)

522 SQL Reference

data-type:

�� built-in-data-type
distinct-type-name

��

CREATE FUNCTION (sourced)

Chapter 5. Statements 523

Description
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID ASCII

(integer) MIXED EBCDIC
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

VARCHAR
CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID ASCII

CLOB (integer) MIXED EBCDIC
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID ASCII

(integer) EBCDIC
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 Coding specific values for the length, precision, or scale attributes of a data type for a parameter
in the SOURCE clause is optional. Empty parentheses, (), can be used instead to indicate that
DB2 is to ignore the attributes when determining whether data types match. However, if
the length, precision, or scale attributes are specified, the value must exactly match the value
that was specified when the source function was created.

2 Coding a specific value is optional. If a value is specified, it does not have to match the value that
was specified when the source function was created because matching is based on data type
(REAL or DOUBLE). 1<=integer<= 21 indicates REAL and 22<=integer<=53 indicates DOUBLE.
Empty parentheses cannot be used.

CREATE FUNCTION (sourced)

524 SQL Reference

a schema name. The combination of name, schema name, the number of
parameters, and the data type each parameter32 (without regard for any length,
precision, scale, subtype, or encoding scheme attributes of the data type) must
not identify a user-defined function that exists at the current server.

If the function is sourced on an existing function to enable the use of the
existing function with a distinct type, the name can be the same name as the
existing function. In general, more than one function can have the same name if
the function signature of each function is unique.

v The unqualified form of function-name is a long SQL identifier.

The name must not be any of the following system-reserved keywords even
if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

The unqualified function name is implicitly qualified with a schema name
according to the following rules:

– If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

– If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of function-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

The owner of the function is determined by how the CREATE FUNCTION
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the function.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of
each parameter. All the parameters for a function are input parameters. There
must be one entry in the list for each parameter that the function expects to
receive. Although not required, you can give each parameter a name.

32. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

CREATE FUNCTION (sourced)

Chapter 5. Statements 525

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is a long SQL
identifier, and each name in the parameter list must not be the same as any
other name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-data-type
The data type of the input parameter is a built-in data type. You can use
the same built-in data types as for the CREATE TABLE statement
except LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For information on the data types, including the subtype of character
data types (the FOR subtype DATA clause), see “built-in-data-type” on
page 606.

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

The implicitly or explicitly specified encoding scheme of all the parameters
with a string data type must be the same—either all ASCII, all EBCDIC, or
all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function is
invoked.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:

v A datetime type parameter is passed as a character data type, and the
data is passed in ISO format.

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or

CREATE FUNCTION (sourced)

526 SQL Reference

|
|

|
|
|

graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

You can specify any built-in data type or distinct type that matches or can
be cast to the data type of the corresponding parameter of the source
function (the function that is identified in the SOURCE clause). (For
information on casting data types, see “Casting between data types” on
page 62.) Length, precision, or scale attributes do not have be specified for
data types with these attributes. When specifying data types with these
attributes, follow these rules:

v An empty set of parentheses can be used to indicate that the length,
precision, or scale is the same as the source function.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For more information on default lengths of data types, see
“built-in-data-type” on page 606.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
function instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB
data type. Passing locators instead of values can result in fewer bytes
being passed to the function, especially when the value of the
parameter is very large.

The AS LOCATOR clause has no effect on determining whether data
types can be promoted, nor does it affect the function signature, which
is used in function resolution.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
function is invoked, the actual values in the transition table are not passed
to the function. A single value is passed instead. This single value is a
locator to the table, which the function uses to access the columns of the
transition table. A function with a table parameter can only be invoked from
the triggered action of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table.
It specifies that the transition table has the same number of columns as the
identified table or view. The columns have the same data type, length,
precision, scale, subtype, and encoding scheme as the identified table or
view, as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACE.

The name specified after TABLE LIKE must identify a table or view that
exists at the current server. The name must not identify a declared
temporary table. The name does not have to be the same name as the

CREATE FUNCTION (sourced)

Chapter 5. Statements 527

table that is associated with the transition table for the trigger. An
unqualified table or view name is implicitly qualified according to the
following rules:

v If the CREATE FUNCTION statement is embedded in a program, the
implicit qualifier is the authorization ID in the QUALIFIER bind option
when the plan or package was created or last rebound. If QUALIFIER
was not used, the implicit qualifier is the owner of the plan or package.

v If the CREATE FUNCTION statement is dynamically prepared, the
implicit qualifier is the SQL authorization ID in the CURRENT SQLID
special register.

When the function is invoked, the corresponding columns of the transition
table identified by the table locator and the table or view identified in the
TABLE LIKE clause must have the same definition. The data type, length,
precision, scale, and encoding scheme of these columns must match
exactly. The description of the table or view at the time the CREATE
FUNCTION statement was executed is used.

Additionally, a character FOR BIT DATA column of the transition table
cannot be passed as input for a table parameter for which the
corresponding column of the table specified at the definition is not defined
as character FOR BIT DATA. (The definiton occurs with the CREATE
FUNCTION statement.) Likewise, a character column of the transition table
that is not FOR BIT DATA cannot be passed as input for a table parameter
for which the corresponding column of the table specified at the definition is
defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

RETURNS
Identifies the output of the function.

data-type2
Specifies the data type of the output.

You can specify any built-in data type or distinct type that can be cast to
from the data type of the source function’s result. To specify a LONG
VARCHAR or LONG VARGRAPHIC, use VARCHAR or VARGRAPHIC with
an explicit length instead. (For information on casting data types, see
“Casting between data types” on page 62.) For additional rules that apply to
the data type that you can specify, see “Rules for creating sourced
functions” on page 533.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data
type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must not
identify the specific name of another function that exists at the current server.

The unqualified form of specific-name is a long SQL identifier. The qualified
form is a short SQL identifier (the schema name) followed by a period and a
long SQL identifier.

CREATE FUNCTION (sourced)

528 SQL Reference

|
|
|
|
|
|
|
|

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a unique

function C. Function C is an external scalar function. Functions A and B inherit
all of the attributes that are specified on the EXTERNAL clause of the CREATE
FUNCTION statement for function C.

EXECUTE authority is required on the source function.

To specify a built-in function as the source function, use the last syntax variation
in the following list, function-name (parameter-type, ...).

function-name
Identifies the function to be used as the source function by its function
name. A schema name implicitly or explicitly qualifies the name. Only one
function with this name must exist in the schema.

If you specify an unqualified function-name, DB2 uses the SQL path of the
authorization ID (the value of the CURRENT PATH special register) to
locate the function. The first schema that has only one function with this
name on which the user has EXECUTE authority is selected. DB2 returns
an error if it cannot find a function or encounters a schema that has more
than one function with this name.

If you specify a qualified function-name, DB2 returns an error if there is no
function with this name in the named schema or more than one function
with this name exists in the schema.

SPECIFIC specific-name
Identifies the function to be used as the source function by its specific
name. A schema name implicitly or explicitly qualifies the name.

If you specify an unqualified specific-name, DB2 uses the SQL path of the
authorization ID (the value of the CURRENT PATH special register) to
locate the schema. DB2 searches the SQL path and selects the first
schema that contains a function with this specific name for which the user
has EXECUTE authority. DB2 returns an error if it cannot find a function
with the specific name in one of the schemas in the SQL path.

If you specify a qualified specific-name, DB2 searches the named schema
for the function. DB2 returns an error if it cannot find a function with the
specific name.

function-name (parameter-type,...)
Identifies the function to be used as the source function by its function
signature. You must use this form of the syntax if the source function is a
built-in function. You cannot use this form of the syntax if the source
function was defined with a table parameter (the LIKE TABLE was specified
in the CREATE FUNCTION statement to indicate that one of the input
parameters is a transition table). Instead, identify the function with its
function name, if unique, or with its specific name.

DB2 does not use function resolution to select the source function because
the function signature uniquely identifies the function.

function-name
Identifies the function name of the source function. If you specify an
unqualified name, DB2 searches the schemas of the SQL path;
otherwise, DB2 searches the named schema.

parameter-type,...
Provides a list of data types, separated by commas, that must match

CREATE FUNCTION (sourced)

530 SQL Reference

the data types of the parameters of the source function. DB2 uses the
number of data types and the logical concatenation of the data types to
identify the source function.

For data types that have length, precision, or scale attributes, you can
either specify a value for the attribute or use a set of empty
parentheses (with the noted exceptions):

v Empty parentheses indicate that DB2 is to ignore the attribute when
determining whether the data types match. For example, DEC() will
match a parameter whose data type is DEC(7,2).

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement for the source
function. For example, DECIMAL(7,4) does not match a parameter
whose data type is DECIMAL(7,2). Coding specific values for length,
precision, scale, subtype, and encoding scheme attributes ensures
that the source function you intend to use is used.

The specific value for FLOAT(n) does not have exactly match the
defined value of the source function because 1<=n= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 601.

For either empty parentheses or specific values, the synonyms for data
types are considered a match. For example, DEC and NUMERIC will
match.

If you omit the FOR DATA or CCSID clause for data types with a
subtype or encoding scheme attribute, DB2 is to ignore the attribute
when determining whether the data types match.An exception to
ignoring the attribute is FOR BIT DATA. A character FOR BIT DATA
parameter of the new function cannot correspond to a parameter of the
source function that is not defined as character FOR BIT DATA.
Likewise, a character parameter of the new function that is not FOR BIT
DATA cannot correspond to a parameter of the source function that is
defined as character FOR BIT DATA.

If no function with the specified signature exists in the explicitly or
implicitly specified schema, an error occurs.

The number of input parameters in the function that is being created
must be the same as the number of parameters in the source function.

CREATE FUNCTION (sourced)

Chapter 5. Statements 531

|
|
|
|
|
|
|

If the data type of each input parameter is not the same as or castable
to the corresponding parameter of the source function, an error occurs.
The data type of the final result of the source function must match or be
castable to the result of the sourced function.

Notes
Choosing data types for parameters: When you choose the data types of the
input and output parameters for your function, consider the rules of promotion that
can affect the values of the parameters. (See “Promotion of data types” on
page 61). For example, a constant that is one of the input arguments to the function
might have a built-in data type that is different from the data type that the function
expects, and more significantly, might not be promotable to that expected data type.
Based on the rules of promotion, we recommend using the following data types for
parameters:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms that are not DB2 for OS/390 and z/OS,
do not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters: The implicitly or explicitly
specified encoding scheme of all the parameters with a string data type (both input
and output parameters) must be the same—either all ASCII, all EBCDIC, or all
UNICODE.

Determining the uniqueness of functions in a schema: At the current server, the
function signature of each function, which is the qualified function name combined
with the number and data types of the input parameters, must be unique. This
means that two different schemas can each contain a function with the same name
that have the same data types for all of their corresponding data types. However, a
schema must not contain two functions with the same name that have the same
data types for all of their corresponding data types.

When determining whether corresponding data types match, DB2 does not consider
any length, precision, scale, subtype or encoding scheme attributes in the
comparison. DB2 considers the synonyms of data types (DECIMAL and NUMERIC,
REAL and FLOAT, and DOUBLE and FLOAT) a match. Therefore, CHAR(8) and
CHAR(35) are considered to be the same, as are DECIMAL(11,2), DECIMAL(4,3),
and NUMERIC(4,2).

Assume that the following statements are executed to create four functions in the
same schema. The second and fourth statements fail because they create functions
that are duplicates of the functions that the first and third statements created.

CREATE FUNCTION PART (INT, CHAR(15)) ...
CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

CREATE FUNCTION (sourced)

532 SQL Reference

|
|

Rules for creating sourced functions: For the discussion in this section, assume
that the function that is being created is named NEWF and the source function is
named SOURCEF. Consider the following rules when creating a sourced function:

v The unqualified names of the sourced function and source function can be
different (NEWF and SOURCEF).

v The number of input parameters for NEWF and SOURCEF must be the same;
otherwise, an error occurs when the CREATE FUNCTION statement is executed.

v When specifying the input parameters and output for NEWF, you can specify a
value for the precision, scale, subtype, or encoding scheme for a data type with
any of these attributes or use empty parentheses.

Empty parentheses, such as VARCHAR(), indicate that the value of the attribute
is the same as the attribute for the corresponding parameter of SOURCEF, or
that is determined by data type promotion. If you specify any values for the
attributes, DB2 checks the values against the corresponding input parameters
and returned output of SOURCEF as described next.

v When the CREATE FUNCTION statement is executed, DB2 checks the input
parameters of NEWF against those of SOURCEF. The data type of each input
parameter of NEWF function must be either the same as, or promotable to, the
data type of the corresponding parameter of SOURCEF; otherwise, an error
occurs. (For information on the promotion of data types, see “Casting between
data types” on page 62.)

This checking does not guarantee that an error will not occur when NEWF is
invoked. For example, an argument that matches the data type and length or
precision attributes of a NEWF parameter might not be promotable if the
corresponding SOURCEF parameter has a shorter length or less precision. In
general, do not define the parameters of a sourced function with length or
precision attributes that are greater than the attributes of the corresponding
parameters of the source function.

v When the CREATE FUNCTION statement is executed, DB2 checks the data type
identified in the RETURNS clause of NEWF against the data type that
SOURCEF returns. The data type that SOURCEF returns must be either the
same as, or promotable to, the RETURNS data type of NEWF; otherwise, an
error occurs.

This checking does not guarantee that an error will not occur when NEWF is
invoked. For example, the value of a result that matches the data type and length
or precision attributes of those specified for SOURCEF’s result might not be
promotable if the RETURNS data type of NEWF has a shorter length or less
precision. Consider the possible effects of defining the RETURNS data type of a
sourced function with length or precision attributes that are less than the
attributes defined for the data type returned by source function.

Scrollable cursors specified with user-defined functions: A row can be fetched
more than once with a scrollable cursor. Therefore, if a scrollable cursor is defined
with a non-deterministic function in the select list of the cursor, a row can be
fetched multiple times with different results for each fetch. (However, the value of a
non-deterministic function in the WHERE clause of a scrollable cursor is captured
when the cursor is opened and remains unchanged until the cursor is closed.)
Similarly, if a scrollable cursor is defined with a user-defined function with external
action, the action is executed with every fetch.

CREATE FUNCTION (sourced)

Chapter 5. Statements 533

|
|
|
|
|
|
|
|

Examples
Example 1: Assume that you created a distinct type HATSIZE, which you based on
the built-in data type INTEGER. You want to have an AVG function to compute the
average hat size of different departments. Create a sourced function that is based
on built-in function AVG.

CREATE FUNCTION AVE (HATSIZE) RETURNS HATSIZE
SOURCE SYSIBM.AVG (INTEGER);

When you created distinct type HATSIZE, two cast functions were generated, which
allow HATSIZE to be cast to INTEGER for the argument and INTEGER to be cast
to HATSIZE for the result of the function.

Example 2: After Smith registered the external scalar function CENTER in his
schema, you decide that you want to use this function, but you want it to accept two
INTEGER arguments instead of one INTEGER argument and one FLOAT
argument. Create a sourced function that is based on CENTER.

CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
RETURNS FLOAT
SOURCE SMITH.CENTER (INTEGER, FLOAT);

CREATE FUNCTION (sourced)

534 SQL Reference

CREATE FUNCTION (SQL scalar)
This statement is used to define a user-defined SQL scalar function. A scalar
function returns a single value each time it is invoked. Specifying a function is
generally valid wherever an SQL expression is valid.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified function name can
include a schema name (a qualifier). However, if the schema name is not the same
as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

Additional privileges are required if the function uses a table as a parameter or
refers to a distinct type. These privileges are:

v The SELECT privilege on any table that is an input parameter to the function.

v The USAGE privilege on each distinct type that the function references.

Syntax

�� CREATE FUNCTION function-name

�

()
,

parameter-declaration

�

�
(1)

RETURNS data-type2
option-list

��

Notes:

1 The RETURNS clause and the clauses that follow in the option-list can be specified in any order.
However, the same clause cannot be specified more than once.

CREATE FUNCTION (SQL scalar)

Chapter 5. Statements 535

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|

|
|

|
|

|

|

|

||

parameter-declaration:

��
(1)

parameter-name data-type1 ��

Notes:

1 Note that the parameter-name is required for SQL functions.

data-type:

�� built-in-data-type
distinct-type-name

��

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID ASCII

CLOB K MIXED EBCDIC
M UNICODE
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer) CCSID ASCII

VARGRAPHIC (integer) EBCDIC
DBCLOB UNICODE

(integer)
K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

CREATE FUNCTION (SQL scalar)

536 SQL Reference

|

||||||||||

|

|

||
|
|

|

||||||||||||||

|
|
|

|

||

|
|
|

|||

Description
function-name

Names the user-defined function. The name is implicitly or explicitly qualified by
a schema name. The combination of name, schema name, the number of
parameters, and the data type of each parameter33 (without regard for any
length, precision, scale, subtype or encoding scheme attributes of the data type)
must not identify a user-defined function that exists at the current server.

You can use the same name for more than one function if the function signature
of each function is unique.

v The unqualified form of function-name is a long SQL identifier.

The name must not be any of the following system-reserved keywords even
if you specify them as delimited identifiers:
ALL LIKE UNIQUE
AND MATCH UNKNOWN
ANY NOT =
BETWEEN NULL ¬=
DISTINCT ONLY <
EXCEPT OR <=
EXISTS OVERLAPS ¬<
FALSE SIMILAR >
FOR SOME >=
FROM TABLE ¬>
IN TRUE <>
IS TYPE

33. If the function has more than 30 parameters, only the first 30 parameters are used to determine whether the function is unique.

option-list:

��
(1)

SPECIFIC specific-name PARAMETER CCSID ASCII
EBCDIC
UNICODE

LANGUAGE SQL
�

�
NOT DETERMINISTIC (2)

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

STATIC DISPATCH
�

�
CALLED ON NULL INPUT (3)

RETURN expression
NULL

��

Notes:

1 This clause and the other clauses in the option-list can be specified in any order. However, the
same clause cannot be specified more than once.

2 Synonyms for this clause include VARIANT for NOT DETERMINISTIC, and NOT VARIANT for
DETERMINISTIC.

3 For an SQL function, the RETURN clause is required, but it can be specified anywhere within the
option-list.

CREATE FUNCTION (SQL scalar)

Chapter 5. Statements 537

|

||
|

|
|||
|

|
||||||||||||||||||||||||||

|

|

||
|

||
|

||
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

The unqualified function name is implicitly qualified with a schema name
according to the following rules:

– If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

– If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of function-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSADM'.

The owner of the function is determined by how the CREATE FUNCTION
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the
name and data type of each parameter. All the parameters for a function are
input parameters. There must be one entry in the list for each parameter that
the function expects to receive.

A function can have no parameters. In this case, you must code an empty set
of parentheses, for example:

CREATE FUNCTION WOOFER()

parameter-name
Specifies the name of the input parameter. The name is a long SQL
identifier, and each name in the parameter list must not be the same as any
other name.

data-type
Specifies the data type of the input parameter. The data type can be a
built-in data type or a distinct type.

built-in-data-type
The data type of the input parameter is a built-in data type. You can use
the same built-in data types as for the CREATE TABLE statement
except LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

CREATE FUNCTION (SQL scalar)

538 SQL Reference

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
||
||
||
||

For information on the data types, including the subtype of character
data types (the FOR subtype DATA clause), see “built-in-data-type” on
page 606.

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, DB2
resolves the schema name by searching the schemas in the SQL path.

The implicitly or explicitly specified encoding scheme of all the parameters
with a string data type must be the same—either all ASCII, all EBCDIC, or
all UNICODE.

Although parameters with a character data type have an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the function program
can receive character data of any subtype. Therefore, conversion of the
input data to the subtype of the parameter might occur when the function is
invoked. An error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:

v A datetime type parameter is passed as a character data type, and the
data is passed in ISO format.

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

RETURNS
Identifies the output of the function. Consider this clause in conjunction with the
optional CAST FROM clause.

data-type2
Specifies the data type of the output.

The same considerations that apply to the data type of input parameter, as
described under “data-type” on page 538, apply to the data type of the
output of the function.

SPECIFIC specific-name
Specifies a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must not
identify the specific name of another function that exists at the current server.

CREATE FUNCTION (SQL scalar)

Chapter 5. Statements 539

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

The unqualified form of specific-name is a long SQL identifier. The qualified
form is a short SQL identifier (the schema name) followed by a period and a
long SQL identifier.

If you do not specify a schema name, it is the same as the explicit or implicit
schema name of the function name (function-name). If you specify a schema
name, it must be the same as the explicit or implicit schema name of the
function name.

If you do not specify the SPECIFIC clause, the default specific name is the
name of the function. However, if the function name does not provide a unique
specific name or if the function name is a single asterisk, DB2 generates a
specific name in the form of:
SQLxxxxxxxxxxxx

where 'xxxxxxxxxxxx' is a string of 12 characters that make the name unique.

The specific name is stored in the SPECIFIC column of the SYSROUTINES
catalog table. The specific name can be used to uniquely identify the function in
several SQL statements (such as ALTER FUNCTION, COMMENT ON, DROP,
GRANT, and REVOKE) and must be used in DB2 commands (START
FUNCTION, STOP FUNCTION, and DISPLAY FUNCTION). However, the
function cannot be invoked by its specific name.

PARAMETER CCSID
Indicates whether the encoding scheme for string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in
the CCSID clauses of the parameter list or RETURNS clause, or in the field
DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for all
string parameters. If individual CCSID clauses are specified for individual
parameters in addition to this PARAMETER CCSID clause, the value specified
in all of the CCSID clauses must be the same value that is specified in this
clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

LANGUAGE SQL
Specifies the application programming language in which the stored function is
written. The value of the function is written as DB2 SQL within the expression of
the RETURN clause. LANGUAGE SQL is the default.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the function returns the same results for identical input
arguments.

NOT DETERMINISTIC
The function might not return the same result for identical input arguments.
The function depends on some state values that affect the results. DB2
uses this information when processing a SELECT, UPDATE, DELETE, or
INSERT statement to disable the merging of views that refer to the function.
An example of a function that is not deterministic is one that generates
random numbers.

NOT DETERMINISTIC must be specified explicitly or implicitly if the
function program accesses a special register or invokes another
non-deterministic function. NOT DETERMINISTIC is the default.

CREATE FUNCTION (SQL scalar)

540 SQL Reference

|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

DETERMINISTIC
The function always returns the same result for identical input arguments.
DB2 can use this information to optimize view processing for SELECT,
UPDATE, DELETE, or INSERT statements. An example of a deterministic
function is a function that calculates the square root of the input.

DB2 does not verify that the function program is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an
object that DB2 does not manage. An example of an external action is sending
a message or writing a record to a file.

EXTERNAL ACTION
The function can take an action that changes the state of an object that
DB2 does not manage.

Some SQL statements that invoke functions with external actions can result
in incorrect results if parallel tasks execute the function. For example, if the
function sends a note for each initial call to it, one note is sent for each
parallel task instead of once for the function. Specify the DISALLOW
PARALLEL clause for functions that do not work correctly with parallelism.

If you specify EXTERNAL ACTION, then DB2:

v Materializes the views in SELECT, UPDATE, DELETE or INSERT
statements that refer to the function.

v Does not move the function from one task control block (TCB) to another
between FETCH operations.

v Does not allow another function or stored procedure to use the TCB until
the cursor is closed. This is also applicable for cursors declared WITH
HOLD.

The only changes to resources made outside of DB2 that are under the
control of commit and rollback operations are those changes made under
RRS control.

EXTERNAL ACTION must be specified explicitly or implicitly if the function
program invokes another function that has an external action. EXTERNAL
ACTION is the default.

NO EXTERNAL ACTION
The function does not take any action that changes the state of an object
that DB2 does not manage. DB2 can use this information to optimize the
processing of views for SELECT, UPDATE, DELETE or INSERT
statements.

DB2 does not verify that the function program is consistent with the
specification of EXTERNAL ACTION or NO EXTERNAL ACTION.

READS SQL DATA or CONTAINS SQL
Indicates whether the function can execute any SQL statements and, if so, what
type. DB2 verifies that the SQL issued by the function is consistent with this
specification. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

READS SQL DATA
The function does not execute SQL statements that modify data. SQL
statements that are not supported in any function return a different error.

CREATE FUNCTION (SQL scalar)

Chapter 5. Statements 541

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

READS SQL DATA is the default.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.
SQL statements that are not supported in any function return a different
error.

STATIC DISPATCH
At function resolution time, DB2 chooses a function based on the static (or
declared) types of the function parameters. STATIC DISPATCH is the default.

CALLED ON NULL INPUT
The function is called regardless of whether any of the input arguments is null,
making the function responsible for testing for null arguments. The function can
return null. CALLED ON NULL INPUT is the default.

RETURN
Specifies the return value of the function. The expression (or NULL) is the body
of the function. Parameter names can be referenced in the RETURN clause.
Parameter names can be qualified by the function name to avoid ambiguous
reference.

expression
Specifies the expression to be returned for the function. The data type of
the expression result must be assignable to the data type defined in the
RETURNS clause of the function.

The expression can contain one or more of the following:
v Function (either user-defined or built-in)
v Expression enclosed in parentheses
v Constant
v Special register
v Labeled duration
v CASE expression
v CAST specification

The expression cannot include a column name or a host variable. See
“Expressions” on page 110 for information on expressions.

NULL
Specifies that the function returns null for the data type defined in the
RETURNS clause.

Notes
Choosing data types for parameters: When you choose the data types of the
input and output parameters for your function, consider the rules of promotion that
can affect the values of the parameters. (See “Promotion of data types” on
page 61). For example, a constant that is one of the input arguments to the function
might have a built-in data type that is different from the data type that the function
expects, and more significantly, might not be promotable to that expected data type.
Based on the rules of promotion, using the following data types for parameters is
recommended:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC

CREATE FUNCTION (SQL scalar)

542 SQL Reference

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

For portability of functions across platforms that are not DB2 for OS/390 and z/OS,
do not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters: The implicitly or explicitly
specified encoding scheme of all the parameters with a string data type (both input
and output parameters) must be the same—either all ASCII or all EBCDIC.

Determining the uniqueness of functions in a schema: At the current server, the
function signature of each function, which is the qualified function name combined
with the number and data types of the input parameters, must be unique. If the
function has more than 30 input parameters, only the data types of the first 30 are
used to determine uniqueness. This means that two different schemas can each
contain a function with the same name that have the same data types for all of their
corresponding data types. However, a single schema must not contain multiple
functions with the same name that have the same data types for all of their
corresponding data types.

When determining whether corresponding data types match, DB2 does not consider
any length, precision, scale, subtype or encoding scheme attributes in the
comparison. DB2 considers the synonyms of data types (DECIMAL and NUMERIC,
REAL and FLOAT, and DOUBLE and FLOAT) a match. Therefore, CHAR(8) and
CHAR(35) are considered to be the same, as are DECIMAL(11,2), DECIMAL(4,3),
and NUMERIC(4,2).

Assume that the following statements are executed to create four functions in the
same schema. The second and fourth statements fail because they create functions
that are duplicates of the functions that the first and third statements created.

CREATE FUNCTION PART (A INT, B CHAR(15)) ...
CREATE FUNCTION PART (A INTEGER, B CHAR(40)) ...

CREATE FUNCTION ANGLE (A DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (A DEC(10,7)) ...

Overriding a built-in function: Giving an SQL function the same name as a
built-in function is not a recommended practice unless you are trying to change the
functionality of the built-in function.

If you do intend to create an SQL function with the same name as a built-in
function, be careful to maintain the uniqueness of its function signature. If your
function has the same name and data types of the corresponding parameters of the
built-in function but implements different logic, DB2 might choose the wrong function
when the function is invoked with an unqualified function name. Thus, the
application might fail, or perhaps even worse, run successfully but provide an
inappropriate result.

Resolution of function invocations:

Self-referencing function: The body of an SQL function (that is, the expression or
NULL in the RETURN clause of the CREATE FUNCTION statement) cannot contain
a recursive invocation of itself or to another function that invokes it, because such a
function would not exist to be referenced.

Scrollable cursors specified with user-defined functions: A row can be fetched

CREATE GLOBAL TEMPORARY TABLE
The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a
temporary table at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATETMTAB system privilege
v The CREATETAB database privilege for any database
v DBADM, DBCTRL, or DBMAINT authority for any database
v SYSADM or SYSCTRL authority

However, DABADM, DBCTRL, or DBMAINT authority is not sufficient authority if
you are creating a temporary table for someone else and the table qualifier is not
your authorization ID.

Additional privileges might be required when the data type of a column is a distinct
type or the LIKE clause is specified. See the description of distinct-type and LIKE
for the details.

Privilege set: The privilege set is the same as the privilege set for the CREATE
TABLE statement. See “Privilege Set” on page 601 for details.

Syntax

�� CREATE GLOBAL TEMPORARY TABLE table-name �

,

(column-spec)
LIKE table-name

view-name
CCSID ASCII

EBCDIC
UNICODE

��

column-spec:

�� column-name data-type
NOT NULL

��

data-type:

�� built-in-data-type
distinct-type-name

��

CREATE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 545

#
#
#

Description
table-name

Names the temporary table. The name, including the implicit or explicit qualifier,
must not identify a table, view, alias, synonym, or temporary table that exists at
the database server.

The qualification rules for table-name are the same as for table-name in the
CREATE TABLE statement. (See “table-name” on page 606.)

The owner acquires ALL PRIVILEGES on the table WITH GRANT OPTION and
the authority to drop the table.

column-spec
Defines the attributes of a column for each instance of the table. The number of
columns defined must not exceed 750. The maximum record size must not
exceed 32714 bytes. The maximum row size must not exceed 32706 bytes (8
bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same

built-in-data-type
Any built-in data type that can be specified for the CREATE TABLE
statement with the exception that you cannot define a temporary table with
a LOB or ROWID column.

For more information on and the rules that apply to the data types,
including the subtype of character data types (the FOR subtype DATA
clause, see “built-in-data-type” on page “built-in-data-type” on page 606.

distinct-type
Any distinct type except one that is based on a LOB or ROWID data type.
The privilege set must implicitly or explicitly include the USAGE privilege on
the distinct type.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL
indicates that the column can contain nulls.

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view. The name specified
after LIKE must identify a table, view, or temporary table that exists at the
current server. The privilege set must implicitly or explicitly include the SELECT
privilege on the identified table or view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the
following differences:

v If any column of the identified table or view has an attribute value that is not
allowed for a column in a temporary table, that attribute value is ignored. The
corresponding column in the new temporary table has the default value for
that attribute unless otherwise indicated.

v If any column of the identified table or view allows a default value other than
null, then that default value is ignored and the corresponding column in the
new temporary table has no default value. A default value other than null is
not allowed for any column in a temporary table.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table.

ASCII Specifies that the data must be encoded by using the ASCII CCSIDs of
the server.

An error occurs if a valid ASCII CCSID has not been specified for the
installation.

EBCDIC
Specifies that data must be encoded by using the EBCDIC CCSIDs of
the server.

An error occurs if a valid EBCDIC CCSID has not been specified for the
installation.

UNICODE
Specifies that data must be encoded by using the CCSIDs of the server
for Unicode.

An error occurs if a valid CCSID for Unicode has not been specified for
the installation.

CREATE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 547

|
|
|

|
|

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or Unicode data is used. An error
occurs if CCSIDs have not been defined.

For the creation of temporary tables, the CCSID clause can be specified
whether or not the LIKE clause is specified. If the CCSID clause is specified,
the encoding scheme of the new table is the scheme that is specified in the
CCSID clause. If the CCSID clause is not specified, the encoding scheme of
the new table is the same as the scheme for the table specified in the LIKE
clause.

Notes
Instantiation and termination: Let T be a temporary table defined at the current
server and let P denote an application process:

v An empty instance of T is created as a result of the first implicit or explicit
reference to T in an OPEN, SELECT INTO, INSERT, or DELETE operation that is
executed by any program in P.

v Any program in P can reference T and any reference to T by a program in P is a
reference to that instance of T.

When a commit operation terminates a unit of work in P and no program in P has
an open WITH HOLD cursor that is dependent on T, the commit includes the
operation DELETE FROM T.

v When a rollback operation terminates a unit of work in P, the rollback includes
the operation DELETE FROM T.

v When the connection to the database server at which an instance of T was
created terminates, the instance of T is destroyed. However, the definition of T
remains. A DROP TABLE statement must be executed to drop the definition of T.

Restrictions and extensions: Let T denote a temporary table:

v Columns of T cannot have default values other than null.

v A column of T cannot have a LOB or ROWID data type (or a distinct type based
on one).

v T cannot have unique constraints, referential constraints, or check constraints.

v T cannot be defined as the parent in a referential constraint.

v T cannot be referenced in:

– A CREATE INDEX statement.

– A LOCK TABLE statement.

– As the object of an UPDATE statement in which the object is T or a view of T.
However, you can reference T in the WHERE clause of an UPDATE
statement.

– DB2 utility commands.

v As with all tables stored in a work file, query parallelism cannot be considered for
any query that references T.

v If T is referenced in the subselect of a CREATE VIEW statement, you cannot
specify a WITH CHECK OPTION clause in the CREATE VIEW statement.

v ALTER TABLE T is valid only if the statement is used to add a column to T. Any
column that you add to T must have a default value of null.

When you alter T, any plans and packages that refer to the table are invalidated,
and DB2 automatically rebinds the plans and packages the next time they are
run.

CREATE GLOBAL TEMPORARY TABLE

548 SQL Reference

|
|

|
|
|
|
|
|

v DELETE FROM T or a view of T is valid only if the statement does not include a
WHERE or WHERE CURRENT OF clause. In addition, DELETE FROM view of
T is valid only if the view was created (CREATE VIEW) without the WHERE
clause. A DELETE FROM statement deletes all the rows from the table or view.

v You can refer to T in the FROM clause of any subselect. If you refer to T in the
first FROM clause of a select-statement, you cannot specify a FOR UPDATE OF
clause.

v You cannot use a DROP DATABASE statement to implicitly drop T. To drop T,
reference T in a DROP TABLE statement.

v A temporary table instantiated by an SQL statement using a three-part table
name can be accessed by another SQL statement using the same name in the
same application process for as long as the DB2 connection which established
the instantiation is not terminated.

v GRANT ALL PRIVILEGES ON T is valid, but you cannot grant specific privileges
on T.

Of the ALL privileges, only the ALTER, INSERT, DELETE, and SELECT privileges
can actually be used on T.

v REVOKE ALL PRIVILEGES ON T is valid, but you cannot revoke specific
privileges from T.

v A COMMIT operation deletes all rows of every temporary table of the application
process, but the rows of T are not deleted if any program in the application
process has an open WITH HOLD cursor that is dependent on T. In addition, if
RELEASE(COMMIT) is in effect and no open WITH HOLD cursors are
dependent on T, all logical work files for T are also deleted.

v A ROLLBACK operation deletes all rows and all logical work files of every
temporary table of the application process.

v You can reuse threads when using a temporary table, and a logical work file for a
temporary table name remains available until deallocation. A new logical work file
is not allocated for that temporary table name when the thread is reused.

v You can refer to T in the following statements:

ALTER FUNCTION
ALTER PROCEDURE
COMMENT ON
CREATE ALIAS
CREATE FUNCTION

CREATE PROCEDURE
CREATE SYNONYM
CREATE TABLE LIKE
CREATE VIEW
DESCRIBE TABLE

DECLARE TABLE
DROP TABLE
INSERT
LABEL ON
SELECT INTO

Examples
Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE
and MEANING, both of which cannot contain nulls. CODE contains numeric data
and MEANING has character data. Assuming a value of NO for the field MIXED
DATA on installation panel DSNTIPF, column MEANING has a subtype of SBCS:
CREATE GLOBAL TEMPORARY TABLE CURRENTMAP

(CODE INTEGER NOT NULL, MEANING VARCHAR(254) NOT NULL);

Example 2: Create a temporary table, EMP:
CREATE GLOBAL TEMPORARY TABLE EMP

(TMPDEPTNO CHAR(3) NOT NULL,
TMPDEPTNAME VARCHAR(36) NOT NULL,
TMPMGRNO CHAR(6) ,
TMPLOCATION CHAR(16));

CREATE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 549

CREATE INDEX
The CREATE INDEX statement creates a partitioning or nonpartitioning index and
an index space at the current server. The columns included in the key of the index
are columns of a table at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The INDEX privilege on the table
v Ownership of the table
v DBADM authority for the database that contains the table
v SYSADM or SYSCTRL authority

Additional privileges might be required, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the specified index name includes a qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM or SYSCTRL authority, or
DBADM or DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. However, if the specified index
name includes a qualifier that is not the same as this authorization ID, the following
rules apply:

v If the privilege set includes SYSADM or SYSCTRL authority, or DBADM or
DBCTRL authority for the database, any qualifier is valid.

v If the privilege set includes none of these authorities, the qualifier is valid only if it
is the same as one of the authorization IDs of the process and the privilege set
that are held by that authorization ID includes all privileges needed to create the
index. This is an exception to the rule that the privilege set is the privileges that
are held by the SQL authorization ID of the process.

CREATE INDEX

550 SQL Reference

Syntax

�� CREATE
TYPE 2

UNIQUE
WHERE NOT NULL

INDEX index-name ON �

� �

,
ASC

table-name (column-name)
DESC

aux-table-name

�
(1)

using-block
free-block
gbpcache-block

YES
DEFINE NO

�

�

� � �

CLUSTER
,

,
(2) (1)

(PART integer VALUES (constant))
using-block
free-block
gbpcache-block

�

� �
(1)

BUFFERPOOL bpname
YES

CLOSE NO
NO

DEFER YES
NO

COPY YES
PIECESIZE integer K

M
G

��

Notes:

1 The same clause must not be specified more than once.

2 The presence of one or more PART clauses indicates that the index is a partitioning index;
otherwise, it is a nonpartitioning index.

CREATE INDEX

Chapter 5. Statements 551

Description
TYPE 2

Specifies a type 2 index. The TYPE 2 clause is not required. A type 2 index is
always created.

UNIQUE
Prevents the table from containing two or more rows with the same value of the
index key. If any column of the key can contain null values, the meaning of “the
same value” is determined by the use or omission of the option WHERE NOT
NULL:

v If WHERE NOT NULL is omitted, any two null values are taken to be equal.
For example, if the key is a single column, that column can contain no more
than one null value.

using-block:

�� USING

�

VCAT catalog-name

(1)
STOGROUP stogroup-name

12
PRIQTY integer
SECQTY integer

NO
ERASE YES

��

Notes:

1 The same clause must not be specified more than once.

free-block:

�� �
(1) 0

FREEPAGE integer
10

PCTFREE integer

��

Notes:

1 The same clause must not be specified more than once.

gbpcache-block:

��
CHANGED

GBPCACHE ALL
NONE

��

CREATE INDEX

552 SQL Reference

v If WHERE NOT NULL is used, any two null values are taken to be unequal.
If the key is a single column, that column can contain any number of null
values, though its other values must be unique.

Unless DEFER YES is specified, the uniqueness constraint is also checked
during the execution of the CREATE INDEX statement. If the table already
contains rows with duplicate key values, the index is not created. Refer to Part
2 of DB2 Application Programming and SQL Guide for more information about
using the REBUILD INDEX utility when duplicate keys exist for an index defined
with UNIQUE and DEFER YES.

A table requires a unique index if you use the UNIQUE or PRIMARY KEY
clause in the CREATE TABLE statement. DB2 implicitly creates those unique
indexes if the CREATE TABLE statement is processed by the schema
processor; otherwise, you must explicitly create them. If any of the unique
indexes that must be explicitly defined do not exist, the definition of the table is
incomplete, and the following rules apply:

v Let K denote a key for which a required unique index does not exist and let n
denote the number of unique indexes that remain to be created before the
definition of the table is complete. (For a new table that has no indexes, K is
its primary key or any of the keys defined in the CREATE TABLE statement
as UNIQUE and n is the number of such keys. After the definition of a table
is complete, an index cannot be dropped if it is enforcing a primary key or
unique key.)

v The creation of the unique index reduces n by one if the index key is
identical to K. The keys are identical only if they have the same columns in
the same order.

v If n is now zero, the creation of the index completes the definition of the
table.

v If K is a primary key, the description of the index indicates that it is a primary
index. If K is not a primary key, the description of the index indicates that it
enforces the uniqueness of a key defined as UNIQUE in the CREATE TABLE
statement.

A table also requires a unique index if there is a ROWID column that is defined
as GENERATED BY DEFAULT.

INDEX index-name
Names the index. The name must not identify an index that exists at the current
server.

The associated index space also has a name. That name appears as a qualifier
in the names of data sets defined for the index. If the data sets are managed by
the user, the name is the same as the second (or only) part of index-name. If
this identifier consists of more than eight characters, only the first eight are
used. The name of the index space must be unique among the names of the
index spaces and table spaces of the database for the identified table. If the
data sets are defined by DB2, then DB2 derives a unique name.

The qualification rules for an index name depend on the type of table as
follows:

v Index on a base table or auxiliary table. If the index name is unqualified and
the statement is embedded in an application program, the owner of the index
is the authorization ID that serves as the implicit qualifier for unqualified
object names. This is the authorization ID in the QUALIFIER operand when

CREATE INDEX

Chapter 5. Statements 553

|
|

|
|

the plan or package was created or last rebound. If QUALIFIER was not
used, the owner of the index is the owner of the package or plan.

If the index name is unqualified and the statement is dynamically prepared,
the SQL authorization ID is the owner of the index.

v Index on a declared temporary table. The qualifier, if explicitly specified, must
be SESSION. If the index name is unqualified, DB2 uses SESSION as the
implicit qualifier.

ON table-name or aux-table-name
Identifies the table on which the index is created. The name can identify a base
table, a declared temporary table, or an auxiliary table.

table-name
Identifies the base table or declared temporary table on which the index is
created. The name must identify a table that exists at the current server.
(The name of a declared temporary table must be qualified with SESSION.)
The name must not identify a created temporary table.

(column-name,...)
Specifies the columns of the index key.

Each column-name must identify a column of the table. Do not specify
more than 64 columns, the same column more than once, or a LOB
column (or a column with a distinct type that is based on a LOB data
type). Do not qualify column-name.

The sum of the length attributes of the columns must not be greater
than 255 − n, where n is the number of columns that can contain null
values.

ASC Puts the index entries in ascending order by the column. ASC is
the default.

DESC Puts the index entries in descending order by the column.

aux-table-name
Identifies the auxiliary table on which the index is created. The name must
identify an auxiliary table that exists at the current server. If the auxiliary
table already has an index, do not create another one. An auxiliary table
can only have one index.

Do not specify any columns for the index key. The key value is implicitly
defined as a unique 19-byte value that is system generated.

If qualified, table-name or aux-table-name can be a two-part or three-part name.
If a three-part name is used, the first part must match the value of the field DB2
LOCATION NAME of installation panel DSNTIPR at the current server. (If the
current server is not the local DB2, this name is not necessarily the name in the
CURRENT SERVER special register.) Whether the name is two-part or
three-part, the authorization ID that qualifies the name is the owner of the index.

The table space that contains the named table must be available to DB2 so that
its data sets can be opened. If the table space is EA-enabled, the data sets for
the index must be defined to belong to a DFSMS data class that has the
extended format and addressability attributes.

CREATE INDEX

554 SQL Reference

using-block

The components of the USING clause are discussed below, first for nonpartitioning
indexes and then for partitioning indexes.

Using Clause for Nonpartitioning Indexes
For nonpartitioning indexes, the USING clause indicates whether the data sets
for the index are to be managed by the user or managed by DB2. If DB2
definition is specified, the clause also gives space allocation parameters
(PRIQTY and SECQTY) and an erase rule (ERASE).

If you omit USING, the data sets will be managed by DB2 on volumes listed in
the default storage group of the table’s database. That default storage group
must exist. With no USING clause, PRIQTY, SECQTY, and ERASE assume
their default values.

VCAT catalog-name
Specifies that the first data set for the index is managed by the user, and
that following data sets, if needed, are also managed by the user.

The data sets defined for the index are linear VSAM data sets cataloged in
an integrated catalog facility catalog identified by catalog-name. Because
catalog-name is a short identifier, an alias must be used if the catalog name
is longer than eight characters.

Conventions for index data set names are given in Part 2 (Volume 1) of
DB2 Administration Guide. catalog-name is the first qualifier for each data
set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the index. Each
data set will be defined on a volume listed in the identified storage group.
The values specified (or the defaults) for PRIQTY and SECQTY determine
the primary and secondary allocations for the data set. If
PRIQTY+118×SECQTY is 2 gigabytes or greater, more than one data set
could eventually be used, but only the first is defined during execution of
this statement.

To use USING STOGROUP, the privilege set must include SYSADM
authority, SYSCTRL authority, or the USE privilege for that storage group.
Moreover, stogroup-name must identify a storage group that exists at the
current server and includes in its description at least one volume serial
number. The description can indicate that the choice of volumes will be left
to Storage Management Subsystem (SMS). Each volume specified in the
storage group must be accessible to MVS for dynamic allocation of the data
set, and all these volumes must be of the same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the index. If the catalog is password
protected, the description of the storage group must include a valid
password.

The storage group supplies the data set name. The first level qualifier is
also the name of, or an alias for, the integrated catalog facility catalog on

CREATE INDEX

Chapter 5. Statements 555

which the data set is to be cataloged. The naming convention for the data
set is the same as if the data set is managed by the user.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. The primary space allocation is at least n kilobytes, where n
is:

12 If integer is less than 12 or PRIQTY is omitted
integer If integer is between 12 and 4194304
4194304 If integer is greater than 4194304

DB2 specifies the primary space allocation to access method services
using the smallest multiple of 4KB not less than n. The allocated space
can be greater than the amount of space requested by DB2. For
example, it could be the smallest number of tracks that will
accommodate the space requested. To more closely estimate the actual
amount of storage, see the description of the DEFINE CLUSTER
command in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

When determining a suitable value for PRIQTY, be aware that two of
the pages of the primary space are used by DB2 for purposes other
than storing index entries.

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. The secondary space allocation is at least n kilobytes, where
n is:

12 If SECQTY and PRIQTY are omitted
4194304 If integer is greater than 4194304
integer If integer is not greater than 4194304

If integer is 0, no data set for the index can be extended. If you specify
PRIQTY and do not specify SECQTY, the default for SECQTY is either
10% of PRIQTY or 3 times the index page size (4KB), whichever is
larger.

DB2 specifies the secondary space allocation to access method
services using the smallest multiple of 4KB not less than n. The
allocated space can be greater than the amount of space requested by
DB2. For example, it could be the smallest number of tracks that will
accommodate the space requested. To more closely estimate the actual
amount of storage, see the description of the DEFINE CLUSTER
command in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

ERASE
Indicates whether the DB2-managed data sets are to be erased when
they are deleted during the execution of a utility or an SQL statement
that drops the index. Refer to DFSMS/MVS: Access Method Services
for the Integrated Catalog for more information.

NO
Does not erase the data sets. Operations involving data set deletion
will perform better than ERASE YES. However, the data is still
accessible, though not through DB2. This is the default.

CREATE INDEX

556 SQL Reference

YES
Erases the data sets. As a security measure, DB2 overwrites all
data in the data sets with zeros before they are deleted.

USING Clause for Partitioning Indexes:
If the index is partitioning, there is a PART clause for each partition. Within a
PART clause, a USING clause is optional. If a USING clause is present, it
applies to that partition in the same way that a USING clause for a
nonpartitioning index applies to the entire index.

When a USING block is absent from a PART clause, the USING clause
parameters for the partition depend on whether a USING clause is specified
before the PART clauses.

v If the USING clause is specified, it applies to every PART clause that does
not include a USING clause.

v If the USING clause is not specified, the following defaults apply to the
partition:
– Data sets are managed by DB2
– The default storage group for the database is used
– A value of 12 is used for PRIQTY and SECQTY
– A value of NO is used for ERASE

VCAT catalog-name
Specifies a user-managed data set with a name that starts with the
specified catalog name. You must specify the catalog name in the form of a
short identifier. Thus, you must specify an alias if the name of the integrated
catalog facility catalog is longer than eight characters.

If n is the number of the partition, the identified integrated catalog facility
catalog must already contain an entry for the nth data set of the index,
conforming to the DB2 naming convention for data sets set forth in Part 2
(Volume 1) of DB2 Administration Guide.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

DB2 assumes one and only one data set for each partition.

Do not specify VCAT for an index on a declared temporary table.

STOGROUP stogroup-name
If USING STOGROUP is used, explicitly or by default, for a partition n, DB2
defines the data set for the partition during the execution of the CREATE
INDEX statement, using space from the named storage group. The privilege
set must include SYSADM authority, SYSCTRL authority, or the USE
privilege for that storage group. The integrated catalog facility catalog used
for the storage group must NOT contain an entry for the nth data set of the
index.

stogroup-name must identify a storage group that exists at the current
server and the privilege set must include SYSADM authority, SYSCTRL
authority, or the USE privilege for the storage group.

If you omit PRIQTY, SECQTY, or ERASE from a USING STOGROUP
clause for some partition, their values are given by the next USING
STOGROUP clause that governs that partition: either a USING clause that
is not in any PART clause, or a default USING clause. DB2 assumes one
and only one data set for each partition.

CREATE INDEX

Chapter 5. Statements 557

|

End of using-block

free-block

FREEPAGE integer
Specifies how often to leave a page of free space when index entries are
created as the result of executing a DB2 utility or when creating an index for a
table with existing rows. One free page is left for every integer pages. The
value of integer can range from 0 to 255. The default is 0, leaving no free
pages.

Do not specify FREEPAGE for an index on a declared temporary table.

PCTFREE integer
Determines the percentage of free space to leave in each nonleaf page and leaf
page when entries are added to the index or index partition as the result of
executing a DB2 utility or when creating an index for a table with existing rows.
The first entry in a page is loaded without restriction. When additional entries
are placed in a nonleaf or leaf page, the percentage of free space is at least as
great as integer.

The value of integer can range from 0 to 99, however, if a value greater than 10
is specified, only 10 percent of free space will be left in nonleaf pages. The
default is 10.

Do not specify PCTFREE for an index on a declared temporary table.

If the index is partitioning, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that applies:

v The values of FREEPAGE and PCTFREE given in the PART clause for that
partition. Do not use more than one free-block in any PART clause.

v The values given in a free-block that is not in any PART clause.

v The default values FREEPAGE 0 and PCTFREE 10.

End of free-block

gbpcache-block

GBPCACHE
In a data sharing environment, specifies what index pages are written to the
group buffer pool. In a non-data-sharing environment, the option is ignored
unless the index is on a declared temporary table. Do not specify GBPCAHCE
for an index on a declared temporary table in either environment (data sharing
or non-data-sharing).

CHANGED
When there is inter-DB2 R/W interest on the index or partition, updated
pages are written to the group buffer pool. When there is no inter-DB2 R/W
interest, the group buffer pool is not used. Inter-DB2 R/W interest exists
when more than one member in the data sharing group has the index or
partition open, and at least one member has it open for update.
GBPCACHE CHANGED is the default.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
CHANGED is ignored and no pages are cached to the group buffer pool.

CREATE INDEX

558 SQL Reference

|

|

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

Hiperpools are not used for indexes or partitions that are defined with
GBPCACHE ALL.

If the index is in a group buffer pool that is defined as GBPCACHE(NO),
ALL is ignored and no pages are cached to the group buffer pool.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2
uses the group buffer pool only for cross-invalidation.

If the index is partitioning, the value of GBPCACHE for a particular partition is
given by the first of these choices that applies:

1. The value of GBPCACHE given in the PART clause for that partition. Do not
use more than one gbpcache-block in any PART clause.

2. The value given in a gbpcache-block that is not in any PART clause.

3. The default value is CHANGED.

End of gbpcache-block

DEFINE
Specifies when the underlying data sets for the index are physically created.

YES
The data sets are created when the index is created (the CREATE INDEX
statement is executed). YES is the default.

NO
The data sets are not created until data is inserted into the index. DEFINE
NO is applicable only for DB2-managed data sets (USING STOGROUP is
specified). DEFINE NO is ignored for user-managed data sets (USING
VCAT is specified). DB2 uses the SPACE column in catalog table
SYSINDEXPART to record the status of the data sets (undefined or
allocated). DEFINE NO is also ignored if the index is being created on a
table that is not empty, or on an auxiliary table.

Do not specify DEFINE NO for an index on a declared temporary table. Do
not use DEFINE NO on an index if you use a program outside of DB2 to
propagate data into a table on which that index is defined. The DB2 catalog
stores information about whether the data sets for an index space have
been allocated. If you use DEFINE NO on an index of a table and data is
then propagated into the table from a program that is outside of DB2, the
index space data sets are allocated, but the DB2 catalog will not reflect this
fact. As a result, DB2 acts as if the data sets for the index space have not
yet been allocated. The resulting inconsistency causes DB2 to deny
application programs access to the data until the inconsistency is resolved.

Use DEFINE No especially when performance of the CREATE INDEX
statement is important or DASD resource is constrained.

CLUSTER
Specifies that the index is the cluster index of the table. Do not use CLUSTER
if the index is for an auxiliary table, or if CLUSTER was used in the definition of
an existing index on the table. If you do not use CLUSTER, the index is not a

CREATE INDEX

Chapter 5. Statements 559

|
|
|
|
|
|
|
|
|
|

|
|

cluster index unless it is the first index defined on the table in a nonpartitioned
table space. In this case, the first index implicitly serves as the cluster index
until CLUSTER is used in the definition of another index on the table.

The implicit or explicit clustering index is ignored when data is inserted into a
table space that is defined with MEMBER CLUSTER. Instead of using cluster
order, DB2 chooses where to locate the data based on available space. The
MEMBER CLUSTER attribute only affects data that is inserted with the INSERT
statement; data is always loaded and reorganized in cluster order.

PART integer
A PART clause specifies the highest value of the index key in one partition
of a partitioning index. In this context, highest means highest in the sorting
sequences of the index columns. In a column defined as ascending (ASC),
highest and lowest have their usual meanings. In a column defined as
descending (DESC), the lowest actual value is highest in the sorting
sequence.

If you use CLUSTER, and the table is contained in a partitioned table
space, you must use exactly one PART clause for each partition (defined
with NUMPARTS on CREATE TABLESPACE). If there are p partitions, the
value of integer must range from 1 through p.

The length of the highest value of a partition (also called the limit key) is the
same as the length of the partitioning index.

VALUES(constant,...)
You must use at least one constant after VALUES in each PART clause.
You can use as many as there are columns in the key. The concatenation
of all the constants is the highest value of the key in the corresponding
partition of the index.

The use of the constants to define key values is subject to these rules:

v The first constant corresponds to the first column of the key, the second
constant to the second column, and so on. Each constant must have the
same data type as its corresponding column.

v If a key includes a ROWID column (or a column with a distinct type that
is sourced on a ROWID data type), the values of the ROWID column are
assumed to be in the range of X'000...00' to X'FFF...FF'. Only the first 17
bytes of the constant that is specified for the corresponding ROWID
column are considered.

v The precision and scale of a decimal constant must not be greater than
the precision and scale of its corresponding column.

v If a string constant is longer or shorter than required by the length
attribute of its column, the constant is either truncated or padded on the
right to the required length. If the column is ascending, the padding
character is X'FF'; if the column is descending, the padding character is
X'00'.

v Using fewer constants than there are columns in the key has the same
effect as using the highest possible values for all omitted columns.

v The highest value of the key in any partition must be lower than the
highest value of the key in the next partition.

v The highest value of the key in the last partition depends on how the
table space was defined. For table spaces created without the LARGE or
DSSIZE option, the constants you specify after VALUES are not
enforced. The highest value of the key that can be placed in the table is
the highest possible value of the key.

CREATE INDEX

560 SQL Reference

For table spaces created with the LARGE or DSSIZE options, the
constants you specify after VALUES are enforced. The value specified by
the constants is the highest value of the key that can be placed in the
table. Any key values greater than the value specified for the last
partition are out of range.

When you define a table space with DSSIZE, you automatically give the
same size to all indexes that point to that tablespace.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the index. The bpname must identify an
activated 4KB buffer pool and the privilege set must include SYSADM or
SYSCTRL authority or the USE privilege for the buffer pool.

The default is the default buffer pool for indexes in the database.

See “Naming conventions” on page 34 for more details about bpname. See
Chapter 2 of DB2 Command Reference for a description of active and inactive
buffer pools.

CLOSE
Specifies whether or not the data set is eligible to be closed when the index is
not being used and the limit on the number of open data sets is reached.

YES
Eligible for closing. This is the default unless the index is on a declared
temporary table.

NO
Not eligible for closing.

If DSMAX is reached and there are no CLOSE YES page sets to close,
CLOSE NO page sets will be closed.

For an index on a declared temporary table, DB2 uses CLOSE NO regardless
of the value specified.

DEFER
Indicates whether the index is built during the execution of the CREATE INDEX
statement. Regardless of the option specified, the description of the index and
its index space is added to the catalog. If the table is empty and DEFER YES is
specified, the index is neither built nor placed in a rebuild pending status. Refer
to Part 2 (Volume 1) of DB2 Administration Guide for more information about
using DEFER. Do not specify DEFER for an index on a declared temporary
table or an auxiliary table.

NO
The index is built. This is the default.

YES
The index is not built. If the table is populated, the index is placed in a
rebuild pending status and a warning message is issued; the index must be
rebuilt by the REBUILD INDEX utility.

COPY
Indicates whether the COPY utility is allowed for the index. Do not specify
COPY for an index on a declared temporary table.

NO
Does not allows full image or concurrent copies or the use of the
RECOVER utility on the index. NO is the default.

CREATE INDEX

Chapter 5. Statements 561

#
#

|
|

|
|

YES
Allows full image or concurrent copies and the use of the RECOVER utility
on the index.

PIECESIZE integer
Specifies the maximum addressability of each piece (data set) for a
nonpartitioning index. The subsequent keyword K, M, or G, indicates the units
of the value specified in integer.

K Indicates that the integer value is to be multiplied by 1 024 to specify
the maximum piece size in bytes. The integer must be a power of two
between 256 and 67 108 864.

M Indicates that the integer value is to be multiplied by 1 048 576 to
specify the maximum piece size in bytes. The integer must be a power
of two between 1 and 65 536.

G Indicates that the integer value is to be multiplied by 1 073 741 824 to
specify the maximum piece size in bytes. The integer must be a power
of two between 1 and 64.

Table 39 shows the valid values for piece size, which depend on the size of the
table space.

Table 39. Valid values of PIECESIZE clause

K units M units G units Size attribute of table space

254 K
512 K
1024 K
2048 K
4096 K
8192 K
16384 K
32768 K
65536 K
131072 K
262144 K
524288 K
1048576 K
2097152 K
4194304 K
8388608 K
16777216 K
33554432 K
67108864 K

-
-
1 M
2 M
4 M
8 M
16 M
32 M
64 M
128 M
256 M
512 M
1024 M
2048 M
4096 M
8192 M
16384 M
32768 M
65536 M

-
-
-
-
-
-
-
-
-
-
-
-
1 G
2 G
4 G
8 G
16 G
32 G
64 G

-
-
-
-
-
-
-
-
-
-
-
-
-
-
LARGE, DSSIZE 4 G (or greater)
DSSIZE 8 G (or greater)
DSSIZE 16 G (or greater)
DSSIZE 32 G (or greater)
DSSIZE 64 G

As only a specification of the maximum amount of data that a piece can hold
and not the actual allocation of storage, PIECESIZE has no effect on primary
and secondary space allocation.

The default for piece size is 2 G (2 GB) for indexes that are backed by table
spaces that were created without the LARGE or DSSIZE option, and 4 G (4
GB) for indexes that are backed by table spaces that were created with the
LARGE or DSSIZE option.

Later, if you change the PIECESIZE value with the ALTER INDEX statement, be
aware of the effect on the index, which is put into REBUILD-pending status.
See 369.

CREATE INDEX

562 SQL Reference

#
#
#

Notes
If DEFER NO is implicitly or explicitly specified, the CREATE INDEX statement
cannot be executed while a DB2 utility has control of the table space that contains
the identified table.

If the identified table already contains data and if the index build is not deferred,
CREATE INDEX creates the index entries for it. If the table does not yet contain
data, CREATE INDEX creates a description of the index; the index entries are
created when data is inserted into the table.

There are no restrictions on the use of ASC or DESC for the columns of a parent
key or foreign key. An index on a foreign key does not have to have the same
ascending and descending attributes as the index of the corresponding parent key.

EBCDIC, ASCII, and UNICODE encoding schemes for an index: An index has
the same encoding scheme as its associated table.

Choosing a value for PIECESIZE: To choose a value for PIECESIZE, divide the
size of the nonpartitioning index by the number of data sets that you want. For
example, to ensure that you have 5 data sets for the nonpartitioning index, and your
nonpartitioning index is 10 MB (and not likely to grow much), specify PIECESIZE 2
M. If your nonpartitioning index is likely to grow, choose a larger value.

Remember that 32 pieces is the limit if the underlying table space is not defined as
LARGE (or as DSSIZE 4G or greater) and that the limit is 254 if the table space is
defined as LARGE (or as DSSIZE 4G or greater).

Keep the PIECESIZE value in mind when you are choosing values for primary and
secondary quantities. Ideally, the value of your primary quantity plus the secondary
quantities should be evenly divisible into PIECESIZE.

Dropping an index: Partitioning indexes can only be dropped by dropping the
associated table space. Nonpartitioning indexes that are not indexes on auxiliary
tables can be dropped simply by dropping the indexes. An empty index on an
auxiliary table can be explicitly dropped; a populated index can be dropped only by
dropping other objects. For details, see “Dropping an index on an auxiliary table
and an auxiliary table” on page 717.

If the index is a unique index that enforces a primary key, unique key, or referential
constraint, the constraint must be dropped before the index is dropped. See
“DROP” on page 709.

Creating indexes on DB2 catalog tables: For details on creating indexes on
catalog tables, see “SQL statements allowed on the catalog” on page 955.

EA-enabled index data sets: If an index is created for an EA-enabled table space,
the data sets for the index must be set up to belong to a DFSMS data class that
has the extended format and extended addressability attributes.

Examples
Example 1: Create a unique index, named DSN8710.XDEPT1, on table
DSN8710.DEPT. Index entries are to be in ascending order by the single column
DEPTNO. DB2 is to define the data sets for the index, using storage group
DSN8G710. Each data set (piece) should hold 1 megabyte of data at most. Use
512 kilobytes as the primary space allocation for each data set and 64 kilobytes as

CREATE INDEX

Chapter 5. Statements 563

|

|
|
|

the secondary space allocation. These specifications enable each data set to be
extended up to 8 times before a new data set is used—512KB + (8*64KB)=
1024KB.

The data sets can be closed when no one is using the index and do not need to be
erased if the index is dropped.

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT

(DEPTNO ASC)
USING STOGROUP DSN8G710

PRIQTY 512
SECQTY 64
ERASE NO

BUFFERPOOL BP1
CLOSE YES
PIECESIZE 1 M;

For the above example, the underlying data sets for the index will be created
immediately, which is the default (DEFINE YES). Assuming that table
DSN8710.DEPT is empty, if you wanted to defer the creation of the data sets until
data is first inserted into the index, you would specify DEFINE NO instead of
accepting the default behavior.

Example 2: Create a cluster index, named XEMP2, on table EMP in database
DSN8710. Put the entries in ascending order by column EMPNO. Let DB2 define
the data sets for each partition using storage group DSN8G710. Make the primary
space allocation be 36 kilobytes, and allow DB2 to use the default value for
SECQTY, which for this example is 12 kilobytes (3 times 4KB). If the index is
dropped, the data sets need not be erased.

There are to be 4 partitions, with index entries divided among them as follows:
Partition 1: entries up to H99
Partition 2: entries above H99 up to P99
Partition 3: entries above P99 up to Z99
Partition 4: entries above Z99

Associate the index with buffer pool BP1 and allow the data sets to be closed when
no one is using the index. Enable the use of the COPY utility for full image or
concurrent copies and the RECOVER utility.

CREATE INDEX DSN8710.XEMP2
ON DSN8710.EMP

(EMPNO ASC)
USING STOGROUP DSN8G710

PRIQTY 36
ERASE NO
CLUSTER
(PART 1 VALUES('H99'),
PART 2 VALUES('P99'),
PART 3 VALUES('Z99'),
PART 4 VALUES('999'))

BUFFERPOOL BP1
CLOSE YES
COPY YES;

Example 3: Create a nonpartitioning index, named DSN8710.XDEPT1, on table
DSN8710.DEPT. Put the entries in ascending order by column DEPTNO. Assume
that the data sets are managed by the user with catalog name DSNCAT and each
data set (piece) is to hold 1 gigabyte of data at most before the next data set is
used.

CREATE INDEX

564 SQL Reference

CREATE UNIQUE INDEX DSN8710.XDEPT1
ON DSN8710.DEPT

(DEPTNO ASC)
USING VCAT DSNCAT
PIECESIZE 1048576 K;

Example 4: Assume that a column named EMP_PHOTO with a data type of
BLOB(110K) was added to the sample employee table for each employee’s photo
and auxiliary table EMP_PHOTO_ATAB was created in LOB table space
DSN8D71A.PHOTOLTS to store the BLOB data for the column. Create an index
named XPHOTO on the auxiliary table. The data sets are to be user-managed with
catalog name DSNCAT.

CREATE UNIQUE INDEX DSN8710.XPHOTO
ON DSN8710.EMP_PHOTO_ATAB
USING VCAT DSNCAT
COPY YES;

In this example, no columns are specified for the key because auxiliary indexes
have implicitly generated keys.

CREATE INDEX

Chapter 5. Statements 565

CREATE PROCEDURE (external)
The CREATE PROCEDURE statement defines an external stored procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is specified implicitly or explicitly.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified procedure name can
include a schema name (a qualifier). However, if the schema name is not the same
as the SQL authorization ID, one of the following conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

The authorization ID that is used to create the stored procedure must have authority
to create programs that are to be run either in the DB2-established stored
procedure address space or the specified workload manager (WLM) environment.
In addition, if the stored procedure uses a distinct type as a parameter, this
authorization ID must have the USAGE privilege on each distinct type that is a
parameter.

When LANGUAGE is JAVA and a jar-name is specified in the EXTERNAL NAME
clause, the privilege set must include USAGE on the JAR, the Java ARchive file.

CREATE PROCEDURE (external)

566 SQL Reference

|
|

Syntax

�� CREATE PROCEDURE procedure-name
�

,

()
parameter-declaration

option-list ��

parameter-declaration:

��
IN

parameter-type
OUT parameter-name

(1)
INOUT

��

Notes:

1 For a REXX stored procedure, only one parameter can have type OUT or INOUT. That parameter
must be declared last.

parameter-type:

��
(1)

data-type
(2)

AS LOCATOR
TABLE LIKE table-name AS LOCATOR

view-name

��

Notes:

1 A LOB data type or distinct type based on a LOB data type must be no greater than 1M unless a
locator is passed.

2 AS LOCATOR can be specified only for a LOB data type or a distinct type based on a LOB data
type.

data-type:

�� built-in-data-type
distinct-type-name

��

CREATE PROCEDURE (external)

Chapter 5. Statements 567

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID ASCII

CLOB K MIXED EBCDIC
M UNICODE
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer) CCSID ASCII

VARGRAPHIC (integer) EBCDIC
DBCLOB UNICODE

(integer)
K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

CREATE PROCEDURE (external)

568 SQL Reference

option-list:

��
(1) DYNAMIC RESULT SET 0

(2)
DYNAMIC RESULT SET integer

SETS

PARAMETER CCSID ASCII
EBCDIC
UNICODE

�

� EXTERNAL
(3)

NAME ’string’
identifier

LANGUAGE ASSEMBLE
C
COBOL
COMPJAVA
JAVA
PLI
REXX

�

�
(4)

PARAMETER STYLE
DB2SQL
GENERAL
GENERAL WITH NULLS
JAVA

NOT DETERMINISTIC (5)

DETERMINISTIC

FENCED
�

�
MODIFIES SQL DATA

NO SQL
CONTAINS SQL
READS SQL DATA

NO DBINFO

DBINFO

NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name ,*)
NO WLM ENVIRONMENT

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE SUB

MAIN

SECURITY DB2

SECURITY USER
DEFINER

RUN OPTIONS run-time-options
�

�
COMMIT ON RETURN NO

COMMIT ON RETURN YES

(6)
INHERIT SPECIAL REGISTERS CALLED ON NULL INPUT

DEFAULT SPECIAL REGISTERS
��

Notes:

1 The clauses in the option list can be specified in any order.

2 Synonyms include RESULT SET(S) for DYNAMIC RESULT SET(S).

3 With LANGUAGE COMPJAVA or JAVA, use a valid external-java-routine-name.

4 Synonyms include STANDARD CALL for DB2SQL, SIMPLE CALL for GENERAL, and SIMPLE
CALL WITH NULLS for GENERAL WITH NULLS.

5 Synonyms include VARIANT for NOT DETERMINISTIC and NOT VARIANT for DETERMINISTIC.

6 Synonyms include NULL CALL for CALLED ON NULL INPUT.

CREATE PROCEDURE (external)

Chapter 5. Statements 569

Description
procedure-name

Names the stored procedure. The name cannot be a single asterisk even if you
specify it as a delimited identifier (″*″).

The name is implicitly or explicitly qualified by a schema. The name, including
the implicit or explicit qualifier, must not identify an existing stored procedure at
the current server.

v The unqualified form of procedure-name is a long SQL identifier. The
unqualified name is implicitly qualified with a schema name according to the
following rules:

external-java-routine-name:

(1)
jar-name:

method-name
method-signature

jar-name:

schema-name.
jar-id

method-name:

�

(2)
package-id .

(3)
/

class-id .
(4)

!

method-id

method-signature:

�

(3)
()

,

java-datatype

Notes:

1 With LANGUAGE COMPJAVA, jar-name must not be specified.

2 With LANGUAGE COMPJAVA, at least one package-id must be specified.

3 The slash (/) is supported for compatibility with DB2 for OS/390 Version 5 and Version 6.

4 The exclamation point (!) is supported for compatibility with DB2 UWO.

CREATE PROCEDURE (external)

570 SQL Reference

|

||||||||||||||||||||||||

|

|

||||||||||||||||

|

|

|||

|

|

||||||||||||||||||||||||||||

|

|

||

||

||

||
|
|

If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of procedure-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSPROC' or 'SYSADM'.

The owner of the procedure is determined by how the CREATE PROCEDURE
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the procedure.

(parameter-declaration,...)
Specifies the number of parameters of the stored procedure and the data type
of each parameter. A parameter for a stored procedure can be used only for
input, only for output, or for both input and output. Although not required, you
can give each parameter a name.

IN Identifies the parameter as an input parameter to the stored procedure. The
parameter does not contain a value when the stored procedure returns
control to the calling SQL application.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
stored procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
stored procedure.

parameter-name
Names the parameter. parameter-name is a long identifier.

data-type
Specifies the data type of the parameter. The data type can be a built-in
data type or a distinct type.

built-in-data-type
The data type of the parameter is a built-in data type. You can use the
same built-in data types as for the CREATE TABLE statement except
LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)

CREATE PROCEDURE (external)

Chapter 5. Statements 571

DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For more information on the data types, including the subtype of
character data types (the FOR subtype DATA clause), see
“built-in-data-type” on page 606.

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

distinct-type-name
The data type of the input parameter is a distinct type. Any length,
precision, scale, subtype, or encoding scheme attributes for the
parameter are those of the source type of the distinct type.

If you specify the name of the distinct type without a schema name, DB2
resolves the schema name by searching the schemas in the SQL path.

Although an input parameter with a character data type has an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the value that is actually
passed in the input argument on the CALL statement can have any
subtype. Therefore, conversion of the input data to the subtype of the
parameter might occur when the procedure is called. With ASCII or
EBCDIC, an error occurs if mixed data that actually contains DBCS
characters is used as the value for an input parameter that is declared with
an SBCS subtype.

Parameters with a datetime data type or a distinct type are passed to the
function as a different data type:

v A datetime type parameter is passed as a character data type, and the
data is passed in ISO format.

The encoding scheme for a datetime type parameter is the same as the
implicitly or explicitly specified encoding scheme of any character or
graphic string parameters. If no character or graphic string parameters
are passed, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

v A distinct type parameter is passed as the source type of the distinct
type.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the
procedure instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data
type. Passing locators instead of values can result in fewer bytes being
passed to the procedure, especially when the value of the parameter is very
large.

The AS LOCATOR clause has no effect on determining whether data types
can be promoted.

TABLE LIKE table-name or view-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the procedure
is called, the actual values in the transition table are not passed to the stored
procedure. A single value is passed instead. This single value is a locator to the

CREATE PROCEDURE (external)

572 SQL Reference

|
|

|
|

|

|
|

table, which the procedure uses to access the columns of the transition table. A
procedure with a table parameter can only be invoked from the triggered action
of a trigger.

The use of TABLE LIKE provides an implicit definition of the transition table. It
specifies that the transition table has the same number of columns as the
identified table or view. The columns have the same data type, length,
precision, scale, subtype, and encoding scheme as the identified table or view,
as they are described in catalog tables SYSCOLUMNS and
SYSTABLESPACES.

The name specified after TABLE LIKE must identify a table or view that exists
at the current server. The name must not identify a declared temporary table.
The name does not have to be the same name as the table that is associated
with the transition table for the trigger. An unqualified table or view name is
implicitly qualified according to the following rules:

v If the CREATE PROCEDURE statement is embedded in a program, the
implicit qualifier is the authorization ID in the QUALIFIER bind option when
the plan or package was created or last rebound. If QUALIFIER was not
used, the implicit qualifier is the owner of the plan or package.

v If the CREATE PROCEDURE statement is dynamically prepared, the implicit
qualifier is the SQL authorization ID in the CURRENT SQLID special register.

When the procedure is called, the corresponding columns of the transition table
identified by the table locator and the table or view identified in the TABLE LIKE
clause must have the same definition. The data type, length, precision, scale,
and encoding scheme of these columns must match exactly. The description of
the table or view at the time the CREATE PROCEDURE statement was
executed is used.

Additionally, a character FOR BIT DATA column of the transition table cannot be
passed as input for a table parameter for which the corresponding column of
the table specified at the definition is not defined as character FOR BIT DATA.
(The definition occurs with the CREATE PROCEDURE statement.) Likewise, a
character column of the transition table that is not FOR BIT DATA cannot be
passed as input for a table parameter for which the corresponding column of
the table specified at the definition is defined as character FOR BIT DATA.

For more information about using table locators, see DB2 Application
Programming and SQL Guide.

DYNAMIC RESULT SET integer or DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure
can return. The default is DYNAMIC RESULT SETS 0, which indicates that
there are no result sets. The value must be between 0 and 32767.

PARAMETER CCSID
Indicates whether the encoding scheme for string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in
the CCSID clauses of the parameter list or RETURNS clause or in the field
DEF ENCODING SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for all
string parameters. If individual CCSID clauses are specified for individual
parameters in addition to this PARAMETER CCSID clause, the value specified
in all of the CCSID clauses must be the same value that is specified in this
clause.

CREATE PROCEDURE (external)

Chapter 5. Statements 573

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

EXTERNAL
Specifies the program that runs when the procedure name is specified in a
CALL statement.

The program does not need to exist when the CREATE PROCEDURE
statement is executed. However, it must exist and be accessible by the current
server when a CALL statement to the stored procedure is issued.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME ’string’ or identifier
Identifies the user-written code that implements the stored procedure.

If LANGUAGE is COMPJAVA or JAVA, ’string’ must be specified and
enclosed in single quotation marks, with no extraneous blanks within the
single quotation marks. It must specify a valid external-java-routine-name. If
multiple ’string’s are specified, the total length of all of them must not be
greater than 1305 bytes and they must be separated by a space or a line
break. Do not specify a JAR for a JAVA procedure for which NO SQL is
also specified.

An external-java-routine-name contains the following parts:

jar-name
Identifies the name given to the JAR when it was installed in the
database. The name contains jar-id, which can optionally be qualified
with a schema. Examples are ″myJar″ and ″mySchema.myJar.″ The
unqualified jar-id is implicitly qualified with a schema name according to
the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the package or
plan was created or last rebound. If the QUALIFIER was not
specified, the schema name is the owner of the package or plan.

v If the statement is dynamically prepared, the schema name is the
SQL authorization ID in the CURRENT SQLID special register.

If jar-name is specified, it must exist when the CREATE PROCEDURE
statement is processed. With LANGUAGE COMPJAVA, a jar-name
must not be specified.

If jar-name is not specified, the procedure is loaded from the class file
directly instead of being loaded from a JAR file. DB2 for DB2 for
OS/390 and z/OS searches the directories in the CLASSPATH
associated with the WLM Environment. Environmental variables for

CREATE PROCEDURE (external)

574 SQL Reference

|
|
|

#
#
#
#
#
#
#

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

Java routines are specified in a data set identified in a JAVAENV DD
card on the JCL used to start the address space for a WLM-managed
stored procedure.

method-name
Identifies the name of the method and must not be longer than 254
bytes. Its package, class, and method IDs are specific to Java and as
such are not limited to 18 bytes. In addition, the rules for what these
can contain are not necessarily the same as the rules for an SQL
ordinary identifier.

package-id
Identifies the package list that the class identifier is part of. If the
class is part of a package, the method name must include the
complete package prefix, such as ″myPacks.StoredProcs.″ The
Java virtual machine looks in the directory ″/myPacks/StoredProcs/″
for the classes. With LANGUAGE COMPJAVA, at least one
package-id must be specified.

class-id
Identifies the class identifier of the Java object.

method-id
Identifies the method identifier with the Java class to be invoked.

method-signature
Identifies a list of zero or more Java data types for the parameter list
and must not be longer than 1024 bytes. Specify the method-signature
if the procedure involves any input or output parameters that can be
NULL. When the stored procedure being created is called, DB2
searches for a Java method with the exact method-signature. The
number of java-datatype elements specified indicates how many
parameters that the Java method must have.

A Java procedure can have no parameters. In this case, you code an
empty set of parentheses for method-signature. If a Java
method-signature is not specified, DB2 searches for a Java method with
a signature derived from the default JDBC types associated with the
SQL types specified in the parameter list of the CREATE PROCEDURE
statement.

For other values of LANGUAGE, the name can be a string constant that is
no longer than 8 characters or a short identifier. It must conform to the
naming conventions for MVS load modules. Alphabetical extenders for
national languages can be used as the first character and as subsequent
characters in the load module name.

If you do not specify the NAME clause, NAME procedure-name is implicit.
In this case procedure-name must not be longer than 8 characters, and
LANGUAGE must not be COMPJAVA or JAVA.

LANGUAGE
Specifies the application programming language in which the stored procedure
is written. Assembler, C, COBOL, and PL/I programs must be designed to run in
IBM’s Language Environment.

ASSEMBLE
The stored procedure is written in Assembler.

C The stored procedure is written in C or C++.

CREATE PROCEDURE (external)

Chapter 5. Statements 575

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

COBOL
The stored procedure is written in COBOL, including the OO-COBOL
language extensions.

COMPJAVA
The stored procedure is written in Java and the Java byte code has been
bound into a PDSE member using the Visual Age for Java ET/390 byte
code binder. When LANGUAGE COMPJAVA is specified, the EXTERNAL
NAME clause must also be specified with a valid external-java-routine-
name.

JAVA
The stored procedure is written in Java byte code and is executed in the
OS/390 Java Virtual Machine. When LANGUAGE JAVA is specified, the
EXTERNAL NAME clause must be specified with a valid
external-java-routine-name and PARAMETER STYLE must be specified
with JAVA.

Do not specify LANGUAGE JAVA when DBINFO, NO WLM
ENVIRONMENT, PROGRAM TYPE MAIN, or RUN OPTIONS is specified.

PLI
The stored procedure is written in PL/I.

REXX
The stored procedure is written in REXX. Do not specify LANGUAGE REXX
when PARAMETER STYLE DB2SQL or NO WLM ENVIRONMENT is
specified. When REXX is specified, the procedure must use PARAMETER
STYLE GENERAL or GENERAL WITH NULLS.

PARAMETER STYLE
Identifies the linkage convention used to pass parameters to the stored
procedure. All of the linkage conventions provide arguments to the stored
procedure that contain the parameters specified on the CALL statement. Some
of the linkage conventions pass additional arguments to the stored procedure
that provide more information to the stored procedure. For more information on
linkage conventions, see DB2 Application Programming and SQL Guide.

DB2SQL
In addition to the parameters on the CALL statement, the following
arguments are also passed to the stored procedure:
v A null indicator for each parameter on the CALL statement
v The SQLSTATE to be returned to DB2
v The qualified name of the stored procedure
v The specific name of the stored procedure
v The SQL diagnostic string to be returned to DB2

If DBINFO is specified, an additional parameter, the DB2INFO structure,
might also be passed.

DB2SQL is the default unless LANGUAGE is COMPJAVA. Do not specify
DB2SQL when LANGUAGE REXX is specified.

GENERAL
Only the parameters on the CALL statement are passed to the stored
procedure. The parameters cannot be null.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement, another argument is
also passed to the stored procedure. The additional argument contains a

CREATE PROCEDURE (external)

576 SQL Reference

|
|
|
|
|
|

|
|
|
|
|
|

#
#

|
|
|
|

|
|

CONTAINS SQL
The stored procedure cannot execute any SQL statements that read or
modify data. SQL statements that are not supported in any stored
procedure return a different error.

NO DBINFO or DBINFO
Specifies whether specific information known by DB2 is passed to the stored
procedure when it is invoked.

NO DBINFO
Additional information is not passed. NO DBINFO is the default.

DBINFO
An additional argument is passed when the stored procedure is invoked.
The argument is a structure that contains information such as the
application run-time authorization ID, the schema name, the name of a
table or column that the procedure might be inserting into or updating, and
identification of the database server that invoked the procedure. For details
about the argument and its structure, see DB2 Application Programming
and SQL Guide.

DBINFO can be specified only if PARAMETER STYLE DB2SQL is
specified.

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is
executed. This is the package collection into which the DBRM that is associated
with the stored procedure is bound.

NO COLLID
The package collection for the stored procedure is the same as the
package collection of the calling program. If the calling program does not
use a package, the package collection is set to the value of special register
CURRENT PACKAGESET.

NO COLLID is the default.

COLLID collection-id
The package collection for the stored procedure is the one specified.

For REXX stored procedures, collection-id can be DSNREXRR,
DSNREXRS, DSNREXCR, or DSNREXCS.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is a long identifier.

If you do not specify WLM ENVIRONMENT, the stored procedure runs in the
default WLM-established stored procedure address space specified at
installation time.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different MVS address space.

(name,*)
When an SQL application program directly calls a stored procedure, the
WLM environment in which the stored procedure runs.

CREATE PROCEDURE (external)

578 SQL Reference

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To define a stored procedure that is to run in a specified WLM environment, you
must have appropriate authority for the WLM environment. For an example of a
RACF command that provides this authorization, see “Running stored
procedures” on page 582.

NO WLM ENVIRONMENT
Indicates that the stored procedure is to run in the DB2-established stored
procedure address space.

Do not specify NO WLM ENVIRONMENT if you implicitly or explicitly define the
stored procedure with any of the following clauses or parameters:
v The PROGRAM TYPE SUB clause
v The SECURITY USER or SECURITY DEFINER clause
v The LANGUAGE REXX, LANGUAGE COMPJAVA, or JAVA clause
v Parameters with a LOB data type or a distinct type based on a LOB data

type

To define a stored procedure that is to run in the DB2-established stored
procedure address space, you must have appropriate authority for the address
space. For an example of a RACF command that provides this authorization,
see “Running stored procedures” on page 582.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column of the resource limit specification table.

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on service
units, see OS/390 MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2 GB.
If the stored procedure uses more service units than the specified value,
DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module is to remain resident in
memory when the stored procedure ends.

NO
The load module is deleted from memory after the stored procedure ends.
NO is the default.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.
The default is always PROGRAM TYPE SUB when LANGUAGE JAVA is
specified.

CREATE PROCEDURE (external)

Chapter 5. Statements 579

|

SUB
The stored procedure runs as a subroutine.

With LANGUAGE JAVA or LANGUAGE REXX, PROGRAM TYPE SUB for
stored procedures is always in effect. Do not specify PROGRAM TYPE
SUB when NO WLM ENVIRONMENT is specified.

MAIN
The stored procedure runs as a main routine. Do not specify PROGRAM
TYPE MAIN when LANGUAGE JAVA is specified.

The default for PROGRAM TYPE depends on the value of special register
CURRENT RULES. The default is:
v MAIN when the value is DB2
v SUB when the value is STD

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space. DB2 is the default.
SECURITY DB2 is the only valid choice when NO WLM ENVIRONMENT is
specified.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure. Do not specify
SECURITY USER when NO WLM ENVIRONMENT is specified.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure. Do not specify SECURITY
DEFINER when NO WLM ENVIRONMENT is specified.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the stored
procedure. For a REXX stored procedure, specifies the Language Environment
run-time options to be passed to the REXX language interface to DB2. You
must specify run-time-options as a character string that is no longer than 254
bytes. If you do not specify RUN OPTIONS or pass an empty string, DB2 does
not pass any run-time options to Language Environment, and Language
Environment uses its installation defaults.

Do not specify RUN OPTIONS when LANGUAGE COMPJAVA or LANGUAGE
JAVA is specified.

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
stored procedure.

CREATE PROCEDURE (external)

580 SQL Reference

|
|
|

#
#

|
|

|
|

|
|

|
|

NO
DB2 does not issue a commit when the stored procedure returns. NO is the
default.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined as WITH HOLD to be usable
after the commit.

INHERIT SPECIAL REGISTERS
Indicates that the values of special registers are inherited according to the
rules listed in the table for characteristics of special registers in a stored
procedure function in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure function in Table 19 on page 92.

CALLED ON NULL INPUT
Specifies that the stored procedure will be called even if any of the input
arguments is null, making the procedure responsible for testing for null
argument values. The result is the null value. CALLED ON NULL INPUT is the
default.

Notes
Choosing data types for parameters: When you choose the data types of the
parameters for your stored procedure, consider the rules of promotion that can
affect the values of the parameters. (See “Promotion of data types” on page 61).
For example, a constant that is one of the input arguments to the stored procedure
might have a built-in data type that is different from the data type that the procedure
expects, and more significantly, might not be promotable to that expected data type.
Based on the rules of promotion, using the following data types for parameters is
recommended:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms that are not DB2 for OS/390 and z/OS,
do not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying the encoding scheme for parameters: The implicitly or explicitly
specified encoding scheme of all the parameters with a string data type (both input
and output parameters) must be the same—either all ASCII, all EBCDIC, or all
UNICODE.

CREATE PROCEDURE (external)

Chapter 5. Statements 581

|
|

Running stored procedures: You can use the WLM ENVIRONMENT clause to
identify the MVS address space in which a stored procedure is to run. Using
different WLM environments lets you isolate one group of programs from another.
For example, you might choose to isolate programs based on security requirements
and place all payroll applications in one WLM environment because those
applications deal with sensitive data, such as employee salaries.

If you use NO WLM ENVIRONMENT, the stored procedure will run in the
DB2-established stored procedure address space, where there is no ability to
isolate one group of programs from another.

Regardless of where the stored procedure is to run, DB2 invokes RACF to
determine whether you have appropriate authorization. You must have authorization
to issue CREATE PROCEDURE statements that refer to the specified WLM
environment or the DB2-established stored procedure address space. For example,
the following RACF command authorizes DB2 user DB2USER1 to define stored
procedures on DB2 subsystem DB2A that run in the WLM environment named
PAYROLL.

PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Similarly, the following RACF command authorizes the same user to define stored
procedures that run in the DB2 stored procedure address space named
DB2ASPAS.

PERMIT DB2A.WLMENV.DB2ASPAS CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Accessing result sets from nested stored procedures: When another stored
procedure or a user-defined function calls a stored procedure, only the calling
routine can access the result sets that the stored procedure returns. The result sets
are not returned to the application that contains the outermost stored procedure or
user-defined function in the sequence of nested calls.

When a stored procedure is nested, the result sets that are returned by the stored
procedure are accessible only by the calling routine. The result sets are not
returned to the application that contains the outermost stored procedure or
user-defined function in the sequence of nested calls.

Restrictions for nested stored procedures: A stored procedure, user-defined
function, or trigger cannot call a stored procedure that is defined with the COMMIT
ON RETURN clause.

Examples
Example 1: Create the definition for a stored procedure that is written in COBOL.
The procedure accepts an assembly part number and returns the number of parts
that make up the assembly, the total part cost, and a result set. The result set lists
the part numbers, quantity, and unit cost of each part. Assume that the input
parameter cannot contain a null value and that the procedure is to run in a WLM
environment called PARTSA.

CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
LANGUAGE COBOL
EXTERNAL NAME MYMODULE
PARAMETER STYLE GENERAL
WLM ENVIRONMENT PARTSA
DYNAMIC RESULT SETS 1;

CREATE PROCEDURE (external)

582 SQL Reference

Example 2: Create the definition for the stored procedure described in Example 1,
except use the linkage convention that passes more information than the parameter
specified on the CALL statement. Specify Language Environment run-time options
HEAP, BELOW, ALL31, and STACK.

CREATE PROCEDURE SYSPROC.MYPROC(IN INT, OUT INT, OUT DECIMAL(7,2))
LANGUAGE COBOL
EXTERNAL NAME MYMODULE
PARAMETER STYLE DB2SQL
WLM ENVIRONMENT PARTSA
DYNAMIC RESULT SETS 1
RUN OPTIONS 'HEAP(,,ANY),BELOW(4K,,),ALL31(ON),STACK(,,ANY,)';

Example 3: Create the procedure definition for a stored procedure, written in Java,
that is passed a part number and returns the cost of the part and the quantity that
is currently available.

CREATE PROCEDURE PARTS_ON_HAND(IN PARTNUM INT, OUT COST DECIMAL(7,2), OUT QUANTITY INT)
LANGUAGE JAVA
EXTERNAL NAME 'PARTS.ONHAND'
PARAMETER STYLE JAVA;

CREATE PROCEDURE (external)

Chapter 5. Statements 583

|
|
|

|
|
|
|

|

CREATE PROCEDURE (SQL)
The CREATE PROCEDURE statement registers an SQL procedure with a database
server and specifies the source statements for an SQL procedure. See “Chapter 6.
SQL procedure statements” on page 887.

Invocation
This statement can only be dynamically prepared, and the DYNAMICRULES run
behavior must be specified implicitly or explicitly.

This statement is intended to be processed using one of the following methods:
v Using IBM DB2 Stored Procedure Builder
v Using JCL
v Using the DB2 for OS/390 SQL procedure processor (DSNTPSMP)

For more information on preparing SQL procedures for execution, see Part 6 of
DB2 Application Programming and SQL Guide. Issuing the CREATE PROCEDURE
statement from another context will result in an incomplete procedure definition
even though the statement processing returns without error.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATEIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the CREATEIN
privilege on the schema.

Privilege set: The privilege set is the privileges that are held by the authorization
ID of the owner of the plan or package.

The authorization ID that is used to create the stored procedure must have authority
to create programs that are to be run either in the DB2-established stored
procedure address space or the specified workload manager (WLM) environment.

CREATE PROCEDURE (SQL)

584 SQL Reference

|

|
|

|
|
|
|

|
|
|
|

Syntax

�� CREATE PROCEDURE procedure-name
�

,

()
parameter-declaration

option-list ��

parameter-declaration:

��
IN

parameter-name parameter-type
OUT
INOUT

��

parameter-type:

�� built-in-data-type
TABLE LIKE table-name AS LOCATOR

��

CREATE PROCEDURE (SQL)

Chapter 5. Statements 585

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA CCSID ASCII
CHARACTER VARYING (integer) MIXED EBCDIC
CHAR BIT UNICODE

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA CCSID ASCII

CLOB K MIXED EBCDIC
M UNICODE
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer) CCSID ASCII

VARGRAPHIC (integer) EBCDIC
DBCLOB UNICODE

(integer)
K
M
G

DATE
TIME
TIMESTAMP

��

CREATE PROCEDURE (SQL)

586 SQL Reference

Description
procedure-name

Names the stored procedure. Although the name of an SQL procedure can be a
delimited identifier, the name itself can contain only uppercase characters A
through Z and digits 0 through 9 and must begin with an alphabetic character.
The name of an SQL procedure cannot contain the alphabetic extenders for
national languages (#, @, $) or underscore (_).

The name is implicitly or explicitly qualified by a schema. The name, including
the implicit or explicit qualifier, must not identify an existing stored procedure at
the current server.

option-list:

��
DYNAMIC RESULT SET 0

(1)
DYNAMIC RESULT SET integer

SETS

PARAMETER CCSID ASCII
EBCDIC
UNICODE

�

� EXTERNAL
NAME ’string’

identifier

LANGUAGE SQL
NOT DETERMINISTIC (2)

DETERMINISTIC

FENCED
�

�

(3)
CALLED ON NULL INPUT MODIFIES SQL DATA

CONTAINS SQL
READS SQL DATA

NO DBINFO NO COLLID

COLLID collection-id
�

�
WLM ENVIRONMENT name

(name ,*)
NO WLM ENVIRONMENT

ASUTIME NO LIMIT

ASUTIME LIMIT integer

STAY RESIDENT NO

STAY RESIDENT YES
�

�
PROGRAM TYPE MAIN

PROGRAM TYPE SUB

SECURITY DB2

SECURITY USER
SECURITY DEFINER

RUN OPTIONS run-time-options
�

�
COMMIT ON RETURN NO

COMMIT ON RETURN YES

INHERIT SPECIAL REGISTERS

DEFAULT SPECIAL REGISTERS
�

� procedure-body ��

Notes:

1 Synonyms include RESULT SET for DYNAMIC RESULT SET and RESULT SETS for DYNAMIC
RESULT SETS.

2 Synonyms include VARIANT for NOT DETERMINISTIC, and NOT VARIANT for DETERMINISTIC.

3 NULL CALL is a synonym for CALLED ON NULL INPUT.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 587

|
|
|
|
|

v The unqualified form of procedure-name is a long SQL identifier. The
unqualified name is implicitly qualified with a schema name according to the
following rules:

If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER bind option when the plan or package
was created or last rebound. If QUALIFIER was not specified, the schema
name is the owner of the plan or package.

If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

v The qualified form of procedure-name is a short SQL identifier (the schema
name) followed by a period and a long SQL identifier.

The schema name must not begin with 'SYS' unless the schema name is
'SYSPROC' or 'SYSADM'.

The owner of the procedure is determined by how the CREATE PROCEDURE
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

The owner is implicitly given the EXECUTE privilege with the GRANT option for
the procedure.

If the first 8 bytes of the procedure name contain an underscore and the
procedure definition is not being processed by the Stored Procedure Builder or
DSNTPSMP (the OS/390 SQL procedure processor), then specify the
EXTERNAL NAME clause.

(parameter-declaration,...)
Specifies the number of parameters of the stored procedure and the data type
of each parameter. A parameter for a stored procedure can be used only for
input, only for output, or for both input and output. You must give each
parameter a name.

IN Identifies the parameter as an input parameter to the stored procedure. The
value of the parameter on entry to the procedure is the value that is
returned to the calling SQL application.

IN is the default.

OUT
Identifies the parameter as an output parameter that is returned by the
stored procedure.

INOUT
Identifies the parameter as both an input and output parameter for the
stored procedure.

parameter-name
Names the parameter. parameter-name is a long identifier. A parameter
name cannot be an SQL reserved word. For a list of SQL reserved words,
see “Appendix F. SQL reserved words” on page 1097.

parameter-type
Specifies the data type of the parameter.

CREATE PROCEDURE (SQL)

588 SQL Reference

#
#
#
#

|
|
|

|

built-in-data-type
The data type of the parameter is a built-in data type. You can use the
same built-in data types as for the CREATE TABLE statement except
LONG VARCHAR or LONG VARGRAPHIC. Use VARCHAR or
VARGRAPHIC with an explicit length instead.

For more information on the data types, including the subtype of
character data types (the FOR subtype DATA clause), see
“built-in-data-type” on page 606.

If you do not specify a specific value for the data types that have
length, precision, or scale attributes (CHAR, GRAPHIC, DECIMAL,
NUMERIC, FLOAT), the defaults are as follows:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

For parameters with a string data type, the CCSID clause indicates
whether the encoding scheme of the parameter value is ASCII,
EBCDIC, or UNICODE. If you do not specify CCSID ASCII, CCSID
EBCDIC, or CCSID UNICODE, the encoding scheme is the value of
field DEF ENCODING SCHEME on installation panel DSNTIPF.

TABLE LIKE table-name AS LOCATOR
Specifies that the parameter is a transition table. However, when the
procedure is called, the actual values in the transition table are not
passed to the stored procedure. A single value is passed instead. This
single value is a locator to the table, which the procedure uses to
access the columns of the transition table. A procedure with a table
parameter can only be invoked from the triggered action of a trigger.

For more information about the TABLE LIKE clause, see “TABLE LIKE”
on page 572. For more information about using table locators, see DB2
Application Programming and SQL Guide.

Although an input parameter with a character data type has an implicitly or
explicitly specified subtype (BIT, SBCS, or MIXED), the value that is actually
passed in the input parameter can have any subtype. Therefore, conversion
of the input data to the subtype of the parameter might occur when the
procedure is called. With ASCII or EBCDIC, an error occurs if mixed data
that actually contains DBCS characters is used as the value for an input
parameter that is declared with an SBCS subtype.

A parameter with a datetime data type is passed to the SQL procedure as a
different data type. A datetime type parameter is passed as a character
data type, and the data is passed in ISO format.

The encoding scheme for a datetime type parameter is determined as
follows:

v If there are one or more parameters with a character or graphic data
type, the encoding scheme of the datetime type parameter is the same
as the encoding scheme of the character or graphic parameters.

v Otherwise, the encoding scheme is the value of field DEF ENCODING
SCHEME on installation panel DSNTIPF.

DYNAMIC RESULT SET integer or DYNAMIC RESULT SETS integer
Specifies the maximum number of query result sets that the stored procedure

CREATE PROCEDURE (SQL)

Chapter 5. Statements 589

|
|
|
|
|
|
|

|
|
|

|

can return. The default is DYNAMIC RESULT SETS 0, which indicates that
there are no result sets. The value must be between 0 and 32767.

PARAMETER CCSID
Indicates whether the encoding scheme for string parameters is ASCII,
EBCDIC, or UNICODE. The default encoding scheme is the value specified in
the CCSID clauses of the parameter list or in the field DEF ENCODING
SCHEME on installation panel DSNTIPF.

This clause provides a convenient way to specify the encoding scheme for all
string parameters. If individual CCSID clauses are specified for individual
parameters in addition to this PARAMETER CCSID clause, the value specified
in all of the CCSID clauses must be the same value that is specified in this
clause.

This clause also specifies the encoding scheme to be used for
system-generated parameters of the routine such as message tokens and
DBINFO.

EXTERNAL
Specifies the program that runs when the procedure name is specified in a
CALL statement.

The program does not need to exist when the CREATE PROCEDURE
statement is executed. However, it must exist and be accessible by the current
server when a CALL statement to the stored procedure is issued.

You can specify the EXTERNAL clause in one of the following ways:
EXTERNAL

EXTERNAL NAME PKJVSP1

EXTERNAL NAME 'PKJVSP1'

If you specify an external program name, you must use the NAME keyword. For
example, this syntax is not valid:

EXTERNAL PKJVSP1

NAME ’string’ or identifier
Identifies the name of the MVS load module that contains the generated
code that implements the logic of the procedure. The content of the value
(whether specified as a string constant or an identifier) must contain only
the uppercase alphabetic characters A through Z and the characters 0
through 9. The name must begin with an alphabetic character. The name
specified must not be the same as the name used by another SQL
procedure.

If the EXTERNAL NAME is not specified and the Stored Procedure Builder
of DSNTPSMP (the DB2 for OS.390 SQL procedure processor) is used to
process the procedure definition, then the load module name is generated.
Otherwise, the procedure name (up to 8 bytes) is used as the load module
name. In this case, the first 8 bytes of the name should not contain an
underscore because the underscore is not a valid character for the name of
an MVS load module.

The name specified in the EXTERNAL NAME clause, generated by DB2, or
defaulted to from the procedure name is used to identify the names of the
files for the load module, DBRM, and C source code. DB2 does not check
for the existence of PDS members when writing out the load module,
DBRM, and C source code. Therefore, existing files may be overwritten.

CREATE PROCEDURE (SQL)

590 SQL Reference

|
|
|
|
|

|
|
|
|
|

|
|
|

#
#
#

#
#
#

#

#
#
#
#
#

#
#

#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#

LANGUAGE
Specifies the application programming language in which the stored procedure
is written.

SQL
The stored procedure is written in DB2 SQL procedure language.

NOT DETERMINISTIC or DETERMINISTIC
Specifies whether the stored procedure returns the same result from successive
calls with identical input arguments.

NOT DETERMINISTIC
The stored procedure might not return the same result from successive
calls with identical input arguments. NOT DETERMINISTIC is the default.

DETERMINISTIC
The stored procedure returns the same result from successive calls with
identical input arguments.

DB2 does not verify that the stored procedure code is consistent with the
specification of DETERMINISTIC or NOT DETERMINISTIC.

FENCED
Specifies that the stored procedure runs in an external address space to
prevent user programs from corrupting DB2 storage.

FENCED is the default.

CALLED ON NULL INPUT
Specifies that the stored procedure will be called even if any of the input
arguments is null, making the procedure responsible for testing for null
argument values. The result is the null value. CALLED ON NULL INPUT is the
default.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL DATA
Indicates whether the stored procedure can execute any SQL statements and, if
so, what type. See Table 66 on page 916 for a detailed list of the SQL
statements that can be executed under each data access indication.

MODIFIES SQL DATA
The stored procedure can execute any SQL statement except those
statements that are not supported in any stored procedure.

MODIFIES SQL DATA is the default.

READS SQL DATA
The stored procedure cannot execute SQL statements that modify data.
SQL statements that are not supported in any stored procedure return a
different error.

CONTAINS SQL
The stored procedure cannot execute any SQL statements that read or
modify data. SQL statements that are not supported in any stored
procedure return a different error.

NO DBINFO
Specifies whether specific information known by DB2 is passed to the stored
procedure when it is invoked.

NO DBINFO
Additional information is not passed. Only NO DBINFO is allowed for SQL
procedures.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 591

#

NO COLLID or COLLID collection-id
Identifies the package collection that is to be used when the stored procedure is
executed. This is the package collection into which the DBRM that is associated
with the stored procedure is bound.

NO COLLID
The package collection for the stored procedure is the same as the
package collection of the calling program. If the calling program does not
use a package, the package collection is set to the value of special register
CURRENT PACKAGESET.

NO COLLID is the default.

COLLID collection-id
The package collection for the stored procedure is the one specified.

WLM ENVIRONMENT
Identifies the MVS workload manager (WLM) environment in which the stored
procedure is to run when the DB2 stored procedure address space is
WLM-established. The name of the WLM environment is a long identifier.

If you do not specify WLM ENVIRONMENT, the stored procedure runs in the
default WLM-established stored procedure address space specified at
installation time.

name
The WLM environment in which the stored procedure must run. If another
stored procedure or a user-defined function calls the stored procedure and
that calling routine is running in an address space that is not associated
with the specified WLM environment, DB2 routes the stored procedure
request to a different MVS address space.

(name,*)
When an SQL application program directly calls a stored procedure, the
WLM environment in which the stored procedure runs.

If another stored procedure or a user-defined function calls the stored
procedure, the stored procedure runs in the same WLM environment that
the calling routine uses.

To define a stored procedure that is to run in a specified WLM environment, you
must have appropriate authority for the WLM environment. For an example of a
RACF command that provides this authorization, see “Running stored
procedures” on page 582.

NO WLM ENVIRONMENT
Indicates that the stored procedure is to run in the DB2-established stored
procedure address space.

Do not specify NO WLM ENVIRONMENT if you implicitly or explicitly define the
stored procedure with SECURITY USER, SECURITY DEFINER, or PROGRAM
TYPE SUB or if there are any LOB parameters.

To define a stored procedure that is to run in the DB2-established stored
procedure address space, you must have appropriate authority for the address
space. For an example of a RACF command that provides this authorization,
see “Running stored procedures” on page 582.

ASUTIME
Specifies the total amount of processor time, in CPU service units, that a single
invocation of a stored procedure can run. The value is unrelated to the
ASUTIME column of the resource limit specification table.

CREATE PROCEDURE (SQL)

592 SQL Reference

#
#
#

When you are debugging a stored procedure, setting a limit can be helpful in
case the stored procedure gets caught in a loop. For information on service
units, see OS/390 MVS Initialization and Tuning Guide.

NO LIMIT
There is no limit on the service units. NO LIMIT is the default.

LIMIT integer
The limit on the service units is a positive integer in the range of 1 to 2 GB.
If the stored procedure uses more service units than the specified value,
DB2 cancels the stored procedure.

STAY RESIDENT
Specifies whether the stored procedure load module remains resident in
memory when the stored procedure ends.

NO
The load module is deleted from memory after the stored procedure ends.
NO is the default.

YES
The load module remains resident in memory after the stored procedure
ends.

PROGRAM TYPE
Specifies whether the stored procedure runs as a main routine or a subroutine.

MAIN
The stored procedure runs as a main routine. MAIN is the default for SQL
procedures.

SUB
The stored procedure runs as a subroutine.

SECURITY
Specifies how the stored procedure interacts with an external security product,
such as RACF, to control access to non-SQL resources.

DB2
The stored procedure does not require a special external security
environment. If the stored procedure accesses resources that an external
security product protects, the access is performed using the authorization
ID associated with the stored procedure address space. DB2 is the default.

USER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the user who invoked the stored procedure.

DEFINER
An external security environment should be established for the stored
procedure. If the stored procedure accesses resources that the external
security product protects, the access is performed using the authorization
ID of the owner of the stored procedure.

RUN OPTIONS run-time-options
Specifies the Language Environment run-time options to be used for the stored
procedure. You must specify run-time-options as a character string that is no
longer than 254 bytes. If you do not specify RUN OPTIONS or pass an empty
string, DB2 does not pass any run-time options to Language Environment, and
Language Environment uses its installation defaults.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 593

|
|

|
|
|

|
|

|

For a description of the Language Environment run-time options, see OS/390
Language Environment for OS/390 & VM Programming Reference.

COMMIT ON RETURN
Indicates whether DB2 commits the transaction immediately on return from the
stored procedure.

NO
DB2 does not issue a commit when the stored procedure returns. NO is the
default.

YES
DB2 issues a commit when the stored procedure returns if the following
statements are true:
v The SQLCODE that is returned by the CALL statement is not negative.
v The stored procedure is not in a must abort state.

The commit operation includes the work that is performed by the calling
application process and the stored procedure.

If the stored procedure returns result sets, the cursors that are associated
with the result sets must have been defined as WITH HOLD to be usable
after the commit.

INHERIT SPECIAL REGISTERS
Indicates that the values of special registers are inherited, according to the
rules listed in the table for characteristics of special registers in a stored
procedure function in Table 19 on page 92.

DEFAULT SPECIAL REGISTERS
Indicates that special registers are initialized to the default values, as
indicated by the rules in the table for characteristics of special registers in a
stored procedure function in Table 19 on page 92.

procedure-body
Specifies the source code for an SQL procedure. See “Chapter 6. SQL
procedure statements” on page 887 for information on how to write a procedure
body.

Notes
The following rules apply to the use of parameters in SQL procedures:

v If IN is specified for a parameter in an SQL procedure, the parameter can be
modified within the SQL procedure body. When control returns to the caller, the
original value of the IN parameter on entry to the procedure is returned to the
caller.

v If OUT is specified for a parameter in an SQL procedure, the parameter can be
used on the left or right side of an assignment statement in the SQL procedure
body. The parameter can be checked or used to set other variables. The last
value that is assigned to an OUT parameter is returned to the caller. If the
parameter is not set, DB2 returns the null value to the caller.

v If INOUT is specified for a parameter in an SQL procedure, the parameter can be
used on the left or right side of an assignment statement in the SQL procedure
body. The first value of the parameter is determined by the caller, and the last
value that is assigned to the parameter is returned to the caller.

See “Notes” on page 581 for information about:
v Choosing data types for parameters
v Specifying the encoding scheme for parameters

CREATE PROCEDURE (SQL)

594 SQL Reference

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

v Environments for running stored procedures
v Accessing result sets from nested stored procedures

Examples
Example 1: Create the definition for an SQL procedure. The procedure accepts an
employee number and a multiplier for a pay raise as input. The following tasks are
performed in the procedure body:
v Calculate the employee's new salary.
v Update the employee table with the new salary value.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
MODIFIES SQL DATA
UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

Example 2: Create the definition for the SQL procedure described in example 1, but
specify that the procedure has these characteristics:
v The procedure runs in a WLM environment called PARTSA.
v The same input always produces the same output.
v SQL work is committed on return to the caller.
v The Language Environment run-time options to be used when the SQL

procedure executes are 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'.
CREATE PROCEDURE UPDATE_SALARY_1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
MODIFIES SQL DATA
WLM ENVIRONMENT PARTSA
DETERMINISTIC
RUN OPTIONS 'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'
COMMIT ON RETURN YES

UPDATE EMP
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

For more examples of SQL procedures, see “Chapter 6. SQL procedure statements”
on page 887.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 595

CREATE STOGROUP
The CREATE STOGROUP statement creates a storage group at the current server.
Storage from the identified volumes can later be allocated for table spaces and
index spaces.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATESG privilege
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the privileges
that are held by the SQL authorization ID of the process.

Syntax

Description
stogroup-name

Names the storage group. The name must not identify a storage group that
exists at the current server.

VOLUMES(volume-id,...) or VOLUMES('*',...)
Defines the volumes of the storage group. Each volume-id is a volume serial
number of a storage volume. It can have a maximum of six characters and is
specified as an identifier or a string constant.

Asterisks are recognized only by Storage Management Subsystem (SMS). To
allow SMS control over volume selection, define DB2 STOGROUPs with
VOLUMES('*',...). SMS usage is recommended, rather than using DB2 to
allocate data to specific volumes. Having DB2 select the volume requires
non-SMS usage or assigning an SMS Storage Class with guaranteed space.
However, because guaranteed space reduces the benefits of SMS allocation, it
is not recommended.

If you do choose to use specific volume assignments, additional manual space
management must be performed. Free space must be managed for each

�� CREATE STOGROUP stogroup-name �

�

,
(1)

VOLUMES (volume-id)
,

'*'

VCAT catalog-name ��

Notes:

1 The same volume-id must not be specified more than once.

CREATE STOGROUP

596 SQL Reference

|
|
|
|
|
|
|

|
|

individual volume to prevent failures during the initial allocation and extension.
This process generally requires more time for space management and results in
more space shortages. Guaranteed space should be used only where the
space needs are relatively small and do not change.

VCAT catalog-name
Identifies the integrated catalog facility catalog for the storage group. You must
specify the catalog name in the form of a short identifier. Thus, you must
specify an alias if the name of the integrated catalog facility catalog is longer
than 8 characters.

The designated catalog is the one in which entries are placed for the data sets
created by DB2 with the aid of the storage group. These are linear VSAM data
sets for associated table or index spaces or for their partitions. For each such
space or partition, association is made through a USING clause in a CREATE
TABLESPACE, CREATE INDEX, ALTER TABLESPACE, or ALTER INDEX
statement. For more on the association, see the descriptions of those
statements in this chapter.

Conventions for data set names are given in Part 2 (Volume 1) of DB2
Administration Guide. catalog-name is the first qualifier for each data set name.

One or more DB2 subsystems could share integrated catalog facility catalogs
with the current server. To avoid the chance of having one of those subsystems
attempt to assign the same name to different data sets, select a value for
catalog-name that is not used by the other DB2 subsystems.

Notes
Device types: When the storage group is used at run time, an error can occur if
the volumes in the storage group are of different device types, or if a volume is not
available to MVS for dynamic allocation of data sets.

When a storage group is used to extend a data set, all volumes in the storage
group must be of the same device type as the volumes used when the data set was
defined. Otherwise, an extend failure occurs if an attempt is made to extend the
data set.

Number of volumes: There is no specific limit on the number of volumes that can
be defined for a storage group. However, the maximum number of volumes that can
be managed for a storage group is 133. Thus, there is no point in creating a
storage group with more than 133 volumes.

MVS imposes a limit on the number of volumes that can be allocated per data set:
59 at this writing. For the latest information on that restriction, see DFSMS/MVS:
Access Method Services for the Integrated Catalog.

Storage group owner: If the statement is embedded in an application program, the
owner of the plan or package is the owner of the storage group. If the statement is
dynamically prepared, the SQL authorization ID of the process is the owner of the
storage group. The owner has the privilege of altering and dropping the storage
group.

Specifying volume IDs: A new storage group must have either specific volume IDs
or non-specific volume IDs. You cannot create a storage group that contains a
mixture of specific and non-specific volume IDs.

CREATE STOGROUP

Chapter 5. Statements 597

|
|
|
|

Verifying volume IDs: When processing the VOLUMES clause, DB2 does not
check the existence of the volumes or determine the types of devices that they
identify. Later, whenever the storage group is used to allocate data sets, the list of
volumes is passed in the specified order to Data Facilities (DFSMSdfp), which does
the actual work. See Part 2 (Volume 1) of DB2 Administration Guide for more
information about creating DB2 storage groups.

Example
Create storage group, DSN8G710, of volumes ABC005 and DEF008. DSNCAT is
the integrated catalog facility catalog name.

CREATE STOGROUP DSN8G710
VOLUMES (ABC005,DEF008)
VCAT DSNCAT;

CREATE STOGROUP

598 SQL Reference

CREATE SYNONYM
The CREATE SYNONYM statement defines a synonym for a table or view at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
None required.

Syntax

Description
synonym

Names the synonym. The name must not identify a synonym, table, view, or
alias owned by authorization ID x. If the statement is embedded in an
application program, x is the owner of the plan or package. If the statement is
dynamically prepared, x is the value of CURRENT SQLID. In either case, x
becomes the owner of the synonym.

FOR authorization-name.table-name or authorization-name.view-name
Identifies the object to which the synonym applies. The name must consist of
two parts and must identify a table, view, or alias that exists at the current
server. If a table is identified, it must not be an auxiliary table or a declared
temporary table. If an alias is identified, it must be an alias for a table or view at
the current server and the synonym is defined for that table or view.

Notes
In cases where the statement is dynamically prepared, users with SYSADM
authority can create synonyms for other users. This is done by changing the value
of the CURRENT SQLID special register before issuing the CREATE SYNONYM
statement. See “SET CURRENT SQLID” on page 860 for details on changing the
value of the CURRENT SQLID special register.

The authorization ID recorded as the owner of a synonym is the only authorization
ID for which the synonym is defined and the only authorization ID that can be used
to drop it.

If an alias is used to denote the table or view, the name of that table or view, not
the alias, is recorded in the catalog as the definition of the synonym. That severs
the connection between the synonym and alias, and even if the alias is dropped
and redefined, the synonym is still in effect and names the original table or view.

Example
Define DEPT as a synonym for the table DSN8710.DEPT.

�� CREATE SYNONYM synonym FOR authorization-name. table-name
view-name

��

CREATE SYNONYM

Chapter 5. Statements 599

CREATE SYNONYM DEPT
FOR DSN8710.DEPT;

This example does not work if the current SQL authorization ID is DSN8710.

CREATE SYNONYM

600 SQL Reference

CREATE TABLE
The CREATE TABLE statement defines a table at the current server. The definition
must include its name and the names and attributes of its columns. The definition
can include other attributes of the table, such as its primary key and its table space.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:

v The CREATETAB privilege for the database implicitly or explicitly specified by the
IN clause

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSADM or SYSCTRL authority

Additional privileges might be required when:

v The clause IN, LIKE or FOREIGN KEY is specified.

v The data type of a column is a distinct type.

v The table space is implicitly created.

See the description of the appropriate clauses for details about these privileges.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the specified table name includes a qualifier that is not the same as this
authorization ID, the privilege set must include SYSADM or SYSCTRL authority,
DBADM authority for the database, or DBCTRL authority for the database.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. However, if the specified table
name includes a qualifier that is not the same as this authorization ID, the following
rules apply:

v If the privilege set includes SYSADM or SYSCTRL authority, DBADM authority
for the database, or DBCTRL authority for the database, any qualifier is valid.

v If the privilege set does not include any of the authorities listed in item 1 above,
the qualifier is valid only if it is the same as one of the authorization IDs of the
process and the privilege set that are held by that authorization ID includes all34

privileges needed to create the table.

34. Exception: The CREATAB privilege is checked on the SQL authorization ID of the process.

CREATE TABLE

Chapter 5. Statements 601

Syntax

�� CREATE TABLE table-name �

� �

,

(column-definition)
unique-constraint
referential-constraint
check-constraint

LIKE table-name
view-name COLUMN ATTRIBUTES

INCLUDING IDENTITY

�

� �
(1)

IN table-space-name
database-name.

IN DATABASE database-name
EDITPROC program-name
VALIDPROC program-name

NONE
AUDIT CHANGES

ALL
OBID integer

NONE
DATA CAPTURE CHANGES
WITH RESTRICT ON DROP
CCSID ASCII

EBCDIC
UNICODE

��

Notes:

1 The same clause must not be specified more than once.

CREATE TABLE

602 SQL Reference

column-definition:

�� column-name data-type �

� �

�

(1)

NOT NULL
PRIMARY KEY

CONSTRAINT constraint-name UNIQUE
references-clause

CHECK(check-condition)
WITH

DEFAULT
constant
USER
CURRENT SQLID
NULL
(2)

cast-function-name (constant)
USER
CURRENT SQLID
NULL

(3)
GENERATED ALWAYS

BY DEFAULT as-identity-clause
references-clause
check-constraint
FIELDPROC program-name

,

(constant)

��

Notes:

1 The same clause must not be specified more than once.

2 This form of the DEFAULT value can only be used with columns that are defined as a distinct
type.

3 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that
is based on a ROWID data type), or the column is to be an identity column.

data-type:

�� built-in-data-type
distinct-type-name

��

CREATE TABLE

Chapter 5. Statements 603

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (integer)
NUMERIC , integer
FLOAT

(integer)
REAL

PRECISION
DOUBLE

CHARACTER
CHAR (integer) FOR SBCS DATA

CHARACTER VARYING (integer) MIXED
CHAR BIT

VARCHAR
CHARACTER LARGE OBJECT
CHAR (integer) FOR SBCS DATA

CLOB K MIXED
M
G

BINARY LARGE OBJECT
BLOB (integer)

K
M
G

GRAPHIC
(integer)

(1)
VARGRAPHIC (integer)
DBCLOB

(integer)
K
M

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 Although the syntax of LONG VARCHAR and LONG VARGRAPHIC is supported, the alternative
syntax of VARCHAR(integer) and VARGRAPHIC(integer), is preferred. VARCHAR(integer) and
VARGRAPHIC(integer) are recommended because after the CREATE TABLE statement is
processed, DB2 considers a LONG VARCHAR column to be VARCHAR and a LONG
VARGRAPHIC column to be VARGRAPHIC.

To determine the maximum length of a column defined as LONG VARCHAR or LONG
VARGRAPHIC, see “Length of a LONG column” on page 625.

CREATE TABLE

604 SQL Reference

as-identity-clause:

��

�

AS IDENTITY
,

1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

CACHE 20
NO CACHE
CACHE integer
NO CYCLE
CYCLE

MAXVALUE numeric-constant
MINVALUE numeric-constant

��

unique-constraint:

�� �

,

PRIMARY KEY (column-name)
CONSTRAINT constraint-name UNIQUE

��

referential-constraint:

�� �

,

FOREIGN KEY (column-name) references-clause
CONSTRAINT constraint-name

��

references-clause:

�� REFERENCES table-name

�

,

(column-name)

ON DELETE RESTRICT
NO ACTION
CASCADE
SET NULL

��

CREATE TABLE

Chapter 5. Statements 605

|

|||||||||||||||||||||||||||||||||

|
|
|

|

||||||||||||||||||||||||||||||

|
|
|

Description
table-name

Names the table. The name must not identify a table, view, alias, or synonym
that exists at the current server.

If qualified, the name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of field DB2 LOCATION NAME on
installation panel DSNTIPR at the current server. (If the current server is not the
local DB2, this name is not necessarily the name in the CURRENT SERVER
special register.) Whether the name is two-part or three-part, the authorization
ID that qualifies the name is the table’s owner.

If the table name is unqualified and the statement is embedded in a program,
the owner of the table is the authorization ID that serves as the implicit qualifier
for unqualified object names. This is the authorization ID in the QUALIFIER
operand when the plan or package was created or last rebound. If QUALIFIER
was not used, the owner of the table is the owner of the package or plan.

If the table name is unqualified and the statement is dynamically prepared, the
SQL authorization ID is the owner of the table.

The owner has all table privileges on the table (SELECT, UPDATE, and so on),
and the authority to drop the table. All the owner’s table privileges are
grantable.

column-definition

Defines the attributes of a column.

column-name
Names a column of the table. Do not qualify column-name and do not use
the same name for more than one column of the table. For a dependent
table, up to 749 columns can be named. For a table that is not a
dependent, this number is 750.

built-in-data-type
Specifies the data type of the column as one of the following built-in data
types, and for character string data types, specifies the subtype. If you
define the table with a LOB column (CLOB, BLOB, or DBCLOB), you must
also define a ROWID column. For more information, see “Creating a table
with LOB columns” on page 623.

INTEGER or INT
For a large integer.

35. Columns with distinct types based on LOB or row ID types count as LOB or ROWID columns.

check-constraint:

��
CONSTRAINT constraint-name

CHECK (check-condition) ��

CREATE TABLE

606 SQL Reference

SMALLINT
For a small integer.

FLOAT(integer)
For a floating-point number. If integer is between 1 and 21 inclusive, the
format is single precision floating-point. If the integer is between 22 and
53 inclusive, the format is double precision floating-point.

You can also specify:
REAL For single precision floating-point
DOUBLE For double precision floating-point
DOUBLE PRECISION For double precision floating-point
FLOAT For double precision floating-point

DECIMAL(integer,integer) or DEC(integer,integer)
For a decimal number. The first integer is the precision of the number.
That is, the total number of digits, which can range from 1 to 31. The
second integer is the scale of the number. That is, the number of digits
to the right of the decimal point, which can range from 0 to the
precision of the number. You can also specify:
DECIMAL(integer) For DECIMAL(integer,0)
DECIMAL For DECIMAL(5,0)

The word NUMERIC can be used in place of DECIMAL. For example,
NUMERIC(8) is equivalent to DECIMAL(8). Unlike DECIMAL,
NUMERIC has no allowable abbreviation.

CHARACTER(integer) or CHAR(integer)
For a fixed-length character string of length integer, which can range
from 1 to 255. If the length specification is omitted, a length of 1
character is assumed.

VARCHAR(integer), CHAR VARYING(integer), or CHARACTER
VARYING(integer)

For a varying-length character string of maximum length integer, which
can range from 1 to the maximum record size minus 8 bytes. See
Table 41 on page 624 to determine the maximum record size. An
integer greater than 255 defines a long string column.

FOR subtype DATA
Specifies a subtype for a character string column, which is a column
with a data type of CHAR, VARCHAR, LONG VARCHAR, or CLOB. Do
not use the FOR DATA clause with columns of any other data type
(including any distinct type). subtype can be one of the following:

SBCS
Column holds single-byte data.

MIXED
Column holds mixed data. Do not specify MIXED if the value of
field MIXED DATA on installation panel DSNTIPF is NO unless the
CCSID UNICODE clause is also specified, or the table is being
created in a Unicode table space or database.

If you do not specify the FOR clause, the column is defined with a
default subtype. For ASCII or EBCDIC data:

v The default is SBCS when the value of field MIXED DATA on
installation panel DSNTIPF is NO.

v The default is MIXED when the value is YES.

CREATE TABLE

Chapter 5. Statements 607

|
|
|

|
|

|
|

|

For Unicode data, the default subtype is mixed.

BIT
Column holds BIT data. Do not specify BIT for a CLOB column.

If you do not specify the FOR clause, the column is defined with a
default subtype. The default is SBCS when the value of field MIXED
DATA on installation panel DSNTIPF is NO. The default is MIXED when
the value is YES.

CLOB(integer [K|M|G]), CHAR LARGE OBJECT(integer [K|M|G]), or
CHARACTER LARGE OBJECT(integer [K|M|G])

For a character large object (CLOB) string of maximum length integer,
which can range from 1 to 2 147 483 647. A CLOB column has a
varying-length and is a long string column regardless of its length.

If the length specification is omitted, a length of 1M bytes is assumed.

The maximum value that can be specified for integer depends on
whether a units indicator is also specified as shown in the following list.

integer The maximum value for integer is 2 147 483 647. The
maximum length of the string is integer.

integer K The maximum value for integer is 2 097 152. The
maximum length is 1024 times integer.

integer M The maximum value for integer is 2048. The maximum
length is 1 048 576 times integer.

integer G The maximum value for integer is 2. The maximum
length is 1 073 741 824 times integer.

If you specify a value that evaluates to 2 gigabytes (2 147 483 648),
DB2 uses a value that is one byte less, or 2 147 483 647.

BLOB (integer [K|M|G]), BINARY LARGE OBJECT(integer [K|M|G])
For a binary large object (BLOB) string of maximum length integer,
which can range from 1 to 2 147 483 647. A BLOB column has a
varying-length and is a long string column regardless of its length.

If the length specification is omitted, a length of 1M bytes is assumed.

The meaning of integer K|M|G is the same as for CLOB.

GRAPHIC(integer)
For a fixed-length graphic string of length integer, which can range from
1 to 127. If the length specification is omitted, a length of 1 character is
assumed.

VARGRAPHIC(integer)
For a varying-length graphic string of maximum length integer, which
must range from 1 to n/2, where n is the maximum row size minus 2
bytes. An integer longer than 127 defines a long string column.

DBCLOB(integer [K|M|G])
For a double-byte character large object (DBCLOB) string of maximum
length integer. A DBCLOB column has a varying-length and is a long
string column regardless of length.

The meaning of integer K|M|G is similar to CLOB. The difference is that
the number specified is the number of double-byte characters and the
maximum length is 1 073 741 823.

CREATE TABLE

608 SQL Reference

|

If the length specification is omitted, a length of 1M characters is
assumed.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

ROWID
For a row ID type.

A table can have only one ROWID column. The values in a ROWID
column are unique for every row in the table and cannot be updated.
You must specify NOT NULL with ROWID.

distinct-type-name
Specifies the data type of the column is a distinct type (a user-defined data
type). The length, precision, and scale of the column are respectively the
length, precision, and scale of the source type of the distinct type. The
privilege set must implicitly or explicitly include the USAGE privilege on the
distinct type.

The encoding scheme of the distinct type must be the same as the
encoding scheme of the table. The subtype for the distinct type, if it has the
attribute, is the subtype with which the distinct type was created.

If the column is to be used in the definition of the foreign key of a referential
constraint, the data type of the corresponding column of the parent key
must have the same distinct type.

NOT NULL
Prevents the column from containing null values.

CONSTRAINT—constraint-name
Names the constraint. If a constraint name is not specified, a unique
constraint name is generated. If the name is specified, it must be different
from the names of any referential, check, primary key, or unique key
constraints previously specified on the table.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

The NOT NULL clause must be specified with this clause. PRIMARY KEY
cannot be specified more than once in a column definition, and must not be
specified if the UNIQUE clause is specified in the definition or if the
definition is for a LOB or ROWID column.

The table is marked as unavailable until its primary index is explicitly
created unless the CREATE TABLE statement is processed by the schema
processor. In that case, DB2 implicitly creates an index to enforce the
uniqueness of the primary key and the table definition is considered
complete. (For more information about implicitly created indexes, see
“Implicitly created indexes” on page 625.)

UNIQUE
Provides a shorthand method of defining a unique key composed of a

CREATE TABLE

Chapter 5. Statements 609

|
|
|
|
|

single column. Thus, if UNIQUE is specified in the definition of column C,
the effect is the same as if the UNIQUE(C) clause is specified as a
separate clause.

The NOT NULL clause must be specified with this clause. UNIQUE cannot
be specified more than once in a column definition and must not be
specified if the PRIMARY KEY clause is specified in the column definition or
if the definition is for a LOB or ROWID column.

The table is marked as unavailable until all the required indexes are
explicitly created unless the CREATE TABLE statement is processed by the
schema processor. In that case, DB2 implicitly creates the indexes that are
required for the unique keys and the table definition is considered complete.
(For more information about implicitly created indexes, see “Implicitly
created indexes” on page 625.)

references-clause
The references-clause of a column-definition provides a shorthand method
of defining a foreign key composed of a single column. Thus, if
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column.

Do not specify references-clause in the definition of a LOB or ROWID
column; a LOB or ROWID column cannot be a foreign key.

CHECK (check-condition)
CHECK (check-condition) provides a shorthand method of defining a check
constraint that applies to a single column.

DEFAULT
The default value assigned to the column in the absence of a value
specified on INSERT or LOAD. Do not specify DEFAULT for a ROWID
column or an identity column (a column that is defined AS IDENTITY); DB2
generates default values. If a value is not specified after DEFAULT, the
default value depends on the data type of the column, as follows:

Data Type Default Value
Numeric 0
Fixed-length string Blanks
Varying-length string A string of length 0
Date CURRENT DATE
Time CURRENT TIME
Timestamp CURRENT TIMESTAMP
Distinct type The default of the source data type

A default value other than the one that is listed above can be specified in
one of the following forms, except for a LOB column. The only form that can
be specified for a LOB column is DEFAULT NULL. Unlike other
varying-length strings, a LOB column can only have the default value of a
zero-length string as listed above or null.

constant
Specifies a constant as the default value for the column. The value of
the constant must conform to the rules for assigning that value to the
column.

USER
Specifies the value of the USER special register at the time of INSERT
or LOAD as the default value for the column. If USER is specified, the

CREATE TABLE

610 SQL Reference

|

|
|
|
|
|
|

|
|

|
|
|

data type of the column must be a character string with a length
attribute greater than or equal to the length attribute of the USER
special register, which is 8 bytes.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the
time of INSERT or LOAD as the default value for the column. If
CURRENT SQLID is specified, the data type of the column must be a
character string with a length attribute greater than or equal to the
length attribute of the CURRENT SQLID special register, which is 8
bytes.

NULL
Specifies null as the default value for the column.

cast-function-name
The name of the cast function that matches the name of the distinct
type for the column. A cast function can only be specified if the data
type of the column is a distinct type.

The schema name of the cast function, whether it is explicitly specified
or implicitly resolved through function resolution, must be the same as
the explicitly or implicitly specified schema name of the distinct type.

In a given column definition:

v DEFAULT and FIELDPROC cannot both be specified.

v NOT NULL and DEFAULT NULL cannot both be specified.

v DEFAULT cannot be specified for a ROWID column or an identity
column.

v Omission of NOT NULL and DEFAULT for a column other than an
identity column is an implicit specification of DEFAULT NULL. For an
identity column, it is an implicit specification of NOT NULL, and DB2
generates default values.

Table 40 summarizes the effect of specifying the various combinations of
the NOT NULL and DEFAULT clauses on the CREATE TABLE statement
column-description clause.

Table 40. Effect of specifying combinations of the NOT NULL and DEFAULT clauses

If NOT NULL is: And DEFAULT is: The effect is:

Specified1 Omitted An error occurs if a value is not
provided for the column on INSERT
or LOAD.

Specified without an operand The system defined nonnull default
value is used.

constant The specified constant is used as the
default value.

USER The value of the USER special
register at the time of INSERT or
LOAD is used as the default value.

CURRENT SQLID The SQL authorization ID of the
process at the time of INSERT or
LOAD is used as the default value.

NULL An error occurs during the execution
of CREATE TABLE.

CREATE TABLE

Chapter 5. Statements 611

Table 40. Effect of specifying combinations of the NOT NULL and DEFAULT
clauses (continued)

If NOT NULL is: And DEFAULT is: The effect is:

Omitted Omitted Equivalent to an implicit specification
of DEFAULT NULL.

Specified without an operand The system defined nonnull default
value is used.

constant The specified constant is used as the
default value.

USER The value of the USER special
register at execution time is used as
the default value.

CURRENT SQLID The SQL authorization ID of the
process is used as the default value.

NULL Null is used as the default value.

Note: The table does not apply to a column with a ROWID data type or to an identity
column.

GENERATED
Indicates that DB2 generates values for the column. You must specify
GENERATED if the column is to be considered an identity column (a
column defined with the AS IDENTITY clause) or the data type of the
column is a ROWID (or a distinct type that is based on a ROWID).

ALWAYS
Indicates that DB2 will always generate a value for the column when a
row is inserted into the table. ALWAYS is the recommended value
unless you are using data propagation.

BY DEFAULT
Indicates that DB2 will generate a value for the column when a row is
inserted into the table unless a value is specified.

For a ROWID column, DB2 uses a specified value only if it is a valid
row ID value that was previously generated by DB2 and the column has
a unique, single-column index. Until this index is created on the ROWID
column, the SQL INSERT statement and the LOAD utility cannot be
used to add rows to the table. If the value of special register CURRENT
RULES is 'STD' when the CREATE TABLE statement is processed,
DB2 implicitly creates the index on the ROWID column. The name of
this index is 'I' followed by the first ten characters of the column name
followed by seven randomly generated characters. If the column name
is less than ten characters, DB2 adds underscore characters to the end
of the name until it has ten characters. The implicitly created index has
the COPY NO attribute.

For an identity column, DB2 inserts a specified value but does not verify
that it is a unique value for the column unless the identity column has a
unique, single-column index.

BY DEFAULT is the recommended value only when you are using data
propagation.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can
have only one identity column. AS IDENTITY can be specified only if

CREATE TABLE

612 SQL Reference

the data type for the column is an exact numeric type with a scale of
zero (SMALLINT, INTEGER, DECIMAL with a scale of zero, or a
distinct type based on one of these types).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value for the identity column. The value can be
any positive or negative value that could be assigned to the column
without non-zero digits existing to the right of the decimal point.

If a value is not explicitly specified when the identity column is
defined, the default is the MINVALUE for an ascending sequence
and the MAXVALUE for a descending sequence. This value is not
necessarily the value that a sequence would cycle to after reaching
the maximum or minimum value of the sequence. The START
WITH clause can be used to start a sequence outside the range
that is used for cycles. The range used for cycles is defined by
MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The value can be any positive or negative value that is not
0, does not exceed the value of a large integer constant, and could
be assigned to the column without any non-zero digits existing to
the right of the decimal point. The default is 1.

If the value is positive, the sequence of values for the identity
column ascends. If the value is negative, the sequence of values
descends.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the
performance of inserting rows into a table.

CACHE integer
Specifies the number of values of the identity column sequence
that DB2 preallocates and keeps in memory. The minimum
value that can be specified is 2, and the maximum is the largest
value that can be represented as an integer. The default is 20.

During a system failure, all cached identity column values that
are yet to be assigned are lost, and thus, will never be used.
Therefore, the value specified for CACHE also represents the
maximum number of values for the identity column that could
be lost during a system failure.

In a data sharing environment, each member gets its own
range of consecutive values to assign. For example, if CACHE
20 is specified, DB2A might get values 1-20 for a particular
sequence, and DB2B might get values 21-40. Therefore, if
transactions from different members generate values for the
same identity column, the values that are assigned might not be
in the order in which they are requested.

The minimum value is 2. The maximum is the largest value that
can be represented as an integer. The default is CACHE 20.

CREATE TABLE

Chapter 5. Statements 613

|
|
|
|
|
|
|
|

NO CACHE
Specifies that values for the identity column are not
preallocated.

In a data sharing environment, use NO CACHE if you need to
guarantee that the identity values are generated in the order in
which they are requested.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to
generate values after reaching either the maximum or minimum
value of the sequence.

CYCLE
Specifies that values continue to be generated for this
column after the maximum or minimum value has been
reached. If this option is used, after an ascending sequence
reaches the maximum value of the sequence, it generates
its minimum value. After a descending sequence reaches its
minimum value of the sequence, it generates its maximum
value. The maximum and minimum values for the column
determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be
generated by DB2 for an identity column. However, if a
unique index exists on the identity column, and a
non-unique value is generated for it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity
column once the maximum or minimum value for the
sequence has been reached. This is the default.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that
is generated for this identity column. This value can be any
positive or negative value that could be assigned to this
column, but the value must be greater than the minimum value.

If a value is not explicitly specified when the identity column is
defined, this is the maximum value of the data type (and
precision, if DECIMAL) for an ascending sequence; or the
START WITH value, or -1 if START WITH was not specified, for
a descending sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is
generated for this identity column. This value can be any
positive or negative value that could be assigned to this
column, but the value must be less than the maximum value.

If a value is not explicitly specified when the identity column is
defined, this is the START WITH value, or 1 if START WITH
was not specified, for an ascending sequence; or the minimum
value of the data type (and precision, if DECIMAL) for a
descending sequence.

references-clause
The references-clause of a column-definition provides a shorthand method
of defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the

CREATE TABLE

614 SQL Reference

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column.

Do not specify the references-clause in the definition of a LOB or ROWID
column because a LOB or ROWID column cannot be a foreign key.

check-constraint
The check-constraint of a column-definition has the same effect as
specifying a table check constraint in a separate ADD check-constraint
clause. For conformance with the SQL standard, a table check constraint
specified in the definition of column C should not reference any columns
other than C.

Do not specify a table check constraint in the definition of a LOB or ROWID
column.

FIELDPROC program-name
Designates program-name as the field procedure exit routine for the
column. Writing a field procedure exit routine is described in Appendix B
(Volume 2) of DB2 Administration Guide. Field procedures can only be
specified for short string columns that do not have a nonnull default value.
For more information about string comparisons with field procedures, see
“String comparisons” on page 73.

The field procedure encodes and decodes column values: before a value is
inserted in the column, it is passed to the field procedure for encoding.
Before a value from the column is used by a program, it is passed to the
field procedure for decoding. A field procedure could be used, for example,
to alter the sorting sequence of values entered in the column.

The field procedure is also invoked during the processing of the CREATE
TABLE statement. When so invoked, the procedure provides DB2 with the
column’s field description. The field description defines the data
characteristics of the encoded values. By contrast, the information you
supply for the column in the CREATE TABLE statement defines the data
characteristics of the decoded values.

constant
Is a parameter that is passed to the field procedure when it is invoked.
A parameter list is optional. The nth parameter specified in the
FIELDPROC clause on CREATE TABLE corresponds to the nth
parameter of the specified field procedure. The maximum length of the
parameter list is 254 bytes, including commas but excluding insignificant
blanks and the delimiting parentheses.

If you omit FIELDPROC, the column has no field procedure.

End of column-definition

unique-constraint

CONSTRAINT constraint-name
Names the primary key or unique key constraint. If a constraint name is not
specified, a unique constraint name is generated. If a name is specified, it must
be different from the names of any referential, check, primary key, or unique
key constraints previously specified on the table.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. The clause must not

CREATE TABLE

Chapter 5. Statements 615

|
|
|
|
|

be specified more than once and the identified columns must be defined as
NOT NULL. Each column-name must be an unqualified name that identifies a
column of the table except a LOB or ROWID column , and the same column
must not be identified more than once. The number of identified columns must
not exceed 64, and the sum of their length attributes must not exceed 255.

The table is marked as unavailable until its primary index is explicitly created
unless the CREATE TABLE statement is processed by the schema processor.
In that case, DB2 implicitly creates an index to enforce the uniqueness of the
primary key and the table definition is considered complete. (For more
information about implicitly created indexes, see “Implicitly created indexes” on
page 625.)

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table except a LOB
column, and the same column must not be identified more than once. Each
identified column must be defined as NOT NULL. The number of identified
columns must not exceed 64 and the sum of their length attributes must not
exceed 255.

A unique key is a duplicate if it is the same as the primary key or a previously
defined unique key. The specification of a duplicate unique key is ignored with a
warning.

The table is marked as unavailable until all the required indexes are explicitly
created unless the CREATE TABLE statement is processed by the schema
processor. In that case, DB2 implicitly creates the indexes that are required for
the unique keys and the table definition is considered complete. (For more
information about implicitly created indexes, see “Implicitly created indexes” on
page 625.)

End of unique-constraint

referential-constraint

CONSTRAINT constraint-name
Names the referential constraint. If a constraint name is not specified, a unique
constraint name is generated. If a name is specified, it must be different from
the names of any referential, check, primary key, or unique key constraints
previously specified on the table.

FOREIGN KEY constraint-name (column-name,...) references-clause
Each specification of the FOREIGN KEY clause defines a referential constraint
with the specified name.

The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of the table except a LOB or ROWID column, and the same column
must not be identified more than once. The number of identified columns must
not exceed 64, and the sum of their length attributes must not exceed 255
minus the number of columns that allow null values. The referential constraint is
a duplicate if the FOREIGN KEY and parent table are the same as the
FOREIGN KEY and parent table of a previously defined referential constraint.
The specification of a duplicate referential constraint is ignored with a warning.

CREATE TABLE

616 SQL Reference

|
|
|
|
|

references-clause

REFERENCES table-name (column-name,...)
The table name specified after REFERENCES must identify a table that exists
at the current server36, but it must not identify a catalog table. In the following
discussion, let T2 denote an identified table and let T1 denote the table that you
are creating (T1 and T2 cannot be the same table36).

T2 must have a unique index and the privilege set must include the ALTER or
REFERENCES privilege on the parent table, or the REFERENCES privilege on
the columns of the nominated parent key.

The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The identified column cannot be a LOB or a ROWID column. The
same column must not be identified more than once.

The list of column names in the parent key must be identical to the list of
column names in a primary key or unique index key in the parent table T2. The
column names must be specified in the same order as in the primary key or
unique index key. If the list of column names does not identify a primary key or
unique key in the parent table, a unique key constraint on the parent table is
created implicitly.

If a list of column names is not specified, then T2 must have a primary key.
Omission of a list of column names is an implicit specification of the columns of
the primary key for T2.

The specified foreign key must have the same number of columns as the parent
key of T2 and, except for their names, default values, null attributes and check
constraints, the description of the nth column of the foreign key must be
identical to the description of the nth column of the nominated parent key. If the
foreign key includes a column defined as a distinct type, the corresponding
column of the nominated parent key must be the same distinct type. If a column
of the foreign key has a field procedure, the corresponding column of the
nominated parent key must have the same field procedure and an identical field
description. A field description is a description of the encoded value as it is
stored in the database for a column that has been defined to have an
associated field procedure.

The referential constraint specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent. A description of
the referential constraint is recorded in the catalog.

ON DELETE
The delete rule of the relationship is determined by the ON DELETE clause.
For more on the concepts used here, see “Referential constaints” on
page 7.

SET NULL must not be specified unless some column of the foreign key
allows null values. The default value for the rule depends on the value of
the CURRENT RULES special register when the CREATE TABLE

36. This restriction is relaxed when the statement is processed by the schema processor and the other table is created within the
same CREATE SCHEMA.

CREATE TABLE

Chapter 5. Statements 617

|
|
|
|
|
|

statement is processed. If the value of the register is 'DB2', the delete rule
defaults to RESTRICT; if the value is 'STD', the delete rule defaults to NO
ACTION.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2. Then:

v If RESTRICT or NO ACTION is specified, an error occurs and no rows
are deleted.

v If CASCADE is specified, the delete operation is propagated to the
dependents of p in T1.

v If SET NULL is specified, each nullable column of the foreign key of each
dependent of p in T1 is set to null.

Let T3 denote a table identified in another FOREIGN KEY clause (if any) of
the CREATE TABLE statement. The delete rules of the relationships
involving T2 and T3 must be the same and must not be SET NULL if:

v T2 and T3 are the same table.

v T2 is a descendent of T3 and the deletion of rows from T3 cascades to
T2.

v T2 and T3 are both descendents of the same table and the deletion of
rows from that table cascades to both T2 and T3.

End of references-clause

check-constraint

CONSTRAINT constraint-name
Names the table check constraint. The constraint name must be different from
the names of any referential, check, primary key, or unique key constraints
previously specified on the table.

If constraint-name is not specified, a unique constraint name is derived from the
name of the first column in the check-condition specified in the definition of the
table check constraint.

CHECK (check-condition)
Defines a table check constraint. A check-condition can evaluate to unknown if
a column that is an operand of the predicate is null. A check-condition that
evaluates to unknown does not violate the check constraint. A check-condition
is a search condition, with the following restrictions:

v It can refer only to columns of table table-name; however, the columns
cannot be LOB or ROWID columns.

v It can be up to 3800 bytes long, not including redundant blanks.

v It must not contain any of the following:
– Subselects
– Built-in or user-defined functions
– Cast functions other than those created when the distinct type was

created
– Host variables
– Parameter markers
– Special registers
– Columns that include a field procedure
– CASE Expressions

CREATE TABLE

618 SQL Reference

|
|
|
|

|
|
|

– Quantified predicates
– EXISTS predicates

v If a check-condition refers to a long string column, the reference must occur
within a LIKE predicate.

v The AND and OR logical operators can be used between predicates. The
NOT logical operator cannot be used.

v The first operand of every predicate must be the column name of a column in
the table.

v The second operand in the check-condition must be either a constant or a
column name of a column in the table.
– If the second operand of a predicate is a constant, and if the constant is:

- A floating-point number, then the column data type must be floating
point.

- A decimal number, then the column data type must be either floating
point or decimal.

- An integer number, then the column data type must not be a small
integer.

- A small integer number, then the column data type must be small
integer.

- A decimal constant, then its precision must not be larger than the
precision of the column.

– If the second operand of a predicate is a column, then both columns of
the predicate must have:

- The same data type.

- Identical descriptions with the exception that the specification of the
NOT NULL and DEFAULT clauses for the columns can be different, and
that string columns with the same data type can have different length
attributes

End of check-constraint

LIKE table-name or view-name
Specifies that the columns of the table have exactly the same name and
description as the columns of the identified table or view. The name specified
after LIKE must identify a table or view that exists at the current server or a
declared temporary table. The privilege set must implicitly or explicitly include
the SELECT privilege on the identified table or view. An identified table must not
be an auxiliary table. An identified view must not include a column that is
considered to be a ROWID column or an identity column. (For more
information, see “Notes” on page 622.)

The use of LIKE is an implicit definition of n columns, where n is the number of
columns in the identified table or view. The implicit definition includes all
attributes of the n columns as they are described in SYSCOLUMNS with these
exceptions:

v When a table is identified in the LIKE clause and a column in the table has a
field procedure, the corresponding column of the new table has the same
field procedure and the field description. However, the field procedure is not
invoked during the execution of the CREATE TABLE statement.

v When a table is identified in the LIKE clause and a column in the table an
identity column, the corresponding column of the new table inherits only the
data type of the identity column; none of the identity attributes of the column
are inherited unless the INCLUDING IDENTITY clause is specified.

CREATE TABLE

Chapter 5. Statements 619

#
#

v When a view is identified in the LIKE clause, the default value that is
associated with the corresponding column of the new table depends on the
column of the underlying base table for the view. If the column of the base
table does not have a default, the new column does not have a default. If the
column of the base table has a default, the default of the new column is:

– Null if the column of the underlying base table allows nulls.

– The default for the data type of the underlying base table if the underlying
base table does not allow nulls.

The above defaults are chosen regardless of the current default of the base
table column. Also, no column in the new table has a field procedure
because the catalog descriptions of view columns do not include field
procedures.

The implicit definition does not include any other attributes of the identified table
or view. For example, the new table does not have a primary key or foreign key.
The table is created in the table space implicitly or explicitly specified by the IN
clause, and the table has any other optional clause only if the optional clause is
specified.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that a column of the new table inherits all of the identity attributes
of the identity column. If the table identified by LIKE does not have an
identity column, the INCLUDING IDENTITY clause is ignored. If the LIKE
clause identifies a view, INCLUDING IDENTITY COLUMN ATTRIBUTES
cannot be specified.

WITH RESTRICT ON DROP
Indicates that the table can be dropped only by using REPAIR DBD DROP. In
addition, the database and table space that contain the table can be dropped
only by using REPAIR DBD DROP.

IN database-name.table-space-name or IN DATABASE database-name
Names the database and table space in which the table is created. Both forms
are optional; the default is IN DATABASE DSNDB04.

You can name a database (with database-name), a table space (with
table-space-name), or both. If you name a database, it must be described in the
current server’s catalog, and must not be DSNDB06 or a work file database.

If you use IN DATABASE, either explicitly or by default, a table space is
implicitly created in database-name. The name of the table space is derived
from the table name. Its other attributes are those it would have if it were
created by a CREATE TABLESPACE statement with all optional clauses
omitted.

If you name a table space, it must not be one that was created implicitly, be a
partitioned table space that already contains a table, or be a LOB table space.
If you name a partitioned table space, you cannot load or use the table until its
partitioned index is created.

If you name both a database and a table space, the table space must belong to
the database you name. If you name only a table space, it must belong to
database DSNDB04.

To create a table space implicitly, the privilege set must have: SYSADM or
SYSCTRL authority; DBADM, DBCTRL, or DBMAINT authority for the database;
or the CREATETS privilege for the database. You must also have the USE
privilege for the database’s default buffer pool and default storage group.

CREATE TABLE

620 SQL Reference

#
#
#

If you name a table space, you must have SYSADM or SYSCTRL authority,
DBADM authority for the database, or the USE privilege for the table space.

EDITPROC program-name
Designates program-name as the edit routine for the table. The edit routine,
which must be provided by the current server’s site, is invoked during the
execution of LOAD, INSERT, UPDATE, and all row retrieval operations on the
table.

An edit routine receives an entire table row, and can transform that row in any
way. Also, it receives a transformed row and must change the row back to its
original form. For information on writing an EDITPROC exit routine, see
Appendix B (Volume 2) of DB2 Administration Guide.

You must not specify an edit routine for a table with a LOB, ROWID, or identity
column.

If you omit EDITPROC, the table has no edit procedure.

VALIDPROC program-name
Designates program-name as the validation exit routine for the table. Writing a
validation exit routine is described in Appendix B (Volume 2) of DB2
Administration Guide.

The validation routine can inhibit a load, insert, update, or delete operation on
any row of the table: before the operation takes place, the procedure is passed
the row. The values represented by any LOB columns in the table are not
passed. After examining the row, the procedure returns a value that indicates
whether the operation should proceed. A typical use is to impose restrictions on
the values that can appear in various columns.

A table can have only one validation procedure at a time. In an ALTER TABLE
statement, you can designate a replacement procedure or discontinue the use
of a validation procedure.

If you omit VALIDPROC, the table has no validation routine.

AUDIT
Identifies the types of access to this table that causes auditing to be performed.
For information about audit trace classes, see Part 3 (Volume 1) of DB2
Administration Guide.

NONE
Specifies that no auditing is to be done when this table is accessed. This is
the default.

CHANGES
Specifies that auditing is to be done when the table is accessed during the
first insert, update, or delete operation performed by each unit of work.
However, the auditing is done only if the appropriate audit trace class is
active.

ALL
Specifies that auditing is to be done when the table is accessed during the
first operation of any kind performed by each unit of work of a utility or
application process. However, the auditing is done only if the appropriate
audit trace class is active and the access is not performed with COPY,
RECOVER, REPAIR, or any stand-alone utility.

If the table is altered with an ALTER TABLE statement, the ALTER TABLE
statement is audited only if AUDIT CHANGES or AUDIT ALL is specified and
the appropriate audit trace class is active.

CREATE TABLE

Chapter 5. Statements 621

OBID integer
Identifies the OBID to be used for this table. An OBID is the identifier for an
object’s internal descriptor. The integer must not identify an existing or
previously used OBID of the database. If you omit OBID, DB2 generates a
value.

The following statement retrieves the value of OBID:
SELECT OBID

FROM SYSIBM.SYSTABLES
WHERE CREATOR = 'ccc' AND NAME = 'nnn';

Here, nnn is the table name and ccc is the table’s creator.

DATA CAPTURE
Specifies whether the logging of SQL INSERT, UPDATE, and DELETE
operations on the table is augmented by additional information. For guidance on
intended uses of the expanded log records, see:

v The description of data propagation to IMS in DataPropagator NonRelational
MVS/ESA Administration Guide

v The instructions for using Remote Recovery Data Facility (RRDF) in Remote
Recovery Data Facility Program Description and Operations

v The instructions for reading log records in Appendix C (Volume 2) of DB2
Administration Guide

NONE
Do not record additional information to the log. This is the default.

CHANGES
Write additional data about SQL updates to the log. Information about the
values that are represented by any LOB columns is not available.

CCSID encoding-scheme
Specifies the encoding scheme for string data stored in the table. If the IN
clause is specified, the value must agree with the encoding scheme that is
already in use for the table space or database specified in the IN clause. The
specific CCSIDs for SBCS, BIT, and MIXED data are determined by the table
space or database specified in the IN clause. If the IN clause is not specified,
the value specified is used for the table being created as well as for the table
space that DB2 implicitly creates. The specific CCSIDs for SBCS, BIT, and
MIXED data are determined by the default CCSIDs for the server for the
specified encoding scheme. The valid values are ASCII, EBCDIC, and
UNICODE.

If the CCSID clause is not specified, the encoding scheme for the table
depends on the IN clause:

v If the IN clause is specified, the encoding scheme already in use for the table
space or database specified in the IN clause is used.

v If the IN clause is not specified, the encoding scheme of the new table is the
same as the scheme for the table that is specified in the LIKE clause.

Notes
Table design: Designing tables is part of the process of database design. For
information on design, see An Introduction to DB2 for OS/390.

Creating a table while a utility runs: You cannot use CREATE TABLE while a
DB2 utility has control of the table space implicitly or explicitly specified by the IN
clause.

CREATE TABLE

622 SQL Reference

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|
|

Creating a table in a segmented table space: A table cannot be created in a
segmented table space if:

v The available space in the data set is less than the segment size specified for
the table space, and

v The data set cannot be extended.

Creating a table with DBCS and mixed columns: You cannot create a table with
a GRAPHIC, VARGRAPHIC, DBCLOB, or CHAR FOR MIXED DATA column when
the setting for installation option MIXED DATA is NO.

Distinct type columns based on LOB and ROWID columns: Because a distinct
type is subject to the same restrictions as its source type, all the syntactic rules that
apply to LOB columns (CLOB, DBCLOB, and BLOB) and ROWID columns apply to
distinct type columns that are sourced on LOBs and row IDs. For example, a table
cannot have both a ROWID column and a column with a distinct type that is
sourced on a row ID.

Creating a table with LOB columns: If you create a base table with a LOB
column (CLOB, DBCLOB, or BLOB), you must also define a ROWID column for the
table. The definition of the table is marked incomplete until an auxiliary table is
created in a LOB table space for each LOB column in the base table and index is
created on each auxiliary table. The auxiliary table stores the actual values of a
LOB column. If you create a table with a LOB column in a partitioned table space,
there must be one auxiliary table defined for each partition of the base table space.

Unless DB2 implicitly creates the LOB table space, auxiliary table, and index on the
auxiliary table for each LOB column in the base table, you need to create these
objects using the CREATE TABLESPACE, CREATE AUXILIARY TABLE, and
CREATE INDEX statements.

If the value of special register CURRENT RULES is 'STD' when the CREATE
STATEMENT is processed, DB2 implicitly creates the LOB table space, auxiliary
table, and index on the auxiliary table for each LOB column in the base table. DB2
chooses the names of implicitly created objects using these conventions:

LOB table space
Name is 8 characters long, consisting of an ’L’ followed by 7
random characters.

auxiliary table Name is 18 characters long. The first five characters of the name
are the first five characters of the name of the base table. The
second five characters are the first five characters of the name of
the LOB column. The last eight characters are randomly generated.
If a base table name or a LOB column name is less than five
characters, DB2 adds underscore characters to the name to pad it
to a length of five characters.

index on the auxiliary table
Name is 18 characters long. The first character of the name is an
’I’. The next ten characters are the first ten characters of the name
of the auxiliary table. The last seven characters are randomly
generated. The index has the COPY NO attribute.

The other attributes of these implicitly created objects are those that would have
been created by their respective CREATE statements with all optional clauses
omitted, with the following exceptions:

v The database name is the database name of the base table.

CREATE TABLE

Chapter 5. Statements 623

|
|

|
|

|

|
|
|

v If the size of the LOB column is greater than 1 GB, the LOG option for the LOB
table space is LOG NO.

Utility REPORT TABLESPACESET identifies the LOB table spaces that DB2
implicitly created.

Maximum record size: The maximum record size of a table depends on the page
size of the table space and whether the EDITPROC clause is specified, as shown
in Table 41. The page size of the table space is the size of its buffer, which is
determined by the BUFFERPOOL clause that was explicitly or implicitly specified
when the table space was created.

Table 41. Maximum Record Size, in Bytes

EDITPROC
Page Size
= 4KB

Page Size
= 8KB

Page Size
= 16KB

Page Size
= 32KB

NO 4056 8138 16330 32714

YES 4046 8128 16320 32704

The maximum record size corresponds to the maximum length of a VARCHAR
column if that column is the only column in the table.

Byte counts: The sum of the byte counts of the columns must not exceed the
maximum row size of the table. The maximum row size is eight less than the
maximum record size.

For columns that do not allow null values, Table 42 gives the byte counts of
columns by data type. For columns that allow null values, the byte count is one
more than shown in the table.

Table 42. Byte Counts of Columns by Data Type

Data Type Byte Count

INTEGER 4

SMALLINT 2

FLOAT(n) If n is between 1 and 21, the byte count is 4. If n is between 22
and 53, the byte count is 8.

DECIMAL INTEGER(p/2)+1, where p is the precision

CHAR(n) n

VARCHAR(n) n+2 (For LONG VARCHAR, see “Byte count of a LONG
VARCHAR or LONG VARGRAPHIC column” on page 625.)

CLOB 6

BLOB 6

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2 (For LONG VARGRAPHIC, see “Byte count of a LONG
VARCHAR or LONG VARGRAPHIC column” on page 625.)

DBCLOB 6

DATE 4

TIME 3

TIMESTAMP 10

ROWID 19

CREATE TABLE

624 SQL Reference

Table 42. Byte Counts of Columns by Data Type (continued)

Data Type Byte Count

distinct type The length of the source data type upon which the distinct type
was based

Byte count of a LONG VARCHAR or LONG VARGRAPHIC column: To calculate
the byte count, let:

m be the maximum row size (8 less than the maximum record size)

i be the sum of the byte counts of all columns in the table that are not LONG
VARCHAR or LONG VARGRAPHIC

j be the number of LONG VARCHAR and LONG VARGRAPHIC columns in
the table

k be the number of LONG VARCHAR and LONG VARGRAPHIC columns that
allow nulls.

The count is 2*(INTEGER((INTEGER((m-i-k)/j))/2)).

Length of a LONG column: To find the character count:
1. Find the byte count from “Byte count of a LONG VARCHAR or LONG

VARGRAPHIC column”.
2. Subtract 2.
3. If the data type is LONG VARGRAPHIC, divide the result by 2. If the result is

not an integer, drop the fractional part.

Implicitly created indexes: When the PRIMARY KEY or UNIQUE clause is used in
the CREATE TABLE statement and the CREATE TABLE statement is processed by
the schema processor, DB2 implicitly creates the unique indexes used to enforce
the uniqueness of the primary or unique keys. Each index is created as if the
following CREATE INDEX statement were issued:
CREATE UNIQUE INDEX xxx ON table-name (column1,...)

Where:

v xxx is the name of the index that DB2 generates.

v table-name is the name of the table specified in the CREATE TABLE statement.

v (column1,...) is the list of column names that were specified in the UNIQUE or
PRIMARY KEY clause of the CREATE TABLE statement.

For more information about the schema processor, see Part 2 (Volume 1) of DB2
Administration Guide .

Creating a table like a view: If the LIKE clause is specified and the definition of
the table is being based on a view, the view must not include a ROWID column or
an identity column. A view column is considered to be an identity column if the
corresponding column of the table or view indirectly or directly maps to the name of
an identity column in a base table with these exceptions:

v The select-list of the view definition identifies the same identity column more than
once.

v The select-list of the view definition references multiple identity columns and thus
involves a join.

v A column in the view definition includes an expression that refers to an identity
column.

CREATE TABLE

Chapter 5. Statements 625

v The view definition includes a set operation (a union).

Using an identity column: When a table has an identity column, DB2 can
automatically generate sequential numeric values for the column as rows are
inserted into the table. Thus, identity columns are ideal for primary keys. Identity
columns and ROWID columns are similar in that both types of columns contain
values that DB2 generates. ROWID columns are used in large object (LOB) table
spaces and can be useful in direct-row access. ROWID columns contain values of
the ROWID data type, which returns a 40-byte VARCHAR value that is not regularly
ascending or descending. ROWID data values are therefore not well suited to many
application uses, such as generating employee numbers or product numbers. For
data that is not LOB data and that does not require direct-row access, identity
columns are usually a better approach, because identity columns contain existing
numeric data types and can be used in a wide variety of uses for which ROWID
values would not be suitable.

When a table is recovered to a point-in-time, it is possible that a large gap in the
sequence of generated values for the identity column might result. For example,
assume a table has an identity column that has an incremental value of 1 and that
the last generated value at time T1 was 100 and DB2 subsequently generates
values up to 1000. Now, assume that the table space is recovered back to time T1.
The generated value of the identity column for the next row that is inserted after the
recovery completes will be 1001, leaving a gap from 100 to 1001 in the values of
the identity column.

Sometimes you may need to change the attributes of an identity column. For
example, if you had defined an identity column with a data type of SMALLINT and
then run out of assignable values, you need to redefine the column as INTEGER.
To change the attributes of an identity column, you unload the data from the table,
drop the table, recreate the table, and reload the data.

But when you recreate the table, you must specify GENERATED BY DEFAULT and
a new START WITH value for the identity column. Using GENERATED BY
DEFAULT allows LOAD to reload the previously existing identity column values. You
cannot use GENERATED ALWAYS in this case, but not using it is not a problem
since DB2 always generates a value if a column value is not provided during
insertion of an identity column defined as GENERATED BY DEFAULT. The new
START WITH value should be the next value in the sequence from where the
original sequence of values left off; this value is the next value that DB2 would
generate first.

When wrapping is in effect, duplicate values for a column are allowed even when
the column is GENERATED ALWAYS, unless a unique index is defined on the
column. If there is a unique index on the column and all possible values have been
used, wrapping is possible only if rows are uploaded or deleted before wrapping
occurs.

Using tables with different encoding schemes: The CCSID clause determines
whether the data for a table is encoded in ASCII, EBCDIC, or Unicode. All created
tables that are referenced in an SQL statement must have the same encoding
scheme—the tables must be either all ASCII, all EBCDIC, or all Unicode. Once the
data is created in a table with the CREATE TABLE statement, you cannot mix
encoding schemes.

Dropping a table in a partitioned table space: You can only drop a table in a
partitioned table space by using the DROP TABLESPACE statement.

CREATE TABLE

626 SQL Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

Examples
Example 1: Create a table named DSN8710.DEPT in the table space DSN8S71D of
the database DSN8D71A. Name the table’s five columns DEPTNO, DEPTNAME,
MGRNO, ADMRDEPT, and LOCATION, allowing only MGRNO to contain nulls, and
designating DEPTNO as the only column in the table’s primary key. All five columns
hold character string data. Assuming a value of NO for the field MIXED DATA on
installation panel DSNTIPF, all five columns have the subtype SBCS.

CREATE TABLE DSN8710.DEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY(DEPTNO))
IN DSN8D71A.DSN8S71D;

Example 2: Create a table named DSN8710.PROJ in an implicitly created table
space of the database DSN8D71A. Assign the table a validation procedure named
DSN8EAPR.

CREATE TABLE DSN8710.PROJ
(PROJNO CHAR(6) NOT NULL,
PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,
RESPEMP CHAR(6) NOT NULL,
PRSTAFF DECIMAL(5,2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6) NOT NULL)
IN DATABASE DSN8D71A
VALIDPROC DSN8EAPR;

Example 3: Assume that table PROJECT has a non-primary unique key that
consists of columns DEPTNO and RESPEMP (the department number and
employee responsible for a project). Create a project activity table named ACTIVITY
with a foreign key on that unique key.

CREATE TABLE ACTIVITY
(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACTDEPT CHAR(3) NOT NULL,
ACTOWNER CHAR(6) NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
FOREIGN KEY (ACTDEPT,ACTOWNER)

REFERENCES PROJECT (DEPTNO,RESPEMP) ON DELETE RESTRICT)
IN DSN8D71A.DSN8S71D;

Example 4: Create an employee photo and resume table EMP_PHOTO_RESUME
that complements the sample employee table. The table contains a photo and
resume for each employee. Put the table in table space DSN8D71A.DSN8S71E.
Let DB2 always generate the values for the ROWID column.

CREATE TABLE DSN8710.EMP_PHOTO_RESUME
(EMPNO CHAR(6) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
EMP_PHOTO BLOBL(110K),
RESUME CLOB(5K)),
PRIMARY KEY EMPNO
IN DSN8D71A.DSN8S71E
CCSID EBCDIC;

CREATE TABLE

Chapter 5. Statements 627

Example 5: Create an EMPLOYEE table with an identity column named EMP_NO.
Define the identity column so that DB2 will always generate the values for the
column. Use the default value, which is 1, for the first value that should be assigned
and for the incremental difference between the subsequently generated consecutive
numbers.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
ID SMALLINT,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPTNO SMALLINT)
IN DSN8D71A.DSN8S71D;

CREATE TABLE

628 SQL Reference

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a simple, segmented, or partitioned
table space at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v The CREATETS privilege for the database
v DBADM, DBCTRL, or DBMAINT authority for the database
v SYSADM or SYSCTRL authority

Additional privileges might be required, as explained in the description of the
BUFFERPOOL and USING STOGROUP clauses.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the privileges
that are held by the SQL authorization ID of the process.

CREATE TABLESPACE

Chapter 5. Statements 629

Syntax

�� CREATE
LARGE
LOB

TABLESPACE table-space-name
DSNDB04

IN database-name

�

� �
(1)

using-block
free-block
gbpcache-block
trackmod-block

YES
LOG NO

YES
DEFINE NO

DSSIZE integer G
�

�

� �

MEMBER CLUSTER
NUMPARTS integer

, MEMBER CLUSTER

(1)
(PART integer using-block)

free-block
gbpcache-block
trackmod-block

NO
COMPRESS YES

SEGSIZE integer

�

� �
(1)

BUFFERPOOL bpname
ANY

LOCKSIZE TABLESPACE
TABLE
PAGE
ROW
LOB

LOCKMAX SYSTEM
integer

YES
CLOSE NO

NO
COMPRESS YES
CCSID ASCII

EBCDIC
UNICODE

NO
LOCKPART YES
MAXROWS integer

��

Notes:

1 The same clause must not be specified more than once.

CREATE TABLESPACE

630 SQL Reference

Description
LARGE

Identifies that each partition of a partitioned table space has a maximum
partition size of 4 GB, which enables the table space to contain more than 64

using-block:

�� USING

�

VCAT catalog-name

(1)
STOGROUP stogroup-name

PRIQTY integer
SECQTY integer

NO
ERASE YES

��

Notes:

1 The same clause must not be specified more than once.

free-block:

�� �
(1) 0

FREEPAGE integer
5

PCTFREE integer

��

Notes:

1 The same clause must not be specified more than once.

gbpcache-block:

��
CHANGED

GBPCACHE ALL
SYSTEM
NONE

��

trackmod-block:

��
YES

TRACKMOD NO ��

CREATE TABLESPACE

Chapter 5. Statements 631

GB of data. The preferred method to specify a maximum partition size of 4 GB
and larger is the DSSIZE clause. The LARGE clause is for compatibility of
releases of DB2 for OS/390 and z/OS prior to Version 6. Do not specify LARGE
if LOB or DSSIZE is specified.

LOB
Identifies the table space as LOB table space. A LOB table space is used to
hold LOB values.

The LOB table space must be in the same database as its associated base
table space.

table-space-name
Names the table space. The name, qualified with the database-name implicitly
or explicitly specified by the IN clause, must not identify a table space, index
space, or LOB table space that exists at the current server.

A table space that is for declared temporary tables must be in a TEMP
database (a database that is defined AS TEMP). PUBLIC implicitly receives the
USE privilege (without GRANT authority) on any table space created in the
TEMP database. This implicit privilege is not recorded in the DB2 catalog, and it
cannot be revoked.

IN database-name
Identifies the database in which the table space is created. The name must
identify a database that exists at the current server. DSNDB06 must not be
specified for any type of table space, and a work file database must not be
specified for a LOB table space. If the table space is for declared temporary
tables, a TEMP database (a database that is defined with AS TEMP) must be
specified. The default is DSNDB04.

using-block

The components of the USING clause are discussed below, first for nonpartitioned
table spaces and then for partitioned table spaces. If you omit USING, the default
storage group of the database must exist.

USING Clause for Nonpartitioned Table Spaces:
For nonpartitioned table spaces, the USING clause indicates whether the data
set for the table space is defined by you or by DB2. If DB2 is to define the data
set, the clause also gives space allocation parameters and an erase rule.

If you omit USING, DB2 defines the data sets using the default storage group of
the database and the defaults for PRIQTY, SECQTY, and ERASE.

VCAT catalog-name
Specifies that the first data set for the table space is managed by the user,
and following data sets, if needed, are also managed by the user.

The data sets defined for the table space are linear VSAM data sets
cataloged in an integrated catalog facility catalog identified by
catalog-name. Because catalog-name is a short identifier, an alias must be
used if the catalog name is longer than eight characters.

Conventions for table space data set names are given in Part 2 (Volume 1)
of DB2 Administration Guide. catalog-name is the first qualifier for each
data set name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

CREATE TABLESPACE

632 SQL Reference

STOGROUP stogroup-name
Specifies that DB2 will define and manage the data sets for the table
space. Each data set will be defined on a volume of the identified storage
group. The values specified (or the defaults) for PRIQTY and SECQTY
determine the primary and secondary allocations for the data set. The
storage group supplies the name of a volume for the data set and the
first-level qualifier for the data set name. The first-level qualifier is also the
name of, or an alias for, the integrated catalog facility catalog on which the
data set is to be cataloged. The naming conventions for the data set are
the same as if the data set is managed by the user. As was mentioned
above for VCAT, the first-level qualifier could cause naming conflicts if the
local DB2 can share integrated catalog facility catalogs with other DB2
subsystems.

stogroup-name must identify a storage group that exists at the current
server. SYSADM or SYSCTRL authority, or the USE privilege on the
storage group, is required.

The description of the storage group must include at least one volume
serial number, or it must indicate that the choice of volumes is left to
Storage Management Subsystem (SMS). If volume serial numbers appear
in the description, each must identify a volume that is accessible to MVS for
dynamic allocation of the data set, and all identified volumes must be of the
same device type.

The integrated catalog facility catalog used for the storage group must not
contain an entry for the first data set of the table space. If the integrated
catalog facility catalog is password protected, the description of the storage
group must include a valid password.

PRIQTY integer
Specifies the minimum primary space allocation for a DB2-managed
data set. The primary space allocation is at least n kilobytes, where n is
the value of integer with the following exceptions:

v If PRIQTY integer is specified:

– For 4KB page sizes, if integer is less than 12, n is 12.

– For 8KB page sizes, if integer is less than 24, n is 24.

– For 16KB page sizes, if integer is less than 48, n is 48.

– For 32KB page sizes, if integer is less than 96, n is 96.

– For any page size, if integer is greater than 4194304, n is
4194304.

v If PRIQTY is omitted, n is 12, 24, 48, or 96 for 4KB, 8KB, 16KB, and
32KB page sizes, respectively.

For LOB table spaces, the exceptions are:

v If PRIQTY integer is specified:

– For 4KB page sizes, if integer is less than 200, n is 200.

– For 8KB page sizes, if integer is less than 400, n is 400.

– For 16KB page sizes, if integer is less than 800, n is 800.

– For 32KB page sizes, if integer is less than 1600, n is 1600.

– For any page size, if integer is greater than 4194304, n is
4194304.

v If PRIQTY is omitted, n is 200, 400, 800, or 1600 for 4KB, 8KB,
16KB, and 32KB page sizes, respectively.

CREATE TABLESPACE

Chapter 5. Statements 633

DB2 specifies the primary space allocation to access method services
using the smallest multiple of pKB not less than n, where p is the page
size of the table space. The allocated space can be greater than the
amount of space requested by DB2. For example, it could be the
smallest number of tracks that will accommodate the request. The
amount of storage space requested must be available on some volume
in the storage group based on VSAM space allocation restrictions.
Otherwise, the primary space allocation will fail. To more closely
estimate the actual amount of storage, see the description of the
DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

Executing this statement causes only one data set to be created.
However, you might have more data than this one data set can hold.
DB2 automatically defines more data sets when they are needed.
Regardless of the value in PRIQTY, when a data set reaches its
maximum size, DB2 creates a new one. To avoid wasting space, use
the following formula to make sure that PRIQTY and its associated
secondary extent values do not exceed the maximum size of the data
set:
PRIQTY + (number of extents * SECQTY) <= DSSIZE (implicit or explicit)

SECQTY integer
Specifies the minimum secondary space allocation for a DB2-managed
data set. The secondary space allocation is at least n kilobytes, where
n is the value of integer with the following exceptions:

v If SECQTY integer is specified and integer is greater than 4194304,
n is 4194304. A value of 0 for integer indicates that no data set can
be extended.

v If SECQTY and PRIQTY are omitted:
– For 4KB page sizes, n is 12.
– For 8KB page sizes, n is 24.
– For 16KB page sizes, n is 48.
– For 32KB page sizes, n is 96.

v If SECQTY is omitted and PRIQTY is specified, n is either 10% of
PRIQTY or 3 times the page size of the table space, whichever is
larger.

For LOB table spaces the exceptions are:

v If SECQTY integer is specified:

– For 4KB page sizes, if integer is greater than 0 and less than 200,
n is 200.

– For 8KB page sizes, if integer is greater than 0 and less than 400,
n is 400.

– For 16KB page sizes, if integer is greater than 0 and less than
800, n is 800.

– For 32KB page sizes, if integer is greater than 0 and less than
1600, n is 1600.

– For any page size, if integer is greater than 4194304, n is
4194304.

v If SECQTY is omitted, n is either 10% of PRIQTY or 50 times the
page size of the table space, whichever is larger.

CREATE TABLESPACE

634 SQL Reference

DB2 specifies the secondary space allocation to access method
services using the smallest multiple of pKB not less than n, where p is
the page size of the table space. The allocated space can be greater
than the amount of space requested by DB2. For example, it could be
the smallest number of tracks that will accommodate the request. To
more closely estimate the actual amount of storage, see the description
of the DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

ERASE
Indicates whether the DB2-managed data sets for the table space or
partition are to be erased when they are deleted during the execution of
a utility or an SQL statement that drops the table space.

NO
Does not erase the data sets. Operations involving data set deletion
will perform better than ERASE YES. However, the data is still
accessible, though not through DB2. This is the default.

YES
Erases the data sets. As a security measure, DB2 overwrites all
data in the data sets with zeros before they are deleted.

USING Clause for Partitioned Table Spaces:
If the table space is partitioned, there is a USING clause for each partition;
either one you give explicitly or one provided by default. Except as explained
below, the meaning of the clause and the rules that apply to it are the same as
for a nonpartitioned table space.

The USING clause for a particular partition is the first of these choices that can
be found:
v A USING clause in the PART clause for the partition
v A USING clause that is not in any PART clause
v An implicit USING STOGROUP clause that identifies the default storage

group of the database and accepts the defaults for PRIQTY, SECQTY, and
ERASE

VCAT catalog-name
Indicates that the data set for the partition is managed by the user using the
naming conventions set forth in Part 2 (Volume 1) of DB2 Administration
Guide. As was true for the nonpartitioned case, catalog-name identifies the
catalog for the data set and supplies the first-level qualifier for the data set
name.

One or more DB2 subsystems could share integrated catalog facility
catalogs with the current server. To avoid the chance of having one of those
subsystems attempt to assign the same name to different data sets, select
a value for catalog-name that is not used by the other DB2 subsystems.

DB2 assumes one and only one data set for each partition.

STOGROUP stogroup-name
Indicates that DB2 will create a data set for the partition with the aid of a
storage group named stogroup-name. The data set is defined during the
execution of this statement. DB2 assumes one and only one data set for
each partition.

The stogroup-name must identify a storage group that exists at the current
server and the privilege set must include SYSADM authority, SYSCTRL

CREATE TABLESPACE

Chapter 5. Statements 635

authority, or the USE privilege for the storage group. The integrated catalog
facility catalog used for the storage group must not contain an entry for that
data set.

When USING STOGROUP is specified for a partition, the defaults for
PRIQTY, SECQTY, and ERASE are the values specified in the USING
STOGROUP clause that is not in any PART clause. If that USING
STOGROUP clause is not specified, the defaults are those specified in the
description of PRIQTY, SECQTY, and ERASE.

End of using-block

free-block

FREEPAGE integer
Specifies how often to leave a page of free space when the table space or
partition is loaded or reorganized. You must specify an integer in the range 0 to
255. If you specify 0, no pages are left as free space. Otherwise, one free page
is left after every n pages, where n is the specified integer. However, if the table
space is segmented and the integer you specify is not less than the segment
size, n is one less than the segment size.

If the table space is segmented, the number of pages left free must be less
than the SEGSIZE value. If the number of pages to be left free is greater than
or equal to the SEGSIZE value, then the number of pages is adjusted
downward to one less than the SEGSIZE value.

The default is FREEPAGE 0, leaving no free pages. Do not specify FREEPAGE
for a LOB table space, or a table space in a work file database or a TEMP
database.

PCTFREE integer
Indicates what percentage of each page to leave as free space when the table
is loaded or reorganized. integer can range from 0 to 99. The first record on
each page is loaded without restriction. When additional records are loaded, at
least integer percent of free space is left on each page.

The default is PCTFREE 5. Do not specify PCTFREE for a LOB table space, or
a table space in a work file database or a TEMP database.

If the table space is partitioned, the values of FREEPAGE and PCTFREE for a
particular partition are given by the first of these choices that apply:

v The values of FREEPAGE and PCTFREE given in the PART clause for that
partition

v The values given in a free-block that is not in any PART clause

v The default values are FREEPAGE 0 and PCTFREE 5.

End of free-block

gbpcache-block

GBPCACHE
In a data sharing environment, specifies what pages of the table space or
partition are written to the group buffer pool in a data sharing environment. In a
non-data-sharing environment, you can specify GBPCACHE for a table space
other than one in a work file or TEMP database, but it is ignored. Do not specify

CREATE TABLESPACE

636 SQL Reference

GBPCACHE for a table space in a work file or TEMP database in either
environment (data sharing or non-data-sharing).

CHANGED
When there is inter-DB2 R/W interest on the table space or partition,
updated pages are written to the group buffer pool. When there is no
inter-DB2 R/W interest, the group buffer pool is not used. Inter-DB2 R/W
interest exists when more than one member in the data sharing group has
the table space or partition open, and at least one member has it open for
update. GBPCACHE CHANGED is the default.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), CHANGED is ignored and no
pages are cached to the group buffer pool.

ALL
Indicates that pages are to be cached in the group buffer pool as they are
read in from DASD.

Exception: In the case of a single updating DB2 when no other DB2s have
any interest in the page set, no pages are cached in the group buffer pool.

Hiperpools are not used for indexes or partitions that are defined with
GBPCACHE ALL.

If the table space is in a group buffer pool that is defined to be used only
for cross-invalidation (GBPCACHE NO), ALL is ignored and no pages are
cached to the group buffer pool.

SYSTEM
Indicates that only changed system pages within the LOB table space are
to be cached to the group buffer pool. A system page is a space map page
or any other page that does not contain actual data values.

This is the default for LOB table spaces. You can use SYSTEM only for a
LOB table space.

NONE
Indicates that no pages are to be cached to the group buffer pool. DB2
uses the group buffer pool only for cross-invalidation.

If you specify NONE, the table space or partition must not be in recover
pending status and must be in the stopped state when the CREATE
TABLESPACE statement is executed.

If the table space is partitioned, the value of GBPCACHE for a particular
partition is given by the first of these choices that applies:

1. The value of GBPCACHE given in the PART clause for that partition. Do not
use more than one gbpcache-block in any PART clause.

2. The value given in a gbpcache-block that is not in any PART clause.

3. The default value CHANGED.

End of gbpcache-block

trackmod-block

TRACKMOD
Specifies whether DB2 tracks modified pages in the space map pages of the

CREATE TABLESPACE

Chapter 5. Statements 637

table space or partition. Do not specify TRACKMOD for a LOB table space. For
a table space in a TEMP database, DB2 uses TRACKMOD NO regardless of
the value specified.

YES
DB2 tracks changed pages in the space map pages to improve the
performance of incremental image copy. YES is the default unless the table
space is in a TEMP database.

NO
DB2 does not track changed pages in the space map pages. It uses the
LRSN value in each page to determine whether a page has been changed.

If the table space is partitioned, the value of TRACKMOD for a particular
partition is given by the first of these choices that applies:

1. The value of TRACKMOD given in the PART clause for that partition.

2. The value given in a trackmod-block that is not in any PART clause.

3. The default value YES.

End of trackmod-block

LOG
Specifies whether changes to a LOB column in the table space are to be written
to the log. You can use the LOG clause only for a LOB table space.

YES
Indicates that changes to a LOB column are to be written to the log. You
cannot use YES if the auxiliary table in the table space stores a LOB
column that is greater than 1 gigabyte in length.

YES is the default.

NO
Indicates that changes to a LOB column are not to be written to the log.

LOG NO has no effect on a commit or rollback operation; the consistency of
the database is maintained regardless of whether the LOB value is logged.
All committed changes and changes that are rolled back reflect the
expected results.

Even when LOG NO is specified, changes to system pages and to the
auxiliary index are logged. During the log apply operation of the RECOVER
utility, LPL recovery, or GPB recovery, all LOB values that were not logged
are marked invalid and cannot be accessed by a SELECT or FETCH
statement. Invalid LOB values can be updated or deleted.

DEFINE
Specifies when the underlying data sets for the table space are physically
created.

YES
The data sets are created when the table space is created (the CREATE
TABLESPACE statement is executed). YES is the default.

NO
The data sets are not created until data is inserted into the table space.
DEFINE NO is applicable only for DB2-managed data sets (USING
STOGROUP is specified). DEFINE NO is ignored for user-managed data
sets (USING VCAT is specified). DB2 uses the SPACE column in catalog

CREATE TABLESPACE

638 SQL Reference

table SYSTABLEPART to record the status of the data sets (undefined or
allocated). DEFINE NO is also ignored for a LOB table space.

Do not specify DEFINE NO for a table space in a work file database or a
TEMP database; otherwise, an error occurs. DEFINE NO is not
recommended if you intend to use any tools outside of DB2 to manipulate
data, such as to load data, because data sets might then exist when DB2
does not expect them to exist. When DB2 encounters this inconsistent
state, applications will receive an error.

DSSIZE integer G
A value in gigabytes that indicates the maximum size for each partition or, for
LOB table spaces, each data set. If you specify DSSIZE, you must also specify
NUMPARTS or LOB.

The following values are valid:
1G 1 gigabyte
2G 2 gigabytes
4G 4 gigabytes
8G 8 gigabytes
16G 16 gigabytes
32G 32 gigabytes
64G 64 gigabytes

To specify a value greater than 4G, the following conditions must be true:

v DB2 is running with DFSMS Version 1 Release 5.

v The data sets for the table space are associated with a DFSMS data class
that has been specified with extended format and extended addressability.

For all table spaces except LOB table spaces, if DSSIZE (or LARGE) is
omitted, the default for the maximum size of each partition depends on the
value of NUMPARTS:

If NUMPARTS is ... Maximum partition size is...
1 to 16 4 GB
17 to 32 2 GB
33 to 64 1 GB
65 to 254 4 GB

The partition size shown is not necessarily the actual number of bytes used or
allocated for any one partition; it is the largest number that can be logically
addressed. Each partition occupies one data set.

For LOB table spaces, if DSSIZE is not specified, the default for the maximum
size of each data set is 4 GB. The maximum number of data sets is 254.

When you define a table space with DSSIZE, you automatically give the same
size to all indexes that point to that tablespace.

MEMBER CLUSTER
Specifies that data inserted by the INSERT statement is not clustered by the
implicit clustering index (the first index) or the explicit clustering index. Instead,
DB2 chooses where to locate the data in the table space based on available
space.

Do not specify MEMBER CLUSTER for a LOB table space, or a table space in
a work file database or a TEMP database.

CREATE TABLESPACE

Chapter 5. Statements 639

#
#

NUMPARTS integer
Indicates that the table space is partitioned.

integer is the number of partitions, and can range from 1 to 254 inclusive.
NUMPARTS must be specified if DSSIZE is specified and LOB is omitted, or
LARGE is specified.

The maximum size of each partition depends on the value specified for DSSIZE
or LARGE. If DSSIZE or LARGE is not specified, the number of partitions
specified determines the maximum size of each partition. For a summary of the
values for the maximum size, see the description of “DSSIZE” on page 639.

If you omit NUMPARTS, the table space is not partitioned and initially occupies
one data set. Do not specify NUMPARTS for a LOB table space, or a table
space in a work file database or a TEMP database.

PART integer
Specifies to which partition the following using-block or free-block applies.
integer can range from 1 to the number of partitions given by NUMPARTS.

You can code the PART clause (and any using-block or free-block that follows
it) as many times as needed. If you use the same partition number more than
once, only the last specification for that partition is used.

BUFFERPOOL bpname
Identifies the buffer pool to be used for the table space and determines the
page size of the table space. For 4KB, 8KB, 16KB and 32KB page buffer pools,
the page sizes are 4 KB, 8 KB, 16 KB, and 32 KB, respectively. The bpname
must identify an activated buffer pool, and the privilege set must include
SYSADM or SYSCTRL authority, or the USE privilege on the buffer pool. If the
table space is to be created in a work file database, you cannot specify 8KB
and 16KB buffer pools.

If you do not specify the BUFFERPOOL clause, the default buffer pool of the
database is used.

See “Naming conventions” on page 34 for more details about bpname. See
Chapter 2 of DB2 Command Reference for a description of active and inactive
buffer pools.

LOCKSIZE
Specifies the size of locks used within the table space and, in some cases, also
the threshold at which lock escalation occurs. Do not use this clause for a table
space in a work file database or a TEMP database.

ANY
Specifies that DB2 can use any lock size. Currently, DB2 never chooses
row locks, but reserves the right to do so.

In most cases, DB2 uses LOCKSIZE PAGE LOCKMAX SYSTEM for
non-LOB table spaces and LOCKSIZE LOB LOCKMAX SYSTEM for LOB
table spaces. However, when the number of locks acquired for the table
space exceeds the maximum number of locks allowed for a table space (an
installation parameter), the page or LOB locks are released and locking is
set at the next higher level. If the table space is segmented, the next higher
level is the table. If the table space is nonsegmented, the next higher level
is the table space.

TABLESPACE
Specifies table space locks.

CREATE TABLESPACE

640 SQL Reference

TABLE
Specifies table locks. Use TABLE only for a segmented table space.

PAGE
Specifies page locks. Do not use PAGE for a LOB table space.

ROW
Specifies row locks. Do not use ROW for a LOB table space.

LOB
Specifies LOB locks. Use LOB only for a LOB table space.

LOCKMAX
Specifies the maximum number of page, row, or LOB locks an application
process can hold simultaneously in the table space. If a program requests more
than that number, locks are escalated. The page, row, or LOB locks are
released and the intent lock on the table space or segmented table is promoted
to S or X mode. If you specify LOCKMAX for table space in a TEMP database,
DB2 ignores the value because these types of locks are not used.

integer
Specifies the number of locks allowed before escalating, in the range 0 to
2 147 483 647.

Zero (0) indicates that the number of locks on the table or table space are
not counted and escalation does not occur.

SYSTEM
Indicates that the value of LOCKS PER TABLE(SPACE), on installation
panel DSNTIPJ, specifies the maximum number of page, row, or LOB locks
a program can hold simultaneously in the table or table space.

The following table summarizes the results of specifying a LOCKSIZE value
while omitting LOCKMAX.

LOCKSIZE Resultant LOCKMAX

ANY SYSTEM

TABLESPACE, TABLE,
PAGE, ROW, or LOB

0

If the lock size is TABLESPACE or TABLE, LOCKMAX must be omitted, or its
operand must be 0.

For an application that uses Sysplex query parallelism, a lock count is
maintained on each member.

CLOSE
When the limit on the number of open data sets is reached, specifies the
priority in which data sets are closed.

YES
Eligible for closing before CLOSE NO data sets. This is the default unless
the table space is in a TEMP database.

NO
Eligible for closing after all eligible CLOSE YES data sets are closed.

For a table space in a TEMP database, DB2 uses CLOSE NO regardless of the
value specified.

CREATE TABLESPACE

Chapter 5. Statements 641

COMPRESS
Specifies whether data compression applies to the rows of the table space or
partition. Do not specify COMPRESS for a LOB table space or a table space in
a TEMP database.

For partitioned table spaces, the COMPRESS attribute for each partition is the
value from the first of the following conditions that apply:
v The value specified in the COMPRESS clause in the PART clause for the

partition
v The value specified in the COMPRESS clause that is not in any PART clause
v An implicit COMPRESS NO by default.

See Part 5 (Volume 2) of DB2 Administration Guide for more information about
data compression.

YES
Specifies data compression. The rows are not compressed until the LOAD
or REORG utility is run on the table in the table space or partition.

NO
Specifies no data compression for the table space or partition.

SEGSIZE integer
Indicates that the table space will be segmented. integer specifies how many
pages are to be assigned to each segment. integer must be a multiple of 4
such that 4 ≤ integer ≤ 64. If the SEGSIZE clause is not specified, the table
space is not segmented.

SEGSIZE must be specified for a table space in a TEMP database because the
table space must be segmented. Do not specify SEGSIZE for a LOB table
space or a table space in work file database; neither can be segmented.

A segmented table space cannot be partitioned. Therefore, do not specify
NUMPARTS if you specify SEGSIZE.

CCSID encoding-scheme
Specifies the encoding scheme for tables stored in the table space.

If you do not specify a CCSID when it is allowed, the default is the encoding
scheme of the database in which the table space resides, except for table
spaces in database DSNDB04; for table spaces in DSNDB04, the default is the
value of field DEF ENCODING SCHEME on installation panel DSNTIPF.

ASCII Specifies that the data is to be encoded using ASCII CCSIDs. If the
database in which the table space is to reside is already defined as
ASCII, the ASCII CCSIDs associated with that database are used.
Otherwise, the default ASCII CCSIDs of the server are used.

EBCDIC
Specifies that the data is to be encoded using EBCDIC CCSIDs. If the
database in which the table space is to reside is already defined as
EBCDIC, the EBCDIC CCSIDs associated with that database are used.
Otherwise, the default EBCDIC CCSIDs of the server are used.

UNICODE
Specifies that the data is to be encoded using UNICODE CCSIDs. If the
database in which the table space is to reside is already defined as
Unicode, the UNICODE CCSIDs associated with that database are
used. Otherwise, the default UNICODE CCSIDs of the server are used.

Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or Unicode data is used.

CREATE TABLESPACE

642 SQL Reference

|
|
|
|
|

|

All data stored within a table space must use the same encoding scheme
unless the table space is in a TEMP database.

Do not specify CCSID for a LOB table space or a table space in a TEMP
database. The encoding scheme for a LOB table space is inherited from the
base table space. A table space in a TEMP database does not have an
associated encoding scheme because the table space can contain declared
temporary tables with a mixture of encoding schemes.

LOCKPART
Indicates whether selective partition locking (SPL) is to be used when locking a
partitioned table space.

YES If all the conditions that are required for SPL are met, specifies that only
the partitions accessed will be locked. If all the conditions that are
required for SPL are not met, every partition of the table space is
locked. LOCKPART YES is not allowed with LOCKSIZE TABLESPACE.

NO Specifies that selective partition locking is not used. The table space is
locked with a single lock on the last partition. This has the effect of
locking all partitions in the table space.

MAXROWS integer
Specifies the maximum number of rows that DB2 will consider placing on each
data page. The integer can range from 1 through 255. This value is considered
for INSERT, LOAD, and REORG. For LOAD and REORG (which do not apply
for a table space in the TEMP database), the PCTFREE specification is
considered before MAXROWS; therefore, fewer rows might be stored than the
value you specify for MAXROWS.

If you do not specify MAXROWS, the default number of rows is 255.

Do not use MAXROWS for a LOB table space or a table space in a work file
database.

Notes
Simple table spaces: If neither LOB, NUMPARTS, nor SEGSIZE are specified, the
table space that is created is a simple table space. See An Introduction to DB2 for
OS/390 for a discussion of types of table spaces.

Table spaces in a work file database: The following restrictions apply to table
spaces created in a work file database:

v They can be created only when the database is explicitly stopped by the STOP
DATABASE command without the SPACENAM option.

v They can be created for another member only if both the executing DB2
subsystem and the other member can access the work file data sets. That is
required whether the data sets are user-managed or in a DB2 storage group.

v The following clauses are not allowed:

DEFINE NO
FREEPAGE
GBPCACHE

LOB
LOG
LOCKSIZE

NUMPARTS
PCTFREE
SEGSIZE

Table spaces in a TEMP database (table spaces for declared temporary
tables): Declared temporary tables must reside in segmented table spaces in a
database that is defined AS TEMP (the TEMP database). At least one segmented
table space must exist in the TEMP database before a declared temporary table

CREATE TABLESPACE

Chapter 5. Statements 643

can be defined and used. DB2 does not implicitly create a table space for declared
temporary tables. A table space for declared temporary tables can be shared. You
cannot choose which table space in a TEMP database is used for a specific
declared temporary table. Therefore, multiple application processes can use the
same table space for their declared temporary tables.

When you create table spaces for in the TEMP database, it is recommended that
you give them all the same segment size, with the same minimum primary and
secondary space allocation values for the data sets, to maximize the use of all the
table spaces for all declared temporary tables in all application processes.

When you create a table space in a TEMP database, the following clauses are not
allowed:

CCSID
COMPRESS
DEFINE NO
DSSIZE
FREEPAGE

GBPCACHE
LARGE
LOB
LOCKSIZE
LOCKPART

LOG
MEMBER CLUSTER
NUMPARTS
PCTFREE
TRACKMOD

Table spaces in a TEMP database (table spaces for scrollable cursors):For
information on creating table spaces in a TEMP database for scrollable cursors, see
DB2 Installation Guide.

Creating LOB table spaces: When you create a LOB table space, the following
clauses are not allowed:

CCSID
COMPRESS
FREEPAGE
LOCKSIZE TABLE

LOCKSIZE PAGE
LOCKSIZE ROW
NUMPARTS

PCTFREE
SEGSIZE
TRACKMOD

Converting a partitioned table space to be larger: To increase the size of a
partitioned table space so that it can hold more data, take the following steps:

1. Unload the data rows from the table space, if necessary.

2. Drop the table space. The table and any indexes, views, or synonyms
dependent on the table are dropped, and authorizations for the table and views
are revoked.

3. Create the table space, specifying an appropriate value for the DSSIZE clause.
Also redefine the partitioning index (with different key range values), the table,
and the nonclustering indexes.

4. Recreate views and synonyms. Reestablish appropriate authorizations.

5. Load data into the new table.

6. Rebind the plans and packages that changed.

Examples
Example 1: Create table space DSN8S71D in database DSN8D71A. Let DB2 define
the data sets, using storage group DSN8G710. The primary space allocation is 52
kilobytes; the secondary, 20 kilobytes. The data sets need not be erased before
they are deleted.

CREATE TABLESPACE

644 SQL Reference

|
|
|

Locking on tables in the space is to take place at the page level. Associate the
table space with buffer pool BP1. The data sets can be closed when no one is
using the table space.

CREATE TABLESPACE DSN8S71D
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 52
SECQTY 20
ERASE NO

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE YES;

For the above example, the underlying data sets for the table space will be created
immediately, which is the default (DEFINE YES). If you want to defer the creation of
the data sets until data is first inserted into the table space, you would specify
DEFINE NO instead of accepting the default behavior.

Example 2: Assume that a large query database application uses a table space to
record historical sales data for marketing statistics. Create large table space
SALESHX in database DSN8D71A for the application. Create it with 82 partitions,
specifying that the data in partitions 80 through 82 is to be compressed.

Let DB2 define the data sets for all the partitions in the table space, using storage
group DSN8G710. For each data set, the primary space allocation is 4000
kilobytes, and the secondary space allocation is 130 kilobytes. Except for the data
set for partition 82, the data sets do not need to be erased before they are deleted.

Locking on the table is to take place at the page level. There can only be one table
in a partitioned table space. Associate the table space with buffer pool BP1. The
data sets cannot be closed when no one is using the table space. If there are no
CLOSE YES data sets to close, DB2 may close the CLOSE NO data sets when the
DSMAX is reached.

CREATE TABLESPACE SALESHX
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 4000
SECQTY 130
ERASE NO

NUMPARTS 82
(PART 80

COMPRESS YES,
PART 81
COMPRESS YES,
PART 82
ERASE YES
COMPRESS YES)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Example 3: Assume that a column named EMP_PHOTO with a data type of
BLOB(110K) has been added to the sample employee table for each employee’s
photo. Create LOB table space PHOTOLTS in database DSN8D71A for the auxiliary
table that will hold the BLOB data.

Let DB2 define the data sets for the table space, using storage group DSN8G710.
For each data set, the primary space allocation is 3200 kilobytes, and the
secondary space allocation is 1600 kilobytes. The data sets do not need to be
erased before they are deleted.

CREATE TABLESPACE

Chapter 5. Statements 645

CREATE LOB TABLESPACE PHOTOLTS
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 3200
SECQTY 1600

LOCKSIZE LOB
BUFFERPOOL BP16K0
GBPCACHE SYSTEM
LOG NO
CLOSE NO;

CREATE TABLESPACE

646 SQL Reference

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in a schema and builds a
trigger package at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include all of the following:

v Either of these privileges:
– The CREATEIN privilege for the schema or all schemas
– SYSADM or SYSCTRL authority

v The TRIGGER privilege on the table. The privilege set must include at least one
of the following:
– The TRIGGER privilege on the table on which the trigger is defined
– The ALTER privilege on the table on which the trigger is defined
– DBADM authority on the database that contains the table
– SYSADM or SYSCTRL authority

v The SELECT privilege on the table on which the trigger is defined if any
transition variables or transition tables are specified

v The SELECT privilege on any table or view to which the search condition of
triggered action refers

v The EXECUTE privilege on any user-defined function or stored procedure that is
invoked in the triggered action

v The necessary privileges to invoke the triggered SQL statements in the triggered
action

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package.

If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process. The specified trigger name can
include a schema name (a qualifier). However, if the specified name includes a
schema name that is not the same as the SQL authorization ID, one of the following
conditions must be met:

v The privilege set includes SYSADM or SYSCTRL authority.

v The SQL authorization ID of the process has the CREATEIN privilege on the
schema.

CREATE TRIGGER

Chapter 5. Statements 647

Syntax

Description
trigger-name

Names the trigger. The name is implicitly or explicitly qualified by a schema.
The name, including the implicit or explicit schema name, must not identify a
trigger that exists at the current server.

The name is also used to create the trigger package; therefore, the name must
also not identify a package that is already described in the catalog. The schema
name becomes the collection-id of the trigger package.

�� CREATE TRIGGER trigger-name NO CASCADE BEFORE
AFTER

�

INSERT
DELETE
UPDATE

,

OF column-name

�

� ON table-name

�
(1) AS

REFERENCING OLD correlation-name
AS

NEW correlation-name
(2) AS

OLD TABLE identifier
(3) AS

NEW TABLE identifier

�

� FOR EACH ROW
(4)

FOR EACH STATEMENT

MODE DB2SQL triggered-action ��

Notes:

1 The same clause must not be specified more than once. OLD TABLE and NEW TABLE must be
specified only for AFTER triggers.

2 OLD_TABLE is a synonym for OLD TABLE.

3 NEW_TABLE is a synonym for NEW TABLE.

4 FOR EACH STATEMENT must not be specified for BEFORE triggers.

triggered-action

��
WHEN (search-condition)

�BEGIN ATOMIC triggered-SQL-statement ; END

��

CREATE TRIGGER

648 SQL Reference

v The unqualified form of trigger-name is a short SQL identifier. The unqualified
name is implicitly qualified with a schema name according to the following
rules:

If the statement is embedded in a program, the schema name of the trigger
is the authorization ID in the QUALIFIER bind option when the plan or
package was created or last rebound. If QUALIFIER was not used, the
schema name of the trigger is the owner of the package or plan.

If the statement is dynamically prepared, the schema name of the trigger is
the SQL authorization ID of the process.

v The qualified form of trigger-name is a short SQL identifier (the schema
name) followed by a period and a short SQL identifier. The schema name
must not begin with 'SYS' unless the name is 'SYSADM'. The schema name
that qualifies the trigger name is the trigger’s owner.

The owner of the trigger is determined by how the CREATE TRIGGER
statement is invoked:

v If the statement is embedded in a program, the owner is the authorization ID
of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the SQL authorization
ID in the CURRENT SQLID special register.

NO CASCADE BEFORE
Specifies that the trigger is a before trigger. DB2 executes the triggered action
before it applies any changes caused by an insert, delete, or update operation
on the subject table. It also specifies that the triggered action does not activate
other triggers because the triggered action of a before trigger cannot contain
any updates.

AFTER
Specifies that the trigger is an after trigger. DB2 executes the triggered action
after it applies any changes caused by an insert, delete, or update operation on
the subject table.

INSERT
Specifies that the trigger is an insert trigger. DB2 executes the triggered action
whenever there is an insert operation on the subject table. However, if the insert
trigger is defined on PLAN_TABLE, DSN_STATEMNT_TABLE, or
DSN_FUNCTION_TABLE, and the insert operation was caused by DB2 adding
a row to the table, the triggered action is not be executed.

DELETE
Specifies that the trigger is a delete trigger. DB2 executes the triggered action
whenever there is a delete operation on the subject table.

UPDATE
Specifies that the trigger is an update trigger. DB2 executes the triggered action
whenever there is an update operation on the subject table.

If you do not specify a list of column names, an update operation on any
column of the subject table, including columns that are subsequently added with
the ALTER TABLE statement, activates the triggered action.

OF column-name,...
Each column-name that you specify must be a column of the subject table
and must appear in the list only once. An update operation on any of the
listed columns activates the triggered action.

ON table-name
Identifies the subject table with which the trigger is associated. The name must

CREATE TRIGGER

Chapter 5. Statements 649

identify a base table at the current server. It must not identify a temporary table,
an auxiliary table, an alias, a synonym, or a catalog table.

REFERENCING
Specifies the correlation names for the transition variables and the table names
for the transition tables. For the rows in the subject table that are modified by
the triggering SQL operation (insert, delete, or update), a correlation name
identifies the columns of a specific row. A table name identifies the complete set
of modified rows.

Each row that is modified by the triggering operation is available to the triggered
action by using column names that are qualified with correlation names that are
specified as follows:

OLD AS correlation-name
Specifies the correlation name that identifies the state of the row prior to the
triggering SQL operation.

NEW AS correlation-name
Specifies the correlation name that identifies the state of the row as
modified by the triggering SQL operation and by any SET statement in a
before trigger that has already been executed.

The complete set of rows that is modified by the triggering operation is available
to the triggered action by using a temporary table name that is specified as
follows:

OLD TABLE AS identifier
Specifies the name of a temporary table that identifies the state of the
complete set of rows that are modified rows by the triggering SQL operation
prior to any actual changes. identifier is a long SQL identifier.

NEW TABLE AS identifier
Specifies the name of a temporary table that identifies the state of the
complete set of rows as modified by the triggering SQL operation and by
any SET statement in a before trigger that has already been executed.
identifier is a long SQL identifier.

At most, the trigger definition can include two correlation names (OLD and
NEW) and two table names (OLD TABLE and NEW TABLE). All the names
must be unique from one another.

Table 43 on page 651 summarizes the allowable combinations of transition
variables and transition tables that you can specify for the various trigger types.
OLD and OLD TABLE are valid only if the triggering SQL operation is a delete
or an update. For a delete operation, OLD captures the values of the columns
in the deleted row, and OLD TABLE captures the values in the set of deleted
rows. For an update operation, OLD captures the values of the columns of a
row before the update, and OLD TABLE captures the values in the set of
updated rows.

NEW and NEW TABLE are valid only if the triggering SQL operation is an insert
or an update. For both operations, NEW captures the values of the columns in
the inserted or updated row. For before triggers, the values of the updated rows
include the changes from any SET statement in the triggered action if the
trigger is a before trigger.

OLD and NEW are valid only if you also specify FOR EACH ROW, and OLD
TABLE and NEW TABLE are valid only if you specify AFTER.

CREATE TRIGGER

650 SQL Reference

Table 43. Allowable combinations of attributes in a trigger definition

Activation
time

Triggering
SQL operation

Transition
variables

Transition tables Granularity

BEFORE

DELETE OLD

FOR EACH ROWINSERT NEW

UPDATE OLD, NEW

AFTER

DELETE OLD OLD TABLE

FOR EACH ROW
INSERT NEW NEW TABLE

UPDATE OLD, NEW OLD TABLE,
NEW TABLE

DELETE OLD TABLE

FOR EACH
STATEMENT

INSERT NEW TABLE

UPDATE OLD TABLE,
NEW TABLE

A transition variable that has a character data type inherits the subtype and
CCSID of the column of the subject table. During the execution of the triggered
action, the transition variables are treated like host variables. Therefore,
character conversion might occur.

You cannot modify a transition table; transition tables are read-only. Although a
transition table does not inherit any edit or validation procedures from the
subject table, it does inherit the subject table’s encoding scheme and field
procedures.

The scope of the transition variables and transition tables is the triggered
action. Do not refer to their names outside of the triggered action.

FOR EACH ROW
Specifies that DB2 executes the triggered action for each row of the subject
table that the triggering SQL operation modifies. If the triggering SQL operation
does not modify any rows, the triggered action is not executed.

FOR EACH STATEMENT
Specifies that DB2 executes the triggered action only once for the triggering
SQL operation. Even if the triggering SQL operation does not modify any rows,
the triggered action is executed once. Do not specify FOR EACH STATEMENT
for a before trigger.

MODE DB2SQL
Specifies the mode of the trigger. Currently, DB2 supports only MODE DB2SQL.

triggered-action
Specifies the action to be performed when the trigger is activated. The triggered
action is composed of one or more SQL statements and by an optional
condition that controls whether the statements are executed.

WHEN (search-condition)
Specifies a condition that evaluates to true, false, or unknown. The
condition for a before trigger must not include a subselect that references
the subject table.

The triggered SQL statements are executed only if the search condition
evaluates to true, or if WHEN is omitted.

CREATE TRIGGER

Chapter 5. Statements 651

BEGIN ATOMIC triggered-SQL-statemen;,... END
Specifies the SQL statements that are to be executed for the triggered
action. The statements are executed in the order in which you specify them.
The keywords BEGIN ATOMIC and END are required only if you specify
more than one SQL statement. In which case, you must enclose the SQL
statements in these keywords and end each statement with a semicolon (;).

SQL processor programs, such as SPUFI and DSNTEP2, might not
correctly parse SQL statements in the triggered action that are ended with
semicolons. These processor programs accept multiple SQL statements,
each separated with a terminator character, as input. Processor programs
that use a semicolon as the SQL statement terminator can truncate a
CREATE TRIGGER statement with embedded semicolons and pass only a
portion of it to DB2. Therefore, you might need to change the SQL
terminator character for these processor programs. For information on
changing the terminator character for SPUFI and DSNTEP2, see DB2
Application Programming and SQL Guide.

Table 44 shows the list of allowable SQL statements, which differs
depending on whether the trigger is being defined as BEFORE or AFTER.
An ’X’ in the table indicates that the statement is valid.

Table 44. Allowable SQL statements

SQL statement

Trigger activation time

BEFORE AFTER

fullselect X X

CALL X X

SIGNAL SQLSTATE X X

VALUES X X

SET transition variable X

INSERT X

DELETE (searched) X

UPDATE (searched) X

The statements in the triggered action have these restrictions:

v They must not refer to host variables, parameter markers, undefined
transition variables, or declared temporary tables.

v They must only refer to a table or view that is at the current server.

v They must only invoke a stored procedure or user-defined function that is
at the current server. An invoked routine can, however, access a server
other than the current server.

v They must not contain a fullselect that refers to the subject table if the
trigger is defined as BEFORE.

The triggered action may refer to the values in the set of affected rows. This
action is supported through the use of transition variables and transition tables.

Transition variables use the names of the columns in the subject table qualified
by a specified name that identifies whether the reference is to the old value
(before the update) or the new value (after the update). A transition variable can

CREATE TRIGGER

652 SQL Reference

|
|

|
|
|

be referenced in search-condition or triggered-SQL-statement of the triggered
action wherever a host variable is allowed in the statement if it were issued
outside the body of a trigger.

Transition tables can be referenced in the triggered action of an after trigger.
Transition tables are read-only. Transition tables also use the name of the
columns of the subject table but have a name specified that allows the
complete set of affected rows to be treated as a table. The name of the
transition table can be referenced in triggered-SQL-statement of the triggered
action whenever a table name is allowed in the statement if it were issued
outside the body of a trigger. The name of the transition table can be specified
in search-condition or triggered-SQL-statement of the triggered action whenever
a column name is allowed in the statement if it were issued outside the body of
a trigger.

In addition, a transition table can be passed as a parameter to a user-defined
function or procedure specifying the TABLE keyword before the name of the
transition table. When the function or procedure is invoked, a table locator is
passed for the transition table.

A transition variable or transition table is not affected after being returned from a
procedure invoked from within a triggered action regardless of whether the
corresponding parameter was defined in the CREATE PROCEDURE statement
as IN, INOUT, or OUT.

Notes
The implicitly created trigger package: When you create a trigger, DB2
automatically creates a trigger package with the same name as the trigger name.
The collection name of the trigger package is the schema name of the trigger, and
the version identifier is the empty string. Multiple versions of a trigger package are
not allowed.

The user executing the triggering SQL operation does not need authority to execute
a trigger package. The trigger package does not need to be in the package list for
the plan that is associated with the program that contains the SQL statement.

A trigger package becomes invalid if an object or privilege on which it depends is
dropped or revoked. The next time the trigger is activated, DB2 attempts to rebind
the invalid trigger package. If the automatic rebind is unsuccessful, the trigger
package remains invalid.

You cannot create another package from the trigger package, such as with the
BIND COPY command. The only way to drop a trigger package is to drop the
trigger or the subject table. Dropping the trigger drops the trigger package; dropping
the subject table drops the trigger and the trigger package.

DB2 creates the trigger package with the following attributes:
v ACTION(ADD)
v CURRENTDATA(YES)
v DBPROTOCOL(DRDA)
v DEGREE(1)
v DYNAMICRULES(BIND)
v ENABLE(*)
v ENCODING(0)
v EXPLAIN(NO)

CREATE TRIGGER

Chapter 5. Statements 653

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

v FLAG(I)
v ISOLATION(CS)
v NOREOPT(VARS) and NODEFER(PREPARE)
v OWNER(authorization ID)
v QUERYOPT(1)
v PATH(path)
v RELEASE(COMMIT)
v SQLERROR(NOPACKAGE)
v QUALIFIER(authorization ID)
v VALIDATE(BIND)

The values of OWNER, QUALIFIER, and PATH are set depending on whether the
CREATE TRIGGER statement is embedded in a program or issued interactively. If
the statement is embedded in a program, OWNER and QUALIFIER are the owner
and qualifier of the package or plan. PATH is the value from the PATH bind option.
If the statement is issued interactively, both OWNER and QUALIFIER are the SQL
authorization ID. PATH is the value in the CURRENT PATH special register.

Activating a trigger: Only the SQL statements INSERT, DELETE, or UPDATE, or
an update or delete operation that occurs as the result of a referential constraint
with ON DELETE SET NULL or ON DELETE CASCADE can activate a trigger.
Loading a table with the LOAD utility does not activate any triggers that are defined
for the table.

Simultaneously activated triggers: Multiple triggers that have the same triggering
SQL operation and activation time (BEFORE or AFTER) can be defined on a table.
The triggers are activated in the order in which they were created. For example, the
trigger that was created first is executed first; the trigger that was created second is
executed second; and so on.

Adding columns to subject tables or tables that the triggered action
references: If a column is added to a table for which a trigger is defined (the
subject table), the following rules apply:

v If the trigger is an update trigger that was defined without an explicit list of
column names, an update to the new column activates the trigger.

v If the SQL statements in the triggered action refer to the subject table, the new
column is not accessible to the SQL statements until the trigger package is
rebound.

v The transition tables contain the new column. If the transition tables are passed
to a user-defined function or a stored procedure, the user-defined function or
stored procedure, the user-defined function or stored procedure must be
recreated with the new definition of the table (that is, the function or procedure
must be dropped and recreated), and the package for the user-defined function
or stored procedure must be rebound.

If a column is added to any table to which the SQL statements in the triggered
action refers, the new column is not accessible to the SQL statements until the
trigger package is rebound.

Adding triggers to enforce constraints: Creating a trigger on a table that already
has rows does not cause the triggered action to be executed. Thus, if the trigger is
designed to enforce constraints on the data in the table, the data in the existing
rows might not satisfy those constraints.

CREATE TRIGGER

654 SQL Reference

Defining triggers on plan, statement, and function tables: You can create a
trigger on PLAN_TABLE, DSN_STATEMNT_TABLE, or DSN_FUNCTION_TABLE.
However, insert triggers that are defined on these tables are not activated when
DB2 adds rows to the tables.

Renaming subject tables or tables that the triggered action references: You
cannot rename a table for which a trigger is defined (the subject table). Except for
the subject table, you can rename any table to which the SQL statements in the
triggered action refer. After renaming such a table, drop the trigger and then
re-create the trigger so that it refers to the renamed table.

Dependencies when dropping objects and revoking privileges: The following
dependencies apply to a trigger:

v Dropping the subject table (the table on which the trigger is defined) causes the
trigger and its package to also be dropped.

v Dropping any table, view, alias, or index that is referenced or used within the
SQL statements in the triggered action causes the trigger and its package to be
invalidated. Dropping a referenced synonym has no effect.

v Dropping a user-defined function that is referenced by the SQL statements in the
triggered action is not allowed. An error occurs.

v Revoking a privilege on which the trigger depends causes the trigger and its
package to be invalidated.

Result sets for stored procedures: If a trigger invokes a stored procedure that
returns result sets, the application that activated the trigger cannot access those
result sets.

Values of special registers: The values of the special registers are saved before a
trigger is activated and are restored on return from the trigger.

Table 45 gives the rules for special registers within a trigger. Some of the special
registers are applicable only to dynamic SQL. Although dynamic SQL statements
are not allowed directly in the triggered SQL statements, they are allowed in a
user-defined function or stored procedure that is invoked by the triggered SQL
statements.

Table 45. Rules for the values of special registers in triggers

Special register The value is

CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

Inherited from the triggering SQL operation (delete,
insert, update). All triggered SQL statements, including
the SQL statements in a user-defined function or a
stored procedure invoked by the trigger, inherit these
values.

CURRENT PACKAGESET Set to the schema name of the trigger

CURRENT TIMEZONE Set to the MVS TIMEZONE parameter

CURRENT DEGREE
CURRENT LC_CTYPE
CURRENT OPTIMIZATION HINT
CURRENT PATH
CURRENT PRECISION
CURRENT RULES
CURRENT SERVER
CURRENT SQLID
USER

Inherited from the triggering SQL operation (delete,
insert, update)

CREATE TRIGGER

Chapter 5. Statements 655

Errors when binding triggers: When a CREATE TRIGGER statement is bound,
the SQL statements within the triggered action may not be fully parsed. Syntax
errors in those statements might not be caught until the CREATE TRIGGER
statement is executed.

Errors when executing triggers: Severe errors that occur during the execution of
triggered SQL statements are returned with SQLCODE -901, -906, -911, and -913
and the corresponding SQLSTATE. Non-severe errors raised by a triggered SQL
statement that is a SIGNAL SQLSTATE statement or that contains a
RAISE_ERROR function are returned with SQLCODE -438 and the SQLSTATE that
is specified in the SIGNAL SQLSTATE statement or the RAISE_ERROR condition.
Other non-severe errors are returned with SQLCODE -723 and SQLSTATE 09000.

Warnings are not returned.

Limiting processor time: DB2’s resource limit facility allows you to specify the
maximum amount of processor time for a dynamic, manipulative SQL statement
(SELECT, INSERT, UPDATE, and DELETE). The execution of a trigger is counted
as part of the triggering SQL statement.

Examples
Example 1: Create two triggers that track the number of employees that a company
manages. The subject table is the EMPLOYEE table, and the triggers increment
and decrement a column with the total number of employees in the
COMPANY_STATS table. The tables have these columns:

EMPLOYEE table: ID, NAME, ADDRESS, and POSITION
COMPANY_STATS table: NBEMP, NBPRODUCT, and REVENUE

This example shows the use of transition variables in a row trigger to maintain
summary data in another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees
each time a new person is hired; that is, each time a new row is inserted into the
EMPLOYEE table, increase the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Create the second trigger, FORM_EMP, so that it decrements the number of
employees each time an employee leaves the company; that is, each time a row is
deleted from the table EMPLOYEE, decrease the value of column NBEMP in table
COMPANY_STATS by 1.

CREATE TRIGGER FORM_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
END

Example 2: Create a trigger, REORDER, that invokes user-defined function
ISSUE_SHIP_REQUEST to issue a shipping request whenever a parts record is
updated and the on-hand quantity for the affected part is less than 10% of its
maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST orders a

CREATE TRIGGER

656 SQL Reference

quantity of the part that is equal to the part’s maximum stocked quantity minus its
on-hand quantity; the function also ensures that the request is sent to the
appropriate supplier.

The parts records are in the PARTS table. Although the table has more columns,
the trigger is activated only when columns PARTNO and MAX_STOCKED are
updated.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS NROW
FOR EACH ROW MODE DB2SQL
WHEN (NROW.ON_HAND < 0.10 * NROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(NROW.MAX_STOCKED - NROW.ON_HAND, NROW.PARTNO));
END

Example 3: Repeat the scenario in Example 2 except use a fullselect instead of a
VALUES statement to invoke the user-defined function. This example also shows
how to define the trigger as a statement trigger instead of a row trigger. For each
row in the transition table that evaluates to true for the WHERE clause, a shipping
request is issued for the part.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW TABLE AS NTABLE
FOR EACH STATEMENT MODE DB2SQL

BEGIN ATOMIC
SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)

FROM NTABLE
WHERE (ON_HAND < 0.10 * MAX_STOCKED);

END

Example 4: Assume that table EMPLOYEE contains column SALARY. Create a
trigger, SAL_ADJ, that prevents an update to an employee’s salary that exceeds
20% and signals such an error. Have the error that is returned with an SQLSTATE
of ’75001’ and a description. This example shows that the SIGNAL SQLSTATE
statement is useful for restricting changes that violate business rules.

CREATE TRIGGER SAL_ADJ
AFTER UPDATE OF SALARY ON EMPLOYEE
REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))

BEGIN ATOMIC
SIGNAL SQLSTATE '75001' ('Invalid Salary Increase - Exceeds 20%');

END

CREATE TRIGGER

Chapter 5. Statements 657

CREATE VIEW
The CREATE VIEW statement creates a view on tables or views at the current
server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
For every table or view identified in the fullselect, the privilege set that is defined
below must include at least one of the following:
v The SELECT privilege on the table or view
v Ownership of the table or view
v DBADM authority for the database (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)

Additional authorization is required if the definition of the view references any
user-defined functions or cast functions that were generated for a distinct type. The
privilege set defined below must include the EXECUTE privilege on the referenced
functions.

Authority requirements depend in part on the choice of the view’s owner. For
information on how to choose the owner, see the description of view-name in
“Description” on page 659.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package:

v If this privilege set includes SYSADM authority, the owner of the view can be any
authorization ID. If that set includes SYSCTRL but not SYSADM authority, the
following is true: the owner of the view can be any authorization ID, provided the
view does not refer to user tables or views in the first FROM clause of its
defining fullselect. (It could refer instead, for example, to catalog tables or views
thereof.)

v If the privilege set lacks SYSADM, SYSCTRL, or DBADM authority, or if the
authorization ID of the application plan or package fails to meet any of the
previous conditions, the owner of the view must be the owner of the application
plan or package.

If the statement is dynamically prepared, the following rules apply:

v If the SQL authorization ID of the process has SYSADM authority, the owner of
the view can be any authorization ID. If that authorization ID has SYSCTRL but
not SYSADM authority, the following is true: the owner of the view can be any
authorization ID, provided the view does not refer to user tables or views in the
first FROM clause of its defining fullselect. (It could refer instead, for example, to
catalog tables or views thereof.)

If the view satisfies the rules in the preceding paragraph, and if no errors are
present in the CREATE statement, the view is created, even if the owner has no
privileges at all on the tables and views identified in the view’s fullselect.

v If the SQL authorization ID of the process includes DBADM authority on at least
one of the databases that contains a table from which the view is created, the
owner of the view can be different from the SQL authorization ID if all of the
following conditions are true:

– The value of field DBADM CREATE AUTH was set to YES on panel DSNTIPP
during DB2 installation.

– The view is not based only on views.

Note: The owner of the view must have the SELECT privilege on all tables and
views in the CREATE VIEW statement, or, if the owner does not have the
SELECT privilege on a table, the creator must have DBADM authority on
the database that contains that table.

v If the SQL authorization ID of the process lacks SYSADM, SYSCTRL, or DBADM
authority, or if the SQL authorization ID of the process fails to meet any of the
previous conditions, only the authorization IDs of the process can own the view.
In this case, the privilege set is the privileges that are held by the authorization
ID selected for ownership.

Syntax

Description
view-name

Names the view. The name must not identify a table, view, alias, or synonym
that exists at the current server.

�� CREATE VIEW view-name

�

,

(column-name)

AS fullselect �

�
CASCADED

WITH CHECK OPTION
LOCAL

��

CREATE VIEW

Chapter 5. Statements 659

|||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

If qualified, the name can be a two-part or three-part name. If a three-part name
is used, the first part must match the value of the field DB2 LOCATION NAME
of installation panel DSNTIPR at the current server. (If the current server is not
the local DB2, this name is not necessarily the name in the CURRENT
SERVER special register.) In either case, the authorization ID that qualifies the
name is the view’s owner.

If the view name is unqualified and the statement is embedded in an application
program, the owner of the view is the authorization ID that serves as the implicit
qualifier for unqualified object names. This is the authorization ID of the
QUALIFIER operand when the plan or package was created or last rebound. If
QUALIFIER was not used, the owner of the view is the owner of the package or
plan.

If the view name is unqualified and the statement is dynamically prepared, the
owner of the view is the SQL authorization ID of the process.

The owner of a view always acquires the SELECT privilege on the view and the
authority to drop the view. If all of the privileges that are required to create the
view are held with the GRANT option before the view is created, the owner of
the view receives the SELECT privilege with the GRANT option. Otherwise, the
owner receives the SELECT privilege without the GRANT option. For example,
assume that a view is created on a table for which the owner has the SELECT
privilege with the GRANT option and the view definition also refers to a
user-defined function. If the owner’s EXECUTE privilege on the user-defined
function is held without the GRANT option, the owner acquires the SELECT
privilege on the view without the GRANT option.

The owner can also acquire INSERT, UPDATE, and DELETE privileges on the
view. Acquiring these privileges is possible if the view is not “read only”, which
means a single table or view is identified in the first FROM clause of the
fullselect. For each privilege that the owner has on the identified table or view
(INSERT, UPDATE, and DELETE) before the new view is created, the owner
acquires that privilege on the new view. The owner receives the privilege with
the GRANT option if the privilege is held on the table or view with the GRANT
option. Otherwise, the owner receives the privilege without the GRANT option.

With appropriate DB2 authority, a process can create views for those who have
no authority to create the views themselves. The owner of such a view has the
SELECT privilege on the view, without the GRANT option, and can drop the
view.

column-name,...
Names the columns in the view. If you specify a list of column names, it must
consist of as many names as there are columns in the result table of the
fullselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the columns
of the result table of the fullselect.

You must specify a list of column names if the result table of the fullselect has
duplicate column names or an unnamed column (a column derived from a
constant, function, or expression that was not given a name by the AS clause).

AS fullselect
Defines the view. At any time, the view consists of the rows that would result if
the fullselect were executed.

fullselect must not refer to any declared temporary tables. They must also not
refer to host variables or include parameter markers (question marks). For an
explanation of fullselect, see “fullselect” on page 317.

CREATE VIEW

660 SQL Reference

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

WITH ... CHECK OPTION
Specifies the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. DB2 enforces this constraint
whenever rows of the view are inserted or updated. If the search condition is
not true for an inserted or updated row, an error occurs and no rows are
inserted or updated.

The search condition of a view is the search condition that is specified in the
first WHERE clause of the fullselect that defines the view. If the view is defined
without a search condition (a WHERE clause was not specified) then the view
behaves as if it were defined with a search condition that is always true.

A check option must not be specified if any of the following conditions are true:
v The view is read-only.
v The search condition of the view includes a subquery, or the search condition

of an underlying view includes a subquery.
v The search condition of the view includes a user-defined function that is

nondeterministic or has an external action.
v The fullselect refers to a created temporary table.

A check option is ignored if the view is updatable but does not have a search
condition. If a check option is specified for an updatable view that does not
allow inserts, the constraint applies only to updates.

If a check option is not specified, the search condition of the view is not used to
check any insert or update operations that use the view. Rows that do not
conform to the definition of the view can be inserted or updated, but then the
rows are not accessible through the view (SELECT * FROM V).

The difference between the two forms of the check option, CASCADED and
LOCAL, is meaningful only when views are defined on each other. The view
upon which another view is directly or indirectly defined is an underlying view.

CASCADED
Update and insert operations on view V must satisfy the search conditions
of view V and all underlying views, regardless of whether the underlying
views were defined with a check option. Furthermore, every updatable view
that is directly or indirectly defined on view V inherits those search
conditions (the search conditions of view V and all underlying views of V)
as a constraint on insert or update operations.

LOCAL
Update and insert operations on view V must satisfy the search conditions
of view V and underlying views that are defined with a check option (either
WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTION).
Furthermore, every updatable view that is directly or indirectly defined on
view V inherits those search conditions (the search conditions of view V
and all underlying views of V that are defined with a check option) as a
constraint on insert or update operations.

The LOCAL form of the CHECK option lets you update or insert rows that
do not conform to the search condition of view V. You can perform these
operations if the view is directly or indirectly defined on a view that was
defined without a check option. See ““Example 2”” on page 663 for an
example of this situation.

Table 46 on page 662 illustrates the effect of using the default check option,
CASCADED. The information in Table 46 on page 662 is based on the following
views:
v CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW

Chapter 5. Statements 661

|

|

v CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CASCADED CHECK
OPTION

v CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

Table 46. Examples using default check option, CASCADED

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a check
option and it is not dependent on any other
view that has a check option.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row
does not conform to the search condition of
V1 which is implicitly is part of the definition
of V2.

INSERT INTO V3 VALUES(5) Results in an error because the inserted row
does not conform to the search condition of
V1.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to
the definition of V3 (V3 does not have the
view check option specified); it does conform
to the definition of V2 (which does have the
view check option specified).

The difference between CASCADED and LOCAL is shown best by example.
Consider the following updatable views, where x and y represent either LOCAL
or CASCADED:

V1 is defined on Table T0.
V2 is defined on V1 WITH x CHECK OPTION.
V3 is defined on V2.
V4 is defined on V3 WITH y CHECK OPTION.
V5 is defined on V4.

Table 47 shows the views in which search conditions are checked during an
INSERT or UPDATE operation:

v The first FROM clause identifies more than one table or view, or identifies a table
function

v The first SELECT clause specifies the keyword DISTINCT
v The outer fullselect contains a GROUP BY clause
v The outer fullselect contains a HAVING clause
v The first SELECT clause contains a column function
v It contains a subquery such that the base object of the outer fullselect, and of the

subquery, is the same table
v The first FROM clause identifies a read-only view

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement. A view that includes GROUP BY or HAVING cannot be referred to in a
subquery of a basic predicate.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT * FROM view-name.

The two forms of a view definition: Both the source and the operational form of a
view definition are stored in the DB2 catalog. Those two forms are not necessarily
equivalent because the operational form reflects the state that exists when the view
is created. For example, consider the following statement:

CREATE VIEW V AS SELECT * FROM S;

In this example, S is a synonym or alias for A.T, which is a table with columns C1,
C2, and C3. The operational form of the view definition is equivalent to:

SELECT C1, C2, C3 FROM A.T;

Adding columns to A.T using ALTER TABLE and dropping S does not affect the
operational form of the view definition. Thus, if columns are added to A.T or if S is
redefined, the source form of the view definition can be misleading.

View restrictions: A view definition cannot contain unions or references to remote
objects. A view definition cannot map to more than 15 base table instances. A view
definition cannot reference a declared global temporary table.

Examples
Example 1: Create the view DSN8710.VPROJRE1. PROJNO, PROJNAME,
PROJDEP, RESPEMP, FIRSTNME, MIDINIT, and LASTNAME are column names.
The view is a join of tables and is therefore read-only.

CREATE VIEW DSN8710.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,
FIRSTNME,MIDINIT,LASTNAME)
AS SELECT ALL
PROJNO,PROJNAME,DEPTNO,EMPNO,
FIRSTNME,MIDINIT,LASTNAME
FROM DSN8710.PROJ, DSN8710.EMP
WHERE RESPEMP = EMPNO;

In the example, the WHERE clause refers to the column EMPNO, which is
contained in one of the base tables but is not part of the view. In general, a column
named in the WHERE, GROUP BY, or HAVING clause need not be part of the view.

Example 2: When a view that is defined WITH LOCAL CHECK OPTION is defined
on a view that was defined without a check option. You can update or insert rows
that do not conform to the definition of the view. Consider the following views:

CREATE VIEW

Chapter 5. Statements 663

CREATE VIEW UNDER AS SELECT * FROM DSN8710.EMP
WHERE SALARY < 35000;

CREATE VIEW OVER AS SELECT * FROM UNDER
WHERE SALARY > 30000 WITH LOCAL CHECK OPTION;

The following UPDATE statement that uses OVER is successful because the
updated rows only need to conform to the definition of OVER (SALARY > 30000):

UPDATE OVER SET SALARY = SALARY + 5000;

However, not all of the rows that you can retrieve through view OVER (over 35,000
rows) are accessible using view UNDER. For example, issuing:

SELECT * FROM UNDER

returns no rows because no rows conform to the definition of UNDER (SALARY <
35000).

With the CASCADED CHECK OPTION, this situation cannot occur. If OVER had
been defined with the WITH CASCADED CHECK OPTION, the UPDATE statement
would have failed because the updated rows would not conform to the conjunction
of the search conditions OVER and UNDER (SALARY > 3000 and SALARY <
35000).

Example 3: Create the view DSN8710.FIRSTQTR that is the UNION ALL of three
fullselects, one for each month of the first quarter of 2000. The common names are
SNO, CHARGES, and DATE.

CREATE VIEW DSN8710.FIRSTQTR (SNO, CHARGES, DATE) AS
SELECT SNO, CHARGES, DATE
FROM MONTH1
WHERE DATE BETWEEN '01/01/2000' and '01/31/2000'

UNION All
SELECT SNO, CHARGES, DATE
FROM MONTH2
WHERE DATE BETWEEN '02/01/2000' and '02/29/2000'

UNION All
SELECT SNO, CHARGES, DATE
FROM MONTH3
WHERE DATE BETWEEN '03/01/2000' and '03/31/2000';

CREATE VIEW

664 SQL Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
For each table or view identified in the SELECT statement of the cursor, the
privilege set must include at least one of the following:
v The SELECT privilege
v Ownership of the object
v DBADM authority for the corresponding database (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)

The SELECT statement of the cursor is one of the following:
v The prepared select statement identified by statement-name
v The specified select-statement

If statement-name is specified:

v The privilege set is determined by the DYNAMICRULES behavior in effect (run,
bind, define, or invoke) and is summarized in Table 34 on page 334. (For more
information on these behaviors, including a list of the DYNAMICRULES bind
option values that determine them, see “Authorization IDs and dynamic SQL” on
page 43.)

v The authorization check is performed when the SELECT statement is prepared.

v The cursor cannot be opened unless the SELECT statement is successfully
prepared.

If select-statement is specified:

v The privilege set consists of the privileges that are held by the authorization ID of
the owner of the plan or package.

v If the plan or package is bound with VALIDATE(BIND), the authorization check is
performed at bind time, and the bind is unsuccessful if any required privilege
does not exist.

v If the plan or package is bound with VALIDATE(RUN), an authorization check is
performed at bind time, but all required privileges need not exist at that time. If all
privileges exist at bind time, no authorization checking is performed when the
cursor is opened. If any privilege does not exist at bind time, an authorization
check is performed the first time the cursor is opened within a unit of work. The
OPEN is unsuccessful if any required privilege does not exist.

DECLARE CURSOR

Chapter 5. Statements 665

Syntax

Description
cursor-name

Names the cursor. The name must not identify a cursor that has already been
declared in the source program.

INSENSITIVE
Specifies that changes to the base table after the result table is materialized are
not visible to the cursor. (The values of the rows in the result table have already
been captured from the database.) The cursor does not have sensitivity to any
updates or deletes made to the rows underlying its result table after the table is
materialized. As a result, the size of the result table, the order of the rows, and
the values for each row do not change after the cursor is opened. A cursor
defined as INSENSITIVE is read-only (that is, cannot be used for positioned
updates or deletes). Any update or delete attempt results in an error.
Additionally, if the SELECT statement contains a FOR UPDATE clause, an error
is returned.

SENSITIVE
Specifies that changes made to the database after the result table is
materialized are visible to the cursor. The cursor has some level of sensitivity to
any updates or deletes made to the rows underlying its result table after the
table is materialized. The cursor is always sensitive to positioned updates or
deletes using the same cursor. Additionally, the cursor can have sensitivity to
committed changes made outside this cursor.

If DB2 cannot make changes visible to the cursor, then an error is issued at
bind time for OPEN CURSOR. DB2 cannot make changes visible to the cursor
when the cursor implicitly becomes read-only. Such is the case when the result
table must be materialized, as when the FROM clause of the SELECT
statement contains more than one table or view. The current list of conditions
that result in an implicit read-only cursor can be found in “Notes” on page 668.
Whether the cursor is sensitive to changes made outside this cursor also
depends on whether a SENSITIVE or INSENSITIVE FETCH statement is used.

STATIC
Specifies that the size of the result table and the order of the rows does not
change after the cursor is opened. Rows inserted into the underlying table
are not added to the result table regardless of how the rows are inserted.
Rows in the result table do not move if columns in the ORDER BY clause

�� DECLARE cursor-name
INSENSITIVE SCROLL
SENSITIVE STATIC

CURSOR �
(1)

WITH HOLD
WITH RETURN

�

� FOR select-statement
statement-name

��

Notes:

1 The same clause must not be specified more than once.

DECLARE CURSOR

666 SQL Reference

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

are updated in rows that have already been materialized. Positioned
updates and deletes are allowed if the result table is updatable.

A STATIC cursor has visibility to changes made by this cursor using
positioned updates or deletes. Committed changes made outside this cursor
are visible with the SENSITIVE option of the FETCH statement. A FETCH
SENSITIVE can result in a hole in the result table (that is, a difference
between the result table and its underlying base table). If an updated row in
the base table of a cursor no longer satisfies the predicate of its SELECT
statement, an update hole occurs in the result table. If a row of a cursor
was deleted in the base table, a delete hole occurs in the result table.
When a FETCH SENSITIVE detects an update hole, no data is returned (a
warning is issued), and the cursor is left positioned on the update hole.
When a FETCH SENSITIVE detects a delete hole, no data is returned (a
warning is issued), and the cursor is left positioned on the delete hole.

Updates through a cursor result in an automatic re-fetch of the row. This
re-fetch means that updates can create a hole themselves. The re-fetched
row also reflects changes as a result of triggers updating the same row. It is
important to reflect these changes to maintain the consistency of data in the
row.

Using a non-deterministic function (built-in or user-defined) in the WHERE
clause of the select-statement or statement-name of a SENSITIVE STATIC
cursor can cause misleading results. This situation occurs because DB2
constructs a temporary result table and retrieves rows from this table for
FETCH INSENSITIVE statements. When DB2 processes a FETCH
SENSITIVE statement, rows are fetched from the underlying table and
predicates are re-evaluated. Using a non-deterministic function can yield a
different result on each FETCH SENSITIVE of the same row, which could
also result in the row no longer being considered a match.

A FETCH INSENSITIVE on a SENSITIVE STATIC SCROLL cursor is not
sensitive to changes made outside the cursor, unless a previous FETCH
SENSITIVE has already refreshed that row; however, positioned updates
and delete changes with the cursor are visible.

STATIC cursors are insensitive to insertions.

SCROLL
Specifies that the cursor is scrollable. If SCROLL is specified, INSENSITIVE or
SENSITIVE STATIC must be specified. A scrollable cursor permits arbitrary
navigation through the rows of its result table. If SCROLL is not specified, the
cursor is forward moving only, and the rows of its result table can be fetched
only once, in a predetermined order.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit
operation. A cursor declared with WITH HOLD is closed at commit time if one of
the following is true:

v The connection associated with the cursor is in the release pending status.

v The bind option DISCONNECT(AUTOMATIC) is in effect.

v The environment is one in which the option WITH HOLD is ignored.

When WITH HOLD is specified, a commit operation commits all the changes in
the current unit of work, but releases only locks that are not required to
maintain the cursor. Afterwards, an initial FETCH statement is required before a

DECLARE CURSOR

Chapter 5. Statements 667

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

positioned update or delete statement can be executed. After the initial FETCH,
the cursor is positioned on the row following the one it was positioned on before
the commit operation.

All cursors are implicitly closed by a connect (Type 1) or rollback operation. A
cursor is also implicitly closed by a commit operation if WITH HOLD is ignored
or not specified.

Cursors that are declared with WITH HOLD in CICS or in IMS
non-message-driven programs will not be closed by a rollback operation if the
cursor was opened in a previous unit of work and no changes have been made
to the database in the current unit of work. The cursor cannot be closed
because CICS and IMS do not broadcast the rollback request to DB2 for a null
unit of work.

If a cursor is closed before the commit operation, the effect is the same as if
the cursor was declared without the option WITH HOLD.

WITH HOLD is ignored in IMS message driven programs (MPP, IFP, and
message-driven BMP). WITH HOLD maintains the cursor position in a CICS
pseudo-conversational program until the end-of-task (EOT).

For details on restrictions that apply to declaring cursors with WITH HOLD, see
Part 2 of DB2 Application Programming and SQL Guide.

WITH RETURN
Specifies that the cursor, if it is declared in a stored procedure, can return a
result set to the caller.

select-statement
Specifies the result table of the cursor. The select-statement must not include
parameter markers, but can include references to host variables. The
declarations of the host variables must precede the DECLARE CURSOR
statement in the source program. See “select-statement” on page 321 for an
explanation of select-statement.

statement-name
Identifies the prepared select-statement that specifies the result table of the
cursor whenever the cursor is opened. The statement-name must not be
identical to a statement name specified in another DECLARE CURSOR
statement of the source program. For an explanation of prepared SELECT
statements, see “PREPARE” on page 792.

Notes
A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

Read-only cursors: If the result table is read-only, the cursor is read-only. The
result table is read-only if one or more of the following statements is true about the
SELECT statement of the cursor:

v The first FROM clause identifies or contains any of the following:
– More than one table or view
– A catalog table with no updatable columns
– A read-only view
– A nested table expression
– A table function

DECLARE CURSOR

668 SQL Reference

v The first SELECT clause specifies the keyword DISTINCT, contains a column
function, or uses both

v The outer subselect contains a GROUP BY clause, a HAVING clause, or both
clauses

v It contains a subquery such that the base object of the outer subselect, and of
the subquery, is the same table

v Any of the following operators or clauses are specified:
– A UNION or UNION ALL operator
– An ORDER BY clause (except when the cursor is declared as SENSITIVE

STATIC scrollable)
– A FOR FETCH ONLY or a FOR READ ONLY clause

v It is executed with isolation level UR and a FOR UPDATE OF clause is not
specified.

If the result table is not read-only, the cursor can be used to update or delete the
underlying rows of the result table.

TEMP database requirement for scrollable cursors: To use a scrollable cursor,
you must first create a TEMP database and table spaces in this database because
a scrollable cursor requires a temporary table for its result table while the cursor is
open. DB2 chooses a table space to use for the temporary result table.

Cursors in COBOL and Fortran programs: In COBOL and Fortran source
programs, the DECLARE CURSOR statement must precede all statements that
explicitly refer to the cursor by name. This rule does not necessarily apply to the
other host languages because the precompiler provides a two-pass option for these
languages. This rule applies to other host languages if the two-pass option is not
used.

Scope of a cursor: The scope of cursor-name is the source program in which it is
defined; that is, the application program submitted to the precompiler. Thus, you
can only refer to a cursor by statements that are precompiled with the cursor
declaration. For example, a COBOL program called from another program cannot
use a cursor that was opened by the calling program. Furthermore, a cursor defined
in a Fortran subprogram can only be referred to in that subprogram.

Although the scope of a cursor is the program in which it is declared, each package
(or DBRM of a plan) created from the program includes a separate instance of the
cursor, and more than one instance of the cursor can be used in the same
execution of the program. For example, assume a program is precompiled with the
CONNECT(2) option and its DBRM is used to create a package at location X and a
package at location Y. The program contains the following SQL statements:

DECLARE C CURSOR FOR ...
CONNECT TO X
OPEN C
FETCH C INTO ...
CONNECT TO Y
OPEN C
FETCH C INTO ...

The second OPEN C statement does not cause an error because it refers to a
different instance of cursor C. The same notion applies to a single location if the
packages are in different collections and the SET CURRENT PACKAGESET
statement is used to select the packages.

DECLARE CURSOR

Chapter 5. Statements 669

|
|

|
|
|
|

Positioned deletes and isolation level UR: Specify FOR UPDATE OF if you want
to use the cursor for a positioned DELETE and the isolation level is UR because of
a BIND option. In this case, the isolation level is CS.

Returning a result set from a stored procedure: A cursor that is declared in a
stored procedure returns a result set when all of the following conditions are true:
v The cursor is declared with the WITH RETURN option. In a distributed

environment, blocks of each result set of the cursor’s data are returned with the
CALL statement reply.

v The cursor is left open after exiting from the stored procedure. A cursor declared
with the SCROLL option must be left positioned before the first row before exiting
from the stored procedure.

v The cursor is declared with the WITH HOLD option if the stored procedure
performs a COMMIT_ON_RETURN.

The result set is the set of all rows after the current position of the cursor after
exiting the stored procedure. The result set is assumed to be read-only. If that same
procedure is reinvoked, open result set cursors for a stored procedure at a given
site are automatically closed by the database management system.

Scrollable cursors specified with user-defined functions: A row can be fetched
more than once with a scrollable cursor. Therefore, if a scrollable cursor is defined
with a non-deterministic function in the select list of the cursor, a row can be
fetched multiple times with different results for each fetch. (However, the value of a
non-deterministic function in the WHERE clause of a scrollable cursor is captured
when the cursor is opened and remains unchanged until the cursor is closed.)
Similarly, if a scrollable cursor is defined with a user-defined function with external
action, the action is executed with every fetch.

Examples
The statements in the following examples are assumed to be in PL/I programs.

Example 1: Declare C1 as the cursor of a query to retrieve data from the table
DSN8710.DEPT. The query itself appears in the DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8710.DEPT
WHERE ADMRDEPT = 'A00';

Example 2: Declare C2 as the cursor for a statement named STMT2.
EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 3: Declare C3 as the cursor for a query to be used in positioned updates
of the table DSN8710.EMP. Allow the completed updates to be committed from time
to time without closing the cursor.

EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
SELECT * FROM DSN8710.EMP

FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of specifying which columns should be updated, you could use a FOR
UPDATE clause without the names of the columns to indicate that all updatable
columns are updated.

Example 4: In stored procedure SP1, declare C4 as the cursor for a query of the
table DSN8710.PROJ. Enable the cursor to return a result set to the caller of SP1,
which performs a commit on return.

DECLARE CURSOR

670 SQL Reference

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

EXEC SQL DECLARE C4 CURSOR WITH HOLD WITH RETURN FOR
SELECT PROJNO, PROJNAME
FROM DSN8710.PROJ
WHERE DEPTNO = 'A01';

Example 5: In the following example, the DECLARE CURSOR statement associates
the cursor name C5 with the results of the SELECT. C5 allows positioned updates
and deletes because the result table can be updated.

DECLARE C5 SENSITIVE STATIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8710.DEPT
WHERE ADMRDEPT = 'A00';

Example 6: In the following example, the DECLARE CURSOR statement associates
the cursor name C6 with the results of the SELECT.

DECLARE C6 INSENSITIVE SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8710.DEPT
WHERE DEPTNO;

DECLARE CURSOR

Chapter 5. Statements 671

|
|
|

|
|
|
|

|
|

|
|
|
|

|

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared
temporary table for the current application process and instantiates an empty
instance of the table for the process.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None are required, unless the LIKE clause is specified when additional privileges
might be required.

PUBLIC implicitly has the following privileges without GRANT authority for declared
temporary tables:

v The CREATETAB privilege to define a declared temporary table in the database
that is defined AS TEMP, which is the database for declared temporary tables.

v The USE privilege to use the table spaces in the database that is defined as
TEMP.

v All table privileges on the table and authority to drop the table. (Table privileges
for a declared temporary table cannot be granted or revoked.)

These implicit privileges are not recorded in the DB2 catalog and cannot be
revoked.

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

� �

,

(column-spec)
LIKE table-name

view-name COLUMN ATTRIBUTES
INCLUDING IDENTITY

AS (fullselect) DEFINITION ONLY
as-attribute

�

� �
(1)

CCSID ASCII
EBCDIC
UNICODE

DELETE
ON COMMIT PRESERVE ROWS

��

Notes:

1 The same clause must not be specified more than once.

DECLARE GLOBAL TEMPORARY TABLE

672 SQL Reference

Description
table-name

Names the temporary table. The qualifier, if specified explicitly, must be

column-spec:

��
(1)

column-name data-type �

NOT NULL
WITH

DEFAULT
constant
USER
CURRENT SQLID
NULL

GENERATED ALWAYS
BY DEFAULT as-identity-clause

��

Notes:

1 The same clause must not be specified more than once. The FOR sub-type DATA clause can be
specified as part of data-type.

as-attribute:

��
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN

INCLUDING DEFAULTS
USING TYPE DEFAULTS

��

as-identity-clause:

��

�

AS IDENTITY
,

1
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

CACHE 20
NO CACHE
CACHE integer
NO CYCLE
CYCLE

MAXVALUE numeric-constant
MINVALUE numeric-constant

��

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 673

SESSION. If the qualifier is not specified, it is implicitly defined to be SESSION.
The name must not identify a declared temporary table that exists in the
application process.

If a table, view, synonym, or alias already exists with the same name and an
implicit or explicit qualifier of SESSION:

v The declared temporary table is still defined with SESSION.table-name. An
error is not issued because the resolution of a declared temporary table
name does not include the persistent and shared names in the DB2 catalog
tables.

v Any references to SESSION.table-name will resolve to the declared
temporary table rather than to any existing SESSION.table-name whose
definition is persistent and is in the DB2 catalog tables.

PUBLIC implicitly acquires ALL PRIVILEGES on the table and authority to drop
the table. These implicit privileges are not recorded in the DB2 catalog and
cannot be revoked.

column-spec
Defines the attributes of a column for each instance of the table. The number of
columns defined must not exceed 750. The maximum record size must not
exceed 32714 bytes. The maximum row size must not exceed 32706 bytes (8
bytes less than the maximum record size).

column-name
Names the column. The name must not be qualified and must not be the same
as the name of another column in the table.

data-type
Specifies the data type of the column. The data type can be any built-in data
type that can be specified for the CREATE TABLE statement except for a LOB
(BLOB, CLOB, and DBCLOB) or ROWID type. The FOR subtype DATA clause
can be specified as part of data-type. For more information on the data types
and the rules that apply to them, see “built-in-data-type” on page 606.

NOT NULL
Specifies that the column cannot contain nulls. Omission of NOT NULL
indicates that the column can contain nulls.

DEFAULT
The default value assigned to the column in the absence of a value specified on
INSERT. Do not specify DEFAULT for a column that is defined AS IDENTITY
(an identity column); DB2 generates default values..

If DEFAULT is not specified, the default value for the column is the null value.

If DEFAULT is specified without a value after it, the default value of the column
depends on the data type of the column, as follows:

Data type Default value
Numeric 0
Fixed-length string Blanks
Varying-length string A string of length 0
Date CURRENT DATE
Time CURRENT TIME
Timestamp CURRENT TIMESTAMP

A default value other than the one that is listed above can be specified in one of
the following forms:

DECLARE GLOBAL TEMPORARY TABLE

674 SQL Reference

#
#

constant
Specifies a constant as the default value for the column. The value of the
constant must conform to the rules for assigning that value to the column.

USER
Specifies the value of the USER special register at the time of INSERT or
LOAD as the default value for the column. If USER is specified, the data
type of the column must be a character string with a length attribute greater
than or equal to the length attribute of the USER special register, which is 8
bytes.

CURRENT SQLID
Specifies the value of the SQL authorization ID of the process at the time of
INSERT or LOAD as the default value for the column. If CURRENT SQLID
is specified, the data type of the column must be a character string with a
length attribute greater than or equal to the length attribute of the
CURRENT SQLID special register, which is 8 bytes.

NULL
Specifies null as the default value for the column.

In a given column definition:

v NOT NULL and DEFAULT NULL cannot both be specified.

v DEFAULT cannot be specified for an identity column.

v Omission of NOT NULL and DEFAULT for a column other than an identity
column is an implicit specification of DEFAULT NULL. For an identity column,
it is an implicit specification of NOT NULL, and DB2 generates default
values.

For more information on the effect of specifying various combinations of the
NOT NULL and DEFAULT clauses, see Table 40 on page 611, which provides a
summary.

GENERATED
Specifies that DB2 generates values for the column. You must specify
GENERATED if the column is to be considered an identity column (a column
defined with the AS IDENTITY clause).

ALWAYS
Specifies that DB2 always generates a value for the column when a row is
inserted into the table.

BY DEFAULT
Specifies that DB2 generates a value for the column when a row is inserted
into the table unless a value is specified. BY DEFAULT is the recommended
value only when you are using data propagation.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can
have only one identity column. AS IDENTITY can be specified only if the
data type for the column is an exact numeric type with a scale of zero
(SMALLINT, INTEGER, DECIMAL with a scale of zero). For more
information, see the description of the AS IDENTITY clause for “CREATE
TABLE” on page 601.

LIKE table-name or view-name
Specifies that the columns of the table have the same name, data type, and
nullability attributes as the columns of the identified table or view. If a table is
identified, the column default attributes are also defined by that table. The name

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 675

|
|
|

specified must identify a table, view, synonym, or alias that exists at the current
server. The identified table must not be an auxiliary table or a declared
temporary table.

The privilege set must include the SELECT privilege on the identified table or
view.

This clause is similar to the LIKE clause on CREATE TABLE, but it has the
following differences:

v If LIKE results in a column having a LOB data type, a ROWID data type, or
distinct type, the DECLARE GLOBAL TEMPORARY TABLE statement fails.

v In addition to these data type restrictions, if any column has any other
attribute value that is not allowed in a declared temporary table, that attribute
value is ignored. The corresponding column in the new temporary table has
the default value for that attribute unless otherwise indicated.

When the identified object is a table, the column name, data type, nullability,
and default attributes are determined from the columns of the specified table;
any identity column attributes are inherited only if the INCLUDING IDENTITY
COLUMN ATTRIBUTES clause is specified. When the identified object is a
view, only the column name, data type, and nullability attributes are determined
from the columns of the specified view.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the new table inherits the identity attributes of the identity
column. If the table identified by LIKE does not have an identity column, the
INCLUDING IDENTITY clause is ignored. If the LIKE clause identifies a
view, INCLUDING IDENTITY COLUMN ATTRIBUTES cannot be specified.

AS (fullselect) DEFINITION ONLY
Specifies that the columns of the table are to have the same name and
description as the columns that would appear in the derived result table of the
fullselect if the fullselect were to be executed. The use of AS fullselect is an
implicit definition of n columns for the table, where n is the number of columns
that would result from the fullselect.

DEFINITION ONLY indicates that the fullselect is not executed. Therefore, there
is no result table with a set of rows with which to automatically populate the
declared temporary table. However, you can use the INSERT INTO statement
with the same fullselect specified in the AS clause to populate the declared
temporary table with the set of rows from the result table of the fullselect.

The implicit definition includes all the attributes of the n columns of fullselect
that are applicable for a declared temporary table (see column-spec) with the
exception of these column attributes:

v The default value assigned to a column when a value is not specified on
INSERT

v The identity attribute, if any

The behavior of these column attributes is controlled with the INCLUDING or
USING TYPE DEFAULTS clauses, which are defined below.

If fullselect results in a column having a LOB data type, a ROWID data type, or
a distinct type, the DECLARE GLOBAL TEMPORARY statement fails.

If fullselect results in other column attributes that are not applicable for a
declared temporary table, those attributes are ignored in the implicit definition
for the declared temporary table.

DECLARE GLOBAL TEMPORARY TABLE

676 SQL Reference

|

The implicitly defined columns of the declared temporary table inherit the names
of the columns from the result table of the fullselect. Therefore, a column name
must be specified in the fullselect for all result columns. For result columns that
are derived from expressions, constants, and functions, the fullselect must
include the AS column-name clause immediately after the result column.

The fullselect must not refer to host variables or include parameter markers
(question marks).

INCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the declared temporary table inherits the identity attribute, if
any, of the columns resulting from fullselect. In general, the identity attribute
is copied if the element of the corresponding column in the table, view, or
fullselect is the name of a table column or the name of a view column that
directly or indirectly maps to the name of a base table column with the
identity property. The columns of the new table do not inherit the identity
attribute in the following cases:

v The select list of the fullselect includes multiple instances of an identity
column name (that is, selecting the same column more than once).

v The select list of the fullselect includes multiple identity columns (that is,
it involves a join).

v The identity column is included in an expression in the select list.

v The fullselect includes a set operation (union).

If INCLUDING IDENTITY is not specified, the declared temporary table will
not have an identity column.

INCLUDING COLUMN DEFAULTS
Specifies that the declared temporary table inherits the default values of the
columns resulting from fullselect. A default value is the value assigned to a
column when a value is not specified on an INSERT.

Do not specify INCLUDING COLUMN DEFAULTS, if you specify USING
TYPE DEFAULTS.

If neither INCLUDING COLUMN DEFAULTS nor USING TYPE DEFAULTS
is specified, the default values of the columns of the declared temporary
table are either null or there are no default values. If the column can be
null, the default is the null value; if the column cannot be null, there is no
default value, and an error occurs if a value is not provided for a column on
an INSERT for the declared temporary table.

USING TYPE DEFAULTS

Specifies that the default values for the declared temporary table depend on
the data type of the columns that result from fullselect, as follows:

Data type Default value
Numeric 0
Fixed-length string Blanks
Varying-length string A string of length 0
Date CURRENT DATE
Time CURRENT TIME
Timestamp CURRENT TIMESTAMP

Do not specify USING TYPE DEFAULTS, if you specify INCLUDING
COLUMN DEFAULTS.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 677

|
|
|
|
|
|
|

|
|

|
|

|

|

|
|

CCSID encoding-scheme
Specifies the encoding scheme for string data that is stored in the table. For
declared temporary tables, the encoding scheme for the data cannot be
specified for the table space or database, and all data in one table space or the
database need not use the same encoding scheme. Because there can be only
one TEMP database for all declared temporary tables for each DB2 member,
there can be a mixture of encoding schemes in both the database and each
table space.

For the creation of temporary tables, the CCSID clause can be specified
whether or not the LIKE clause is specified. If the CCSID clause is specified,
the encoding scheme of the new table is the scheme that is specified in the
CCSID clause. If the CCSID clause is not specified, the encoding scheme of
the new table is the same as the scheme for the table specified in the LIKE
clause or as the scheme for the table identified by the AS (fullselect) clause.

ASCII Specifies that the data is encoded by using the ASCII CCSIDs of the
server.

EBCDIC
Specifies that the data is encoded by using the EBCDIC CCSIDs of the
server.

UNICODE
Specifies that the data is encoded by using the UNICODE CCSIDs of
the server.

An error occurs if the CCSIDs for the encoding scheme have not been defined.
Usually, each encoding scheme requires only a single CCSID. Additional
CCSIDs are needed when mixed, graphic, or UNICODE data is used.

ON COMMIT commit-action ROWS
Specifies whether the contents of the table are to be deleted or preserved
across a commit operation.

DELETE
The rows of the table are deleted if no WITH HOLD cursors are open on
the table. DELETE is the default.

PRESERVE
The rows of the table are preserved. Thread reuse capability is not
available to any application process or thread that contains, at its most
recent COMMIT, an active declared temporary table that was defined with
the ON COMMIT PRESERVE ROWS clause.

Notes
Instantiation, scope, and termination: Let P denote an application process and
let T be a declared temporary table in an application program in P:

v When a program in P issues a DECLARE GLOBAL TEMPORARY TABLE
statement, an empty instance of T is created.

v Any program in P can reference T, and any of those references is a reference to
that same instance of T. (If a DECLARE GLOBAL TEMPORARY statement is
specified within the SQL procedure language compound statement, BEGIN-END,
the scope of the declared temporary table is the application process and not the
compound statement.)

If T was declared at a remote server, the reference to T must use the same DB2
connection that was used to declare T and that connection must not have been

DECLARE GLOBAL TEMPORARY TABLE

678 SQL Reference

|
|
|
|
|
|

|
|
|
|
|
|

||
|

|
|
|

|
|
|

|

|

terminated after T was declared. When the connection to the database server at
which T was declared terminates, T is dropped, and its instantiated rows are
destroyed.

v If T is defined with the ON COMMIT DELETE ROWS clause, when a commit
operation terminates a unit of work in P and no program in P has a WITH HOLD
cursor open that is dependent on T, the commit includes the operation DELETE
FROM T (all rows).

v When a rollback operation terminates a unit of work in P, the rollback undoes the
rows of T up to the last commit or specified external savepoint but leaves all
rows that existed up to that point.

v When the application process that declared T terminates, T is dropped, and its
instantiated rows are destroyed.

Thread reuse: If a declared temporary table is defined in an application process
that is running as a local thread, the application process or local thread that
declared the table qualifies for explicit thread reuse if:

v The table was defined with the ON COMMIT DELETE ROWS attribute, which is
the default.

v The table was defined with the ON PRESERVE COMMIT DELETE ROWS
attribute and the table was explicitly dropped with the DROP TABLE statement
before the thread’s commit operation.

When the thread is reused, the declared temporary table is dropped and its rows
are destroyed. However, if you do not explicitly drop all declared temporary tables
before your thread performs a commit and the thread becomes idle waiting to be
reused, as with all thread reuse situations, the idle thread holds resources and
locks. This includes some declared temporary table resources and locks on the
table spaces and the database descriptor (DBD) for the TEMP database. So,
instead of using the implicit drop feature of thread reuse to drop your declared
temporary tables, it is recommended that you explicitly use the DROP TABLE
statement to drop your declared temporary tables before the thread performs a
commit operation and becomes idle. Explicitly dropping the tables enables you to
maximize the use of declared temporary table resources and release locks when
multiple threads are using declared temporary table.

Remote threads qualify for thread reuse differently than local threads. If a declared
temporary table is defined (with or without ON COMMIT DELETE ROWS) in an
application process that is running as a remote or DDF thread (also known as
Database Access Thread or DBAT), the remote thread qualifies for thread reuse
only when the declared temporary table is explicitly dropped before the thread
performs a commit operation. Dropping the declared temporary table enables the
remote thread to qualify for the implicit thread reuse that is supported for DDF
threads via connection pooling and to become an inactive type 1 or type 2 thread.

Privileges: When a declared temporary table is defined, PUBLIC implicitly is
granted all table privileges on the table and authority to drop the table. These
implicit privileges are not recorded in the DB2 catalog and cannot be revoked.

Referring to a declared temporary table in other SQL statements: Many SQL
statements support declared temporary tables. To refer to a declared temporary
table in an SQL statement other than DECLARE GLOBAL TEMPORARY TABLE,
you must qualify the table name with SESSION. You can either specify SESSION
explicitly in the table name or use the QUALIFIER bind option to specify SESSION
as the qualifier for all SQL statements in the plan or package.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 679

If you use SESSION as the qualifier for a table name but the application process
does not include a DECLARE GLOBAL TEMPORARY TABLE statement for the
table name, DB2 assumes that you are not referring to a declared temporary table.
DB2 resolves such table references to a table whose definition is persistent and
appears in the DB2 catalog tables.

With the exception of the DECLARE GLOBAL TEMPORARY TABLE statement, any
static SQL statement that references a declared temporary table is incrementally
bound at run time. This is because the definition of the declared temporary table
does not exist until the DECLARE GLOBAL TEMPORARY statement is executed in
the application process that contains those SQL statements and the definition does
not persist when the application process finishes running.

When a plan or package is bound, any static SQL statement (other than the
DECLARE GLOBAL TEMPORARY TABLE statement) that references a table-name
that is qualified by SESSION, regardless of whether the reference is for a declared
temporary table, is not completely bound. However, the bind of the plan or package
succeeds if there are no other errors. These static SQL statements are then
incrementally bound at run time when the static SQL statement is issued. This is
necessary because:

v The definition of the declared temporary table does not exist until the DECLARE
GLOBAL TEMPORARY TABLE statement for the table is executed in the same
application process that contains those SQL statements. Therefore, DB2 must
wait until the plan or package is run to determine if SESSION.table-name refers
to a base table or a declared temporary table.

v The definition of a declared temporary table does not persist after the table it is
explicitly dropped (DROP statement) or the application process that defined it
finishes running. When the application process terminates or is re-used as a
reusable application thread, the instantiated rows of the table are deleted and the
definition of the declared temporary table is dropped if it has not already been
explicitly dropped.

After the plan or package is bound, any static SQL statement that refers to a
table-name that is qualified by SESSION has a new statement status of M in the
DB2 catalog table (STATUS column of SYSIBM.SYSSTMT or
SYSIBM.SYSPACKSTMT.

Parallelism support: Only I/O and CP parallelism are supported. Any query that
involves a declared temporary table is limited to parallel tasks on a single CPC.

Restrictions on the use of declared temporary tables: Declared temporary
tables cannot:
v Be specified in referential constraints.
v Be referenced in any SQL statements that are defined in a trigger body (CREATE

TRIGGER statement). If you refer a table name that is qualified with SESSION in
a trigger body, DB2 assumes that you are referring to a base table.

In addition, do not refer to a declared temporary table in any of the following
statements.

DECLARE GLOBAL TEMPORARY TABLE

680 SQL Reference

ALTER INDEX
ALTER TABLE
COMMENT ON
CREATE ALIAS
CREATE FUNCTION (TABLE LIKE clause)
CREATE PROCEDURE (TABLE LIKE clause)
CREATE TRIGGER

CREATE VIEW
GRANT (table or view privileges)
LABEL ON
LOCK TABLE
RENAME TABLE
REVOKE (table or view privileges)

Examples
Example 1: Define a declared temporary table with column definitions for an
employee number, salary, commission, and bonus.

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9, 2),
BONUS DECIMAL(9, 2),
COMM DECIMAL(9, 2))
CCSID EBCDIC
ON COMMIT PRESERVE ROWS;

Example 2: Assume that base table USER1.EMPTAB exists and that it contains
three columns, one of which is an identity column. Declare a temporary table that
has the same column names and attributes (including identity attributes) as the
base table.

DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
LIKE USER1.EMPTAB
INCLUDING IDENTITY
ON COMMIT PRESERVE ROWS;

In the above example, DB2 uses SESSION as the implicit qualifier for TEMPTAB1.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 681

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for application program
documentation. It declares names that are used to identify prepared SQL
statements.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
statement-name STATEMENT

Lists one or more names that are used in your application program to identify
prepared SQL statements.

Example
This example shows the use of the DECLARE STATEMENT statement in a PL/I
program.

EXEC SQL DECLARE OBJECT_STATEMENT STATEMENT;

EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE C1 CURSOR FOR OBJECT_STATEMENT;

(SOURCE_STATEMENT IS "SELECT DEPTNO, DEPTNAME,
MGRNO FROM DSN8710.DEPT WHERE ADMRDEPT = 'A00'")

EXEC SQL PREPARE OBJECT_STATEMENT FROM SOURCE_STATEMENT;
EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

(Examine SQLDA)

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

(Print results)

END;

EXEC SQL CLOSE C1;

�� �

,

DECLARE statement-name STATEMENT ��

DECLARE STATEMENT

682 SQL Reference

DECLARE TABLE
The DECLARE TABLE statement is used for application program documentation. It
also provides the precompiler with information used to check your embedded SQL
statements. (The DCLGEN subcommand can be used to generate declarations for
tables and views described in any accessible DB2 catalog. For more on DCLGEN,
see Part 2 of DB2 Application Programming and SQL Guide and Chapter 2 of DB2
Command Reference.)

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
table-name or view-name

Is the name of the table or view you want to document. If the table is defined in
your application program, the description of the table in the SQL statement in
which it is defined (for example, CREATE TABLE or DECLARE GLOBAL
TEMPORARY TABLE statement) and the DECLARE TABLE statement must be
identical.

column-name
Is the name of a column of the table or view.

The precompiler uses these names to check for consistency of names within
your SQL statements. It also uses the data type to check for consistency of
types within your SQL statements.

built-in-data-type
Is the built-in data type of the column. Use one of the built-in data types. See
“built-in-data-type” on page 606 for details.

distinct-type-name
Is the distinct type (user-defined data type) of the column. An implicit or explicit
schema name qualifies the name.

NOT NULL
Is used for a column that does not allow null values, and does not provide a
default value.

�� DECLARE table-name
view-name

�

� �

,

TABLE(column-name built-in-data-type)
distinct-type-name NOT NULL

NOT NULL WITH DEFAULT

��

DECLARE TABLE

Chapter 5. Statements 683

NOT NULL WITH DEFAULT
Is used for a column that does not allow null values, but provides a default
value.

Notes
Error handling during processing: If an error occurs during the processing of the
DECLARE TABLE statement, a warning message is issued, and the precompiler
continues processing your source program.

Documenting a distinct type column: Although you can specify the name of a
distinct type as the data type of a column in the DECLARE TABLE statement, we
recommend that you use the built-in data type on which the distinct type is sourced
instead. Using the source type enables the precompiler to check the embedded
SQL statements for errors; otherwise, error checking is deferred until bind time.

To determine the source data type of the distinct type, query column
SOURCETYPE in catalog table SYSDATATYPES.

Examples
Example 1: Declare the sample employee table, DSN8710.EMP.

EXEC SQL DECLARE DSN8710.EMP TABLE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2));

Example 2: Assume that table CANADIAN_SALES keeps information for your
company’s sales in Canada. The table was created with the following definition:

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL CANADIAN_DOLLAR);

CANADIAN_DOLLAR is a distinct type that was created with the following
statement:

CREATE DISTINCT TYPE CANADIAN_DOLLAR
AS DECIMAL(9,2) WITH COMPARISONS;

Declare the CANADIAN_SALES table, using the source type for
CANADIAN_DOLLAR instead of the distinct type name.

DECLARE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL DECIMAL(9,2);

DECLARE TABLE

684 SQL Reference

DECLARE VARIABLE
The DECLARE VARIABLE statement defines a CCSID for a host variable and the
subtype of the variable. When it appears in an application program, the DECLARE
VARIABLE statement causes the DB2 precompiler to tag a host variable with a
specific CCSID. When the host variable appears in a SQL statement, the DB2
precompiler places this CCSID into the structures that it generates for the SQL
statement.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
host-variable

Identifies a character or graphic-string host variable defined in the program. An
indicator variable cannot be specified for the host-variable.

CCSID ASCII, EBCDIC, or UNICODE
Indicates that the appropriate default CCSID for the specified encoding scheme
of the server should be used. If this clause is not specified, the CCSID of the
variable is the appropriate default EBCDIC CCSID of the server.

CCSID ASCII
Indicates that the default ASCII CCSID for the type of the variable at the
server should be used.

CCSID EBCDIC
Indicates that the default EBCDIC CCSID for the type of the variable at the
server should be used. CCSID EBCDIC is the default if this option is not
specified.

CCSID UNICODE
Indicates that the default UNICODE CCSID for the type of the variable at
the server should be used.

FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA
Indicates the type of data contained in the variable host-variable. The FOR
clause cannot be specified when declaring a graphic host variable.

�� �

,
CCSID EBCDIC

DECLARE host-variable VARIABLE
CCSID ASCII FOR SBCS DATA
CCSID UNICODE FOR MIXED DATA

FOR BIT DATA
CCSID integer

��

DECLARE VARIABLE

Chapter 5. Statements 685

|
|

|
|
|
|
|
|

|

|
|

|

|

|

||

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

For ASCII or EBCDIC data, if this clause is not specified when declaring a
character host variable, the default is FOR SBCS DATA if MIXED DATA = NO
on the install panel DSNTIPF. The default is FOR MIXED DATA if MIXED DATA
= YES on the install panel DSNTIPF.

For UNICODE data, the default is always FOR MIXED DATA, regardless of the
setting of MIXED DATA on the install panel DSNTIPF.

FOR SBCS DATA
Indicates that the values of the host variable can contain only SBCS
(single-byte character set) data.

FOR MIXED DATA
Indicates that the values of the host variable can contain both SBCS data
and DBCS data.

FOR BIT DATA
Indicates that the values of the host-variable are not associated with a
coded character set and, therefore, are never converted. The CCSID of a
FOR BIT DATA host variable is 65535.

CCSID integer
Indicates that the values of the host variable contain data that is encoded using
CCSID integer. If the integer is an SBCS CCSID, the host variable is SBCS
data. If the integer is a mixed data CCSID, the host variable is mixed data. For
character host variables, the CCSID specified must be an SBCS, mixed CCSID,
or UNICODE (UTF-8) CCSID. For graphic host variables, the CCSID specified
must be a DBCS or UNICODE (UTF-16) CCSID. The valid range of values for
the integer is 1 - 65533.

Notes
Placement of statement: The DECLARE VARIABLE statement can be specified
anywhere in an application program that SQL statements are valid with the following
exception. The DECLARE VARIABLE statement must occur before an SQL
statement that refers to a host variable specified in the DECLARE VARIABLE
statement.

CCSID exceptions for EXECUTE IMMEDIATE or PREPARE: When the host
variable appears in an SQL statement, the DB2 precompiler places the appropriate
numeric CCSID into the structures it generates for the SQL statement. This
placement of the CCSID occurs for any SQL statement other than the EXECUTE
IMMEDIATE or PREPARE statements. The placement of the CCSID also occurs for
a host-variable in an EXECUTE IMMEDIATE or PREPARE statement, but it does
not occur for a variable in a string-expression in an EXECUTE IMMEDIATE or
PREPARE statement.

If a PL/1 application program contains at least one DECLARE VARIABLE
statement, a string-expression in any EXECUTE IMMEDIATE or PREPARE
statement cannot be preceded by a colon. An expression that consists of just a
variable name preceded by a colon is interpreted as a host-variable.

Specific host languages: If a DECLARE VARIABLE statement is used in an
assembler source program, the ONEPASS precompiler option must not be used. If
a DECLARE VARIABLE statement is used in a C, C++, or PL/1 source program,
the TWOPASS precompiler option must be used. For those languages, or COBOL,
the host-variable definition can either precede or follow a DECLARE VARIABLE

DECLARE VARIABLE

686 SQL Reference

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

statement that refers to that variable. If a DECLARE VARIABLE statement is used
in a FORTRAN source program, then the host-variable definition must precede the
DECLARE VARIABLE statement.

Example
Example: Define the following host variables using PL/I data types: FRED as fixed
length bit data, JEAN as fixed length UTF-8 (mixed) data, DAVE as varying length
UTF-8 (mixed) data, PETE as fixed length graphic UTF-16 data, and AMBER as
varying length graphic UTF-16 data.

Use the DECLARE VARIABLE statement to specify a data subtype or CCSID for
these host variables: FRED as CCSID EBCDIC, JEAN as CCSID 1208 or CCSID
UNICODE, DAVE as CCSID 1208 or CCSID UNICODE, PETE as CCSID 1200 or
CCSID UNICODE, and AMBER as CCSID 1200 or CCSID UNICODE.

EXEC SQL BEGIN DECLARE SECTION;
DCL FRED CHAR(10);

EXEC SQL DECLARE :FRED VARIABLE CCSID EBCDIC FOR BIT DATA;
DCL JEAN CHAR(30);

EXEC SQL DECLARE :JEAN VARIABLE CCSID 1208;
DCL DAVE CHAR(9) VARYING;

EXEC SQL DECLARE :DAVE VARIABLE CCSID UNICODE;
DCL PETE GRAPHIC(10);

EXEC SQL DECLARE :PETE VARIABLE CCSID 1200;
DCL AMBER VARGRAPHIC(20);

EXEC SQL DECLARE :AMBER VARIABLE CCSID UNICODE;
EXEC SQL END DECLARE SECTION;

DECLARE VARIABLE

Chapter 5. Statements 687

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

DELETE
The DELETE statement deletes rows from a table or view. The table or view can be
at the current server or any DB2 subsystem with which the current server can
establish a connection. Deleting a row from a view deletes the row from the table
on which the view is based.

There are two forms of this statement:

v The searched DELETE form is used to delete one or more rows, optionally
determined by a search condition.

v The positioned DELETE form is used to delete exactly one row, as determined
by the current position of a cursor.

Invocation
This statement can be embedded in an application program or issued interactively.
A positioned DELETE is embedded in an application program. Both the embedded
and interactive forms are executable statements that can be dyamically prepared.

Authorization
Authority requirements depend on whether the object identified in the statement is a
user-defined table, a catalog table, or a view, and whether the statement is a
searched DELETE and SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least
one of the following:
v The DELETE privilege on the table
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:
v The DELETE privilege on the view
v SYSADM authority

In a searched delete, the SELECT privilege is required in addition to the DELETE
privilege when the option for the SQL standard is set as follows:

Searched DELETE and SQL standard rules:
If SQL standard rules are in effect and the search-condition in a searched DELETE
contains a reference to a column of the table or view, the privilege set must include
at least one of the following:
v The SELECT privilege on the table or view
v SYSADM authority

SQL standard rules are in effect as follows:

v For static SQL statements, if the SQLRULES(STD) bind option was specified

v For dynamic SQL statements, if the CURRENT RULES special register is set to
'STD'

DELETE

688 SQL Reference

The owner of a view, unlike the owner of a table, might not have DELETE authority
on the view (or might have DELETE authority without being able to grant it to
others). The nature of the view itself can preclude its use for DELETE. For more
information, see the description of authority in “CREATE VIEW” on page 658.

If a subselect is specified, the privilege set must include authority to execute the
subselect. For more information about the subselect authorization rules, see
“Authorization” on page 300.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the authorization ID of the owner of the plan or package.
If the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 34 on page 334. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43.)

Syntax

Description
FROM table-name or view-name

Identifies the object of the DELETE statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:
v An auxiliary table
v A catalog table for which deletes are not allowed
v A view of such a catalog table
v A read-only view (For a description of a read-only view, see “CREATE VIEW”

on page 658.)

In an IMS or CICS application, the DB2 subsystem that contains the identified
table or view must not be a remote DB2 Version 2 Release 3 subsystem.

correlation-name
Can be used within the search-condition or positioned DELETE to qualify
references to columns of the table or view. (For an explanation of correlation
names, see “Correlation names” on page 95.)

searched delete:

�� DELETE FROM table-name
view-name correlation-name WHERE search-condition

�

�
WITH RR

RS
CS

QUERYNO integer
��

positioned delete:

�� DELETE FROM table-name
view-name correlation-name

WHERE CURRENT OF cursor-name ��

DELETE

Chapter 5. Statements 689

#
#
#

WHERE
Specifies the rows to be deleted. You can omit the clause, give a search
condition or name a cursor. For a created temporary table or a view of a
created temporary table, you must omit the clause. When the clause is omitted,
all the rows of the table or view are deleted.

search-condition
Is any search condition as described in “Chapter 2. Language elements” on
page 27. Each column-name in the search condition, other than in a
subquery, must identify a column of the table or view.

The search condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for each
row.

Let T2 denote the object table of a DELETE statement and let T1 denote a
table that is referred to in the FROM clause of a subquery of that
statement. T1 must not be a table that can be affected by the DELETE on
T2. Thus, the following rules apply:

v T1 must not be a dependent of T2 in a relationship with a delete rule of
CASCADE or SET NULL.

v T1 must not be a dependent of T3 in a relationship with a delete rule of
CASCADE or SET NULL if deletes of T2 cascade to T3.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. cursor-name must
identify a declared cursor as explained in the description of the DECLARE
CURSOR statement in “DECLARE CURSOR” on page 665. If the DELETE
statement is embedded in a program, the DECLARE CURSOR statement
must include select-statement rather than statement-name.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. For an explanation of read-only result tables, see “Read-only
cursors” on page 668. Note that the object of the DELETE statement must
not be identified as the object of the subquery in the WHERE clause of the
SELECT statement of the cursor.

If the cursor is ambiguous and the plan or package was bound with
CURRENTDATA(NO), DB2 might return an error to the application if
DELETE WHERE CURRENT OF is attempted for any of the following:

v A cursor that is using block fetching

v A cursor that is using query parallelism

v A cursor that is positioned on a row that has been modified by this or
another application process

When the DELETE statement is executed, the cursor must be positioned on
a row; that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next row, the
cursor is positioned after the last row.

DELETE

690 SQL Reference

|
|
|

WITH
Specifies the isolation level used when locating the rows to be deleted by the
statement.
RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and
trace records. The number is used for the QUERYNO column of the plan table
for the rows that contain information about this SQL statement. This number is
also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on accessing
the plan table, see Part 5 (Volume 2) of DB2 Administration Guide.

Notes
Delete operation errors: If an error occurs during the execution of any delete
operation, no changes are made. If an error occurs during the execution of a
positioned delete, the position of the cursor is unchanged. However, it is possible
for an error to make the position of the cursor invalid, in which case the cursor is
closed. It is also possible for a delete operation to cause a rollback, in which case
the cursor is closed.

Position of cursor: If an application process deletes a row on which any of its
cursors are positioned, those cursors are positioned before the next row of the
result table. Let C be a cursor that is positioned before row R (as a result of an
OPEN, a DELETE through C, a DELETE through some other cursor, or a searched
DELETE). In the presence of INSERT, UPDATE, and DELETE operations that affect
the base table from which R is derived, the next FETCH operation referencing C
does not necessarily position C on R. For example, the operation can position C on
R’, where R’ is a new row that is now the next row of the result table.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired during the execution of a successful delete operation. Until the locks are
released by a commit or rollback operation, the effect of the DELETE operation can
only be perceived by the application process that performed the deletion and the
locks can prevent other application processes from performing operations on the
table. Locks are not acquired when rows are deleted from a declared temporary
table unless all the rows are deleted (DELETE FROM T). When all the rows are

DELETE

Chapter 5. Statements 691

|
|
|

|
|
|
|

|
|
|

deleted from a declared temporary table, a segmented table lock is acquired on the
pages for the table and no other table in the table space is affected.

Referential integrity: If the object table of the delete operation is a parent table:

v The rows selected for deletion must have no dependents in a relationship
governed by a delete rule of RESTRICT or NO ACTION.

v The delete operation must not cascade to descendent rows that are dependents
in a relationship governed by a delete rule of RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION delete rule,
the selected rows are deleted and:

v The columns of foreign keys in any rows that are their dependents in a
relationship governed by a delete rule of SET NULL and which allow nulls are set
to the null value.

v Any rows that are their dependents in a relationship governed by a delete rule of
CASCADE are also deleted, and these rules apply, in turn, to those rows.

The only difference between NO ACTION and RESTRICT is when the referential
constraint is enforced. RESTRICT (IBM SQL rules) enforces the rule immediately,
and NO ACTION (SQL standard rules) enforces the rule at the end of the
statement. This difference matters only in the case of a searched DELETE involving
a self-referencing constraint that deletes more than one row. NO ACTION might
allow the DELETE to be successful where RESTRICT (if it were allowed) would
prevent it.

A check constraint can prevent the deletion of a row in a parent table when there
are dependents in a relationship with a delete rule of SET NULL. If deleting a row in
the parent table would cause a column in a dependent table to be set to null and
there is a check constraint that specifies that the column must not be null, the row
is not deleted.

Nesting user-defined functions or stored procedures: A DELETE statement can
implicitly or explicitly refer to user-defined functions or stored procedures. This is
known as nesting of SQL statements. A user-defined function or stored procedure
that is nested within the DELETE must not access the table from which you are
deleting rows.

Triggers: If the identified table or the base table of the identified view has a delete
trigger, the trigger is fired for each row deleted.

Number of rows deleted: Except as noted below, a DELETE operation sets
SQLERRD(3) to the number of deleted rows. This number does not include any
rows that were deleted as a result of a CASCADE delete rule.

DELETE FROM T without a WHERE clause deletes all rows of T. If a table T is
contained in a segmented table space and is not a parent table, this deletion will be
performed without accessing T. If a table T is from a CREATE GLOVAL
TEMPORARY TABLE statement, the SQLERRD(3) field is set to -1. (For a
complete description of the SQLCA, including exceptions to the above, see “SQL
communication area (SQLCA)” on page 923.

If the object table is SYSIBM.SYSSTRINGS, the rows selected for delete must be
rows provided by the user (the value of the IBMREQD column is N).

DELETE

692 SQL Reference

|
|

|
|
#
#
|
|

Rules for positioned DELETE with SENSITIVE STATIC scrollable cursor: When
a SENSITIVE STATIC scrollable cursor has been declared, the following rules
apply:

v Delete attempt of delete holes or update holes. If, with a positioned delete
against a SENSITIVE STATIC scrollable cursor, an attempt is made to delete a
row that has been identified as a delete hole (that is, a row in the result table
whose corresponding row has been deleted from the base table), an error
occurs.

If an attempt is made to delete a row that has been identified as an update hole
(that is, a row in the result table whose corresponding row has been updated so
that it no longer satisfies the predicate of the SELECT statement), an error
occurs.

v Delete operations. Positioned delete operations with SENSITIVE STATIC
scrollable cursors perform as follows:

1. The SELECT list items in the target row of the base table of the cursor are
compared with the values in the corresponding row of the result table (that is,
the result table must still agree with the base table). If the values are not
identical, the delete operation is rejected and an error occurs. The operation
can be attempted again after a successful FETCH SENSITIVE has occurred
for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine
whether the current values in the base table still satisfy the search criteria.
The values in the SELECT list are compared to determine that these values
have not changed. If the WHERE clause evaluates as true, and the values in
the SELECT list have not changed, the delete operation is allowed to
proceed. Otherwise, an error occurs, the delete operation is rejected, and an
update hole appears in the cursor.

3. After the base table row is successfully deleted, the temporary result table is
updated and the row is marked as a delete hole.

v Rollback of delete holes. Delete holes are usually permanent. Once a delete hole
is identified, it remains a delete hole until the cursor is closed. However, if a
positioned delete using this cursor actually caused the creation of the hole (that
is, this cursor was used to make the changes that resulted in the hole) and the
delete was subsequently rolled back, then the row is no longer considered a
delete hole.

v Result table. Any deletes, either positioned or searched, to rows of the base table
on which a SENSITIVE STATIC scrollable cursor is defined are reflected in the
result table if a positioned update or positioned delete is attempted with the
scrollable cursor. A SENSITIVE STATIC scrollable cursor sees these deletes
when a FETCH SENSITIVE is attempted.

Examples
Assume that the statements in these examples are embedded in PL/I programs.

Example 1: From the table DSN8710.EMP delete the row on which the cursor C1 is
currently positioned.

EXEC SQL DELETE FROM DSN8710.EMP WHERE CURRENT OF C1;

Example 2: From the table DSN8710.EMP, delete all rows for departments E11 and
D21.

EXEC SQL DELETE FROM DSN8710.EMP
WHERE WORKDEPT = 'E11' OR WORKDEPT = 'D21';

DELETE

Chapter 5. Statements 693

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

Example 3: From employee table X, delete the employees who have the most
absences for the department to which they belong.

EXEC SQL DELETE FROM EMP X
WHERE ABSENT = (SELECT MAX(ABSENT) FROM EMP Y
WHERE X.WORKDEPT = Y.WORKDEPT);

DELETE

694 SQL Reference

|
|

|
|
|

|

DESCRIBE (prepared statement or table)
The DESCRIBE statement obtains information about a prepared statement or a
designated table or view. For an explanation of prepared statements, see
“PREPARE” on page 792 and “DESCRIBE PROCEDURE” on page 706.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required if the statement is used for a prepared statement. When it is used
instead for a table or view, the privileges that are held by the authorization ID that
owns the plan or package must include at least one of the following (if there is a
plan, authorization checking is done only against the plan owner):
v Ownership of the table or view
v The SELECT, INSERT, UPDATE, DELETE, or REFERENCES privilege on the

object
v The ALTER or INDEX privilege on the object (tables only)
v DBADM authority over the database that contains the object (tables only)
v SYSADM or SYSCTRL authority

For an RRSAF application that does not have a plan and in which the requester
and the server are DB2 for OS/390 and z/OS systems, authorization to execute the
package is performed against the primary or secondary authorization ID of the
process.

See “PREPARE” on page 792 for the authorization required to create a prepared
statement.

Syntax

Description
statement-name

Identifies the prepared statement. When the DESCRIBE statement is executed,
the name must identify a statement that has been prepared by the application
process at the current server.

TABLE host-variable
Identifies the table or view. The name must not identify an auxiliary table. When
the DESCRIBE statement is executed, the host variable must contain a name
which identifies a table or view that exists at the current server. This variable
must be a fixed- or varying-length character string with a length attribute less
than 256. The name must be followed by one or more blanks if the length of the
name is less than the length of the variable. It cannot contain a period as the
first character and it cannot contain embedded blanks. In addition, the quotation

��

mark is the escape character regardless of the value of the string delimiter
option. An indicator variable must not be specified for the host variable.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in “Appendix C.
SQLCA and SQLDA” on page 923. See “Identifying an SQLDA in C or C⁺⁺” on
page 947 for how to represent descriptor-name in C.

For languages other than REXX: Before the DESCRIBE statement is executed,
the user must set the following variable in the SQLDA and the SQLDA must be
allocated.

SQLN Indicates the number of SQLVAR occurrences provided in the SQLDA.
DB2 does not change this value. For techniques to determine the
number of required occurrences, see “Allocating the SQLDA” on
page 697.

For REXX: The SQLDA is not allocated before it is used. An SQLDA consists of
a set of stem variables. There is one occurrence of variable stem.SQLD,
followed by zero or more occurrences of a set of variables that is equivalent to
an SQLVAR structure. Those variables begin with stem.n.

After the DESCRIBE statement is executed, all the fields in the SQLDA except
SQLN are either set by DB2 or ignored. For information on the contents of the
fields, see “The SQLDA contents returned after DESCRIBE” on page 697.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the
requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
ON statement.)

ANY
Assigns the column label, and if the column has no label, the column name.

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional
information. To specify this expansion of the SQLVAR array, set SQLN to
2×n or 3×n, where n is the number of columns in the object being
described. For each of the columns, the first n occurrences of SQLVAR,
which are the base SQLVAR entries, contain the column names. Either the
second or third n occurrences of SQLVAR, which are the extended SQLVAR
entries, contain the column labels. If there are no distinct types, the labels
are returned in the second set of SQLVAR entries. Otherwise, the labels are
returned in the third set of SQLVAR entries.

For a declared temporary table, the name of the column is assigned regardless
of the value specified in the USING clause because declared temporary tables
cannot have labels.

Notes
Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

DESCRIBE

696 SQL Reference

Allocating the SQLDA: Before the DESCRIBE or PREPARE INTO statement is
executed, the value of SQLN must be set to a value greater than or equal to zero to
indicate how many occurrences of SQLVAR are provided in the SQLDA. Also,
enough storage must be allocated to contain the number of occurrences that SQLN
specifies. To obtain the description of the columns of the result table of a prepared
SELECT statement, the number of occurrences of SQLVAR must be at least equal
to the number of columns. Furthermore, if USING BOTH is specified, or if the
columns include LOBs or distinct types, the number of occurrences of SQLVAR
should be two or three times the number of columns. See “Determining how many
SQLVAR occurrences are needed” on page 935 for more information.

First technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. At the
extreme, the number of SQLVARs could equal three times the maximum number of
columns allowed in a result table. After the SQLDA is allocated, the application can
use the SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when
most of this storage is not used for a particular select list.

Second technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of
SQLVAR; that is, an SQLDA for which SQLN is zero.

2. Allocate a new SQLDA with enough occurrences of SQLVAR. Use the values
that are returned in SQLD and SQLCODE to determine the number of SQLVAR
entries that are needed. The value of SQLD is the number of columns in the
result table, which is either the required number of occurrences of SQLVAR or a
fraction of the required number (see “Determining how many SQLVAR
occurrences are needed” on page 935 for details). If the SQLCODE is +236,
+237, +238, or +239, the number of SQLVAR entries that is needed is two or
three times the value in SQLD, depending on whether USING BOTH was
specified. Set SQLN to reflect the number of SQLVAR entries that have been
allocated.

3. Execute the DESCRIBE statement again, using the new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE statements.

Third technique: Allocate an SQLDA that is large enough to handle most (hopefully,
all) select lists but is also reasonably small. If an execution of DESCRIBE fails
because SQLDA is too small, allocate a larger SQLDA and execute the DESCRIBE
statement again.

For the new larger SQLDA, use the values that are returned in SQLD and
SQLCODE from the failing DESCRIBE statement to calculate the number of
occurrences of SQLVAR that are needed, as described in technique two.
Remember to check for SQLCODEs +236, +237, +238, and +239, which indicate
whether extended SQLVAR entries are needed because the data includes LOBs or
distinct types.

This third technique is a compromise between the first two techniques. Its
effectiveness depends on a good choice of size for the original SQLDA.

The SQLDA contents returned on DESCRIBE: After a DESCRIBE statement is
executed, the following list describes the contents of the SQLDA fields as they are

DESCRIBE

Chapter 5. Statements 697

set by DB2 or ignored. These descriptions do not necessarily apply to the uses of
an SQLDA in other SQL statements (EXECUTE, OPEN, FETCH). For more on the
other uses, see “Appendix C. SQLCA and SQLDA” on page 923.

SQLDAID
DB2 sets the first 6 bytes to ’SQLDA ’ (5 letters followed by the space
character) and the eighth byte to a space character. The seventh byte is set
to indicate the number of SQLVAR entries that are needed to describe each
column of the result table as follows:

space The value of space occurs when:

v USING BOTH was not specified and the columns being
described do not include LOBs or distinct types. Each column
only needs one SQLVAR entry. If the SQL standard option is yes,
DB2 sets SQLCODE to warning code +236. Otherwise,
SQLCODE is zero.

v USING BOTH was specified and the columns being described do
not include LOBs or distinct types. Each column needs two
SQLVAR entries. DB2 sets SQLD to two times the number of
columns of the result table. The second set of SQLVARs is used
for the labels.

2 Each column needs two SQLVAR entries. Two entries per column
are required when:

v USING BOTH was not specified and the columns being
described include LOBs or distinct types or both. DB2 sets the
second set of SQLVAR entries with information for the LOBs or
distinct types being described.

v USING BOTH was specified and the columns include LOBs but
not distinct types. DB2 sets the second set of SQLVAR entries
with information for the LOBs and labels for the columns being
described.

3 Each column needs three SQLVAR entries. Three entries are
required only when USING BOTH is specified and the columns
being described include distinct types. The presence of LOB data
does not matter. It is the distinct types and not the LOBs that cause
the need for three SQLVAR entries per column when labels are also
requested. DB2 sets the second set of SQLVAR entries with
information for the distinct types (and LOBs, if any) and the third set
of SQLVAR entries with the labels of the columns being described.

A REXX SQLDA does not contain this field.

SQLDABC
The length of the SQLDA in bytes. DB2 sets the value to SQLN×44+16.

A REXX SQLDA does not contain this field.

SQLD If the prepared statement is a query, DB2 sets the value to the number of
columns in the object being described (the value is actually twice the
number of columns in the case where USING BOTH was specified and the
result table does not include LOBs or distinct types). Otherwise, if the
statement is not a query, DB2 sets the value to 0.

SQLVAR
An array of field description information for the column being described.
There are two types of SQLVAR entries—the base SQLVAR and the
extended SQLVAR.

DESCRIBE

698 SQL Reference

If the value of SQLD is 0, or is greater than the value of SQLN, no values
are assigned to any occurrences of SQLVAR. If the value of SQLN was set
so that there are enough SQLVAR occurrences to describe the specified
columns (columns with LOBs or distinct types and a request for labels
increase the number of SQLVAR entries that are needed), the values are
assigned to the first n occurrences of SQLVAR so that the first occurrence
of SQLVAR contains a description of the first column, the second
occurrence of SQLVAR contains a description of the second column, and so
on. This first set of SQLVAR entries are referred to as base SQLVAR
entries. Each column always has a base SQLVAR entry.

If the DESCRIBE statement included the USING BOTH clause, or the
columns being described include LOBs or distinct types, additional SQLVAR
entries are needed. These additional SQLVAR entries are referred to as the
extended SQLVAR entries. There can be up to two sets of extended
SQLVAR entries for each column.

For REXX, the SQLVAR is a set of stem variables that begin with stem.n,
instead of a structure. The REXX SQLDA uses only a base SQLVAR. The
way in which DB2 assigns values to the SQLVAR variables is the same as
for other languages. That is, the stem.1 variables describe the first column
in the result table, the stem.2 variables describe the second column in the
result table, and so on. If USING BOTH is specified, the stem.n+1 variables
also describe the first column in the result table, the stem.n+2 variables
also describe the second column in the result table, and so on.

The base SQLVAR:

SQLTYPE
A code that indicates the data type of the column and whether the
column can contain null values. For the possible values of
SQLTYPE, see Table 74 on page 940.

SQLLEN
A length value depending on the data type of the result columns.
SQLLEN is 0 for LOB data types. For the other possible values of
SQLLEN, see Table 74 on page 940.

In a REXX SQLDA, for DECIMAL or NUMERIC columns, DB2 sets
the SQLPRECISION and SQLSCALE fields instead of the SQLLEN
field.

SQLDATA
The CCSID of a string column. For possible values, see Table 75 on
page 941.

In a REXX SQLDA, DB2 sets the SQLCCSID field instead of the
SQLDATA field.

SQLIND
Reserved.

SQLNAME
The unqualified name or label of the column, depending on the
value of USING (NAMES, LABELS, ANY, or BOTH). The field is a
string of length 0 if the column does not have a name or label. For
more details on unnamed columns, see the discussion of the
names of result columns under “select-clause” on page 301. This
value is returned in the encoding scheme specified by the
ENCODING bind option for the plan or package that contains the
statement.

DESCRIBE

Chapter 5. Statements 699

|
|
|
|

The extended SQLVAR:

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB column.

* Reserved.

SQLDATALEN
Not Used.

SQLDATATYPE-NAME
For a distinct type, the fully qualified distinct type name. Otherwise,
the value is the fully qualified name of the built-in data type.

For a label, the label for the column.

This value is returned in the encoding scheme specified by the
ENCODING bind option for the plan or package that contains this
statement.

The REXX SQLDA does not use the extended SQLVAR.

Performance considerations: Although DB2 does not change the value of SQLN,
you might want to reset this value after the DESCRIBE statement is executed. If the
contents of SQLDA from the DESCRIBE statement is used in a later FETCH
statement, set SQLN to n (where n is the number of columns of the result table)
before executing the FETCH statement. For details, see “Preparing the SQLDA for
data retrieval”.

Preparing the SQLDA for data retrievals: This note is relevant if you are applying
DESCRIBE to a prepared query and you intend to use the SQLDA in the FETCH
statements you employ to retrieve the result table rows. To prepare the SQLDA for
that task, you must set the SQLDATA field of SQLVAR. SQLIND must be set if
SQLTYPE is odd, and SQLNAME must be set when overriding the CCSID. For the
meaning of those fields in that context, see “SQL descriptor area (SQLDA)” on
page 930.

Also, SQLN and SQLDABC should be reset (if necessary) to n and n×44+16, where
n is the number of columns in the result table. Doing so can improve performance
when the rows of the result table are fetched.

Support for extended dynamic SQL in a distributed environment: In a
distributed environment where DB2 for OS/390 and z/OS is the server and the
requester supports extended dynamic SQL, such as DB2 Server for VSE & VM, a
DESCRIBE statement that is executed against an SQL statement in the extended
dynamic package appears to DB2 as a DESCRIBE statement against a static SQL
statement in the DB2 package. A DESCRIBE statement cannot normally be issued
against a static SQL statement. However, a DESCRIBE against a static SQL
statement that is generated by extended dynamic SQL executes without error if the
package has been rebound after field DESCRIBE FOR STATIC on installation panel
DSNTIPF has been set to YES.

YES indicates that DB2 generates an SQLDA for the DESCRIBE at bind time so
that DESCRIBE requests for static SQL statements can be satisfied at execution
time. For more information, see Part 3 of DB2 Installation Guide .

Avoiding double preparation when using REOPTVAR: If bind option
REOPT(VARS) is in effect, DESCRIBE causes the statement to be prepared if it is
not already prepared. If issued before an OPEN or an EXECUTE, the DESCRIBE

DESCRIBE

700 SQL Reference

|
|
|

causes the statement to be prepared without input variable values. If the statement
has input variable values, it must then be prepared again when it is opened or
executed. To avoid preparing statements twice, issue the DESCRIBE after the
OPEN. For non-cursor statements, open and fetch processing are performed on the
EXECUTE. So, if a DESCRIBE must be issued, the statement will be prepared
twice.

Errors occurring on DESCRIBE: In local and remote processing, the
DEFER(PREPARE) and REOPT(VARS) bind options can cause some errors that
are normally issued during PREPARE processing to be issued on DESCRIBE.

Using host variables: If the DESCRIBE statement contains host variables, the
contents of the host variables are assumed to be in the encoding scheme that was
specified in the ENCODING parameter when the package or plan that contains the
statement was bound.

Example
In a PL/I program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an
SQLDA with the necessary number of occurrences of SQLVAR and then execute a
DESCRIBE statement using that SQLDA. This is the second technique described in
“Allocating the SQLDA” on page 697.

EXEC SQL BEGIN DECLARE SECTION;
DCL STMT1_STR CHAR(200) VARYING;

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */
/* a select-statement in the STMT1_STR */

EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

... /* code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

... /* code to check that SQLD is greater than zero, to set */
/* SQLN to SQLD, then to re-allocate the SQLDA */

EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

... /* code to prepare for the use of the SQLDA */
EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :SQLDA;
.
.
.

DESCRIBE

Chapter 5. Statements 701

|
|
|
|

DESCRIBE CURSOR
The DESCRIBE CURSOR statement gets information about the result set that is
associated with the cursor. The information, such as column information, is put into
a descriptor. Use DESCRIBE CURSOR for result set cursors from stored
procedures. The cursor must be defined with the ALLOCATE CURSOR statement.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
cursor-name or host-variable

Identifies a cursor by the specified cursor-name or the cursor name contained in
the host-variable. The name must identify a cursor that has already been
allocated in the source program.

A cursor name is a long identifier.

If a host variable is used:

v It must be a character string variable with a length attribute that is not greater
than 18 bytes (A C NUL-terminated character string can be up to 19 bytes).

v It must not be followed by an indicator variable.

v The cursor name must be left justified within the host variable and must not
contain embedded blanks.

v If the length of the cursor name is less than the length of the host variable, it
must be padded on the right with blanks.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the
SQLDA describes the columns in the result set associated with the named
cursor.

The considerations for allocating and initializing the SQLDA are similar to those
of a varying-list SELECT statement. For more information, see Part 6 of DB2
Application Programming and SQL Guide.

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE CURSOR statement is executed, the contents of the
SQLDA are the same as after a DESCRIBE for a SELECT statement, with the
following exceptions:
v The first 5 bytes of the SQLDAID field are set to 'SQLRS'.

�� DESCRIBE CURSOR cursor-name INTO descriptor-name
host-variable

��

DESCRIBE CURSOR

702 SQL Reference

|

v Bytes 6 to 8 of the SQLDAID field are reserved. If the cursor is declared
WITH HOLD in a stored procedure, the high-order bit of the 8th byte is set to
1.

These exceptions do not apply to a REXX SQLDA, which does not include the
SQLDAID field.

Notes
Column names are included in the information that DESCRIBE CURSOR obtains
when the statement that generates the result set is either:

v Dynamic

v Static and the value of field DESCRIBE FOR STATIC on installation panel
DSNTIPF was YES when the package or stored procedure was bound. If the
value of the field was NO, the returned information includes only the data type
and length of the columns.

Using host variables: If the DESCRIBE CURSOR statement contains host
variables, the contents of the host variables are assumed to be in the encoding
scheme that was specified in the ENCODING parameter when the package or plan
that contains the statement was bound.

Examples
The statements in the following examples are assumed to be in PL/I programs.

Example 1: Place information about the result set associated with cursor C1 into the
descriptor named by :sqlda1.

EXEC SQL DESCRIBE CURSOR C1 INTO :sqlda1

Example 2: Place information about the result set associated with the cursor named
by :hv1 into the descriptor named by :sqlda2.

EXEC SQL DESCRIBE CURSOR :hv1 INTO :sqlda2

DESCRIBE CURSOR

Chapter 5. Statements 703

|
|
|
|

DESCRIBE INPUT
The DESCRIBE INPUT statement obtains information about the input parameter
markers of a prepared statement. For an explanation of prepared statements, see
“PREPARE” on page 792 and “DESCRIBE PROCEDURE” on page 706.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required if the statement is used for a prepared statement.

Syntax

Description
statement-name

Identifies the prepared statement. When the DESCRIBE INPUT statement is
executed, the name must identify a statement that has been prepared by the
application process at the current server.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in “Appendix C.
SQLCA and SQLDA” on page 923. See “Identifying an SQLDA in C or C⁺⁺” on
page 947 for how to represent descriptor-name in C. The information returned
in the SQLDA describes the parameter markers.

Before the DESCRIBE INPUT statement is executed, the user must set the
SQLN field in the SQLDA and the SQLDA must be allocated. Considerations for
initializing and allocating the SQLDA are similar to those for the DESCRIBE
statement (see “DESCRIBE (prepared statement or table)” on page 695). An
occurrence of an extended SQLVAR is needed for each parameter in addition to
the required base SQLVAR only if the input data contains LOBs.

For REXX: The SQLDA is not allocated before it is used.

After the DESCRIBE INPUT statement is executed, all the fields in the SQLDA
except SQLN are either set by DB2 or ignored. The SQLDA contents are similar
to the contents returned for the DESCRIBE statement (see page 697) with
these exceptions:

v In the SQLDAID, DB2 sets the value of the seventh byte only to the space
character or '2'. A value of '3' is never used. The value '2' indicates that two
SQLVAR entries (an occurrence of both a base SQLVAR and an extended
SQLVAR) are required for each parameter because the input data contains
LOBs. The seventh byte is a space character when either of the following
conditions is true:

– The input data does not contain LOBs. Only a base SQLVAR occurrence
is needed for each parameter.

– Only a base SQLVAR occurrence is needed for each column of the result,
and the SQLDA is not large enough to contain the returned information.

�� DESCRIBE INPUT statement-name INTO descriptor-name ��

DESCRIBE INPUT

704 SQL Reference

v The SQLD field is set to the number of parameter markers being described.
The value is 0 if the statement being described does not have input
parameter markers.

v The SQLNAME field is not used.

v The SQLDATATYPE-NAME is not used if an extended SQLVAR entry is
present. DESCRIBE INPUT does not return information about distinct types.

For complete information on the contents of the fields, see “SQL descriptor area
(SQLDA)” on page 930.

Notes
Preparing the SQLDA for OPEN or EXECUTE: This note is relevant if you are
applying DESCRIBE INPUT to a prepared statement and you intend to use the
SQLDA in an OPEN or EXECUTE statement. To prepare the SQLDA for that
purpose:
v Set SQLDATA to a valid address.
v If SQLTYPE is odd, set SQLIND to a valid address.

For the meaning of those fields in that context, see “SQL descriptor area (SQLDA)”
on page 930.

Support for extended dynamic SQL in a distributed environment: Unlike the
DESCRIBE statement, which can be used in a distributed environment to describe
static SQL statements generated by extended dynamic SQL, you cannot describe
host variables in static SQL statements that are generated by extended dynamic
SQL. A DESCRIBE INPUT statement issued against such static SQL statements
always fails.

For information on how the DESCRIBE statement supports extended dynamic SQL,
see “Support for extended dynamic SQL in a distributed environment” on page 700.

Using host variables: If the DESCRIBE INPUT statement contains host variables,
the contents of the host variables are assumed to be in the encoding scheme that
was specified in the ENCODING parameter when the package or plan that contains
the statement was bound.

Example
Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR
occurrences to describe any number of input parameters a prepared statement
might have. Assume that five parameter markers at most will need to be described
and that the input data does not contain LOBs.

/* STMT1_STR contains INSERT statement with VALUES clause */
EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

... /* code to set SQLN to 5 and to allocate the SQLDA */
EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;
.
.
.

This example uses the first technique described in “Allocating the SQLDA” on
page 697 to allocate the SQLDA.

DESCRIBE INPUT

Chapter 5. Statements 705

|
|
|
|

DESCRIBE PROCEDURE
The DESCRIBE PROCEDURE statement gets information about the result sets
returned by a stored procedure. The information, such as the number of result sets,
is put into a descriptor.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
procedure-name or host-variable

Identifies the stored procedure to describe by the specified procedure name or
the procedure name contained in the host variable.

A procedure name is a qualified or unqualified name. Each part of the name
must be composed of SBCS characters:

v A fully qualified procedure name is a three-part name. The first part is a long
identifier that contains the location name that identifies the DBMS at which
the procedure is stored. The second part is a short identifier that contains the
schema name of the stored procedure. The last part is a long identifier that
contains the name of the stored procedure. A period must separate each of
the parts. Any or all of the parts can be a delimited identifier.

v A two-part procedure name has one implicit qualifier. The implicit qualifier is
the location name of the current server. The two parts identify the schema
name and the name of the stored procedure. A period must separate the two
parts.

v An unqualified procedure name is a one-part name with one implicit qualifier.
The implicit qualifier is the location name of the current server. An implicit
schema name is not needed as a qualifier. Successful execution of the
ASSOCIATE LOCATOR statement only requires that the unqualified
procedure name in the statement is the same as the procedure name in the
most recently executed CALL statement that was specified with an
unqualified procedure name. (The implicit schema name for the unqualified
name in the CALL statement is not considered in the match.) The rules for
how the procedure name must be specified are described below.

If a host variable is used:

v It must be a character string variable with a length attribute that is not greater
than 254.

v It must not be followed by an indicator variable.

v The value of the host variable is a specification that depends on the
database server. Regardless of the server, the specification must:

�� DESCRIBE PROCEDURE procedure-name INTO descriptor-name
host-variable

��

DESCRIBE PROCEDURE

706 SQL Reference

– Be left justified within the host variable
– Not contain embedded blanks
– Be padded on the right with blanks if its length is less than that of the host

variable

When the DESCRIBE PROCEDURE statement is executed, the procedure
name or specification must identify a stored procedure that the requester has
already invoked using the CALL statement.

The procedure name in the DESCRIBE PROCEDURE statement must be
specified the same way that it was specified on the CALL statement. For
example, if a two-part name was specified on the CALL statement, you must
use a two-part name in the DESCRIBE PROCEDURE statement. However,
there is one condition under which the names do not have to match. If the
CALL statement was made with a three-part name and the current server is the
same as the location in the three-part name, you can omit the location name
and specify a two-part name.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). The information returned in the
SQLDA describes the result sets returned by the stored procedure.

Considerations for allocating and initializing the SQLDA are similar to those for
DESCRIBE TABLE.

The contents of the SQLDA after executing a DESCRIBE PROCEDURE
statement are:

v The first 5 bytes of the SQLDAID field are set to 'SQLPR'.

A REXX SQLDA does not contain SQLDAID.

v Bytes 6 to 8 of the SQLDAID field are reserved.

v The SQLD field is set to the total number of result sets. A value of 0 in the
field indicates there are no result sets.

v There is one SQLVAR entry for each result set.

v The SQLDATA field of each SQLVAR entry is set to the result set locator
value associated with the result set.

For a REXX SQLDA, SQLLOCATOR is set to the result set locator value.

v The SQLIND field of each SQLVAR entry is set to the estimated number of
rows in the result set

v The SQLNAME field is set to the name of the cursor used by the stored
procedure to return the result set. This value is returned in the encoding
scheme specified by the ENCODING bind option for the plan or package that
contains this statement.

Notes
A value of -1 in the SQLIND field indicates that an estimated number of rows in the
result set is not provided. DB2 for OS/390 and z/OS always sets SQLIND to -1.

DESCRIBE PROCEDURE does not return information about the parameters
expected by the stored procedure.

If the DESCRIBE PROCEDURE statement contains host variables, the contents of
the host variables are assumed to be in the encoding scheme that was specified in
the ENCODING parameter when the package or plan that contains the statement
was bound.

DESCRIBE PROCEDURE

Chapter 5. Statements 707

|
|
|

|
|
|
|

Examples
The statements in the following examples are assumed to be in PL/I programs.

Example 1: Place information about the result sets returned by stored procedure P1
into the descriptor named by SQLDA1. Assume that the stored procedure is called
with a one-part name from current server SITE2.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL P1;
EXEC SQL DESCRIBE PROCEDURE P1 INTO :SQLDA1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify
an explicit schema name for the stored procedure to ensure that stored procedure
P1 in schema MYSCHEMA is used.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL MYSCHEMA.P1;
EXEC SQL DESCRIBE PROCEDURE MYSCHEMA.P1 INTO :SQLDA1;

Example 3: Place information about the result sets returned by the stored procedure
identified by host variable HV1 into the descriptor named by SQLDA2. Assume that
host variable HV1 contains the value SITE2.MYSCHEMA.P1 and the stored
procedure is called with a three-part name.

EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL DESCRIBE PROCEDURE :HV1 INTO :SQLDA2;

The preceding example would be invalid if host variable HV1 had contained the
value MYSCHEMA.P1, a two-part name. For the example to be valid with that
two-part name in host variable HV1, the current server must be the same as the
location name that is specified on the CALL statement as the following statements
demonstrate. This is the only condition under which the names do not have to be
specified the same way and a three-part name on the CALL statement can be used
with a two-part name on the DESCRIBE PROCEDURES statement.

EXEC SQL CONNECT TO SITE2;
EXEC SQL CALL SITE2.MYSCHEMA.P1;
EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

WITH PROCEDURE :HV1;

DESCRIBE PROCEDURE

708 SQL Reference

DROP
The DROP statement deletes an object at the current server. Except for storage
groups, any objects that are directly or indirectly dependent on that object are
deleted. Whenever an object is deleted, its description is deleted from the catalog at
the current server, and any plans or packages that refer to the object are
invalidated.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
To drop a table, table space, or index, the privilege set that is defined below must
include at least one of the following:
v Ownership of the object (for an index, the owner is the owner of the table or

index)
v DBADM authority
v SYSADM or SYSCTRL authority

To drop an alias, storage group, or view, the privilege set that is defined below must
include at least one of the following:
v Ownership of the object
v SYSADM or SYSCTRL authority

To drop a database, the privilege set that is defined below must include at least one
of the following:
v The DROP privilege on the database
v DBADM or DBCTRL authority for the database
v SYSADM or SYSCTRL authority

To drop a package, the privilege set that is defined below must include at least one
of the following:
v Ownership of the package
v The BINDAGENT privilege granted from the package owner
v PACKADM authority for the collection or for all collections
v SYSADM or SYSCTRL authority

To drop a synonym, the privilege set that is defined below must include ownership
of the synonym.

To drop a distinct type, stored procedure, trigger, or user-defined function, the
privilege set that is defined below must include at least one of the following:
v Ownership of the object 37

v The DROPIN privilege for the schema or all schemas
v SYSADM or SYSCTRL authority

The authorization ID that matches the schema name implicitly has the DROPIN
privilege on the schema.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or

37. Not applicable for stored procedures defined in releases of DB2 for OS/390 prior to Version 6.

DROP

Chapter 5. Statements 709

package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

Syntax

��

�

DROP ALIAS alias-name
DATABASE database-name

(1)
DISTINCT TYPE distinct-type-name RESTRICT
FUNCTION function-name RESTRICT

,

()
parameter-type

INDEX index-name
(2)

PACKAGE collection-id.package-id
VERSION

version-id
PROCEDURE procedure-name RESTRICT
SPECIFIC FUNCTION specific-name RESTRICT
STOGROUP stogroup-name
SYNONYM synonym
TABLE table-name
TABLESPACE table-space-name

database-name.
TRIGGER trigger-name
VIEW view-name

��

Notes:

1 DATA can be used as a synonym for DISTINCT.

2 PROGRAM can be used as a synonym for PACKAGE.

parameter type:

�� data-type
AS LOCATOR

��

data type:

�� built-in-data-type
distinct-type-name

��

DROP

710 SQL Reference

Description
ALIAS alias-name

Identifies the alias to be dropped. The name must identify an alias that exists at
the current server. Dropping an alias has no effect on any view or synonym that
was defined using the alias.

built-in-data-type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID EBCDIC

(integer) MIXED ASCII
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID EBCDIC

CLOB (integer) MIXED ASCII
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID EBCDIC

(integer) ASCII
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 The values that are specified for length, precision, or scale attributes must match the values that
were specified when the function was created. Coding specific values is optional. Empty
parentheses, (), can be used instead to indicate that DB2 ignores the attributes when
determining whether data types match.

2 The value that is specified does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE). 1<=integer<= 21
indicates REAL and 22<=integer<=53 indicates DOUBLE. Coding a specific value is optional.
Empty parentheses cannot be used.

DROP

Chapter 5. Statements 711

DATABASE database-name
Identifies the database to be dropped. The name must identify a database that
exists at the current server. DSNDB04 or DSNDB06 must not be specified. The
privilege set must include SYSADM authority. A TEMP database can be
dropped only if none of the table spaces or index spaces that it contains are
actively being used.

Whenever a database is dropped, all of its table spaces, tables, index spaces,
and indexes are also dropped.

DISTINCT TYPE distinct-type-name RESTRICT
Identifies the distinct type to be dropped. The name must identify a distinct type
that exists at the current server. The required keyword RESTRICT enforces the
rule that the distinct type is not dropped if any of the following dependencies
exist:
v The definition of a column of a table uses the distinct type.
v The definition of an input or result parameter of a user-defined function uses

the distinct type.
v The definition of a parameter of a stored procedure uses the distinct type.

Whenever a distinct type is dropped, all privileges on the distinct type are also
dropped. In addition, the cast functions that were generated when the distinct
type was created and the privileges on those cast functions are also dropped.

FUNCTION
Identifies the user-defined function to be dropped. The name must identify a
function that has been defined with the CREATE FUNCTION statement at the
current server. The name must not identify a cast function that was generated
for a distinct type or a function that is in the SYSIBM schema. The required
keyword RESTRICT enforces the rule that the function is not dropped if any of
the following dependencies exist:
v Another function is sourced on the function.
v A view uses the function.
v A trigger package uses the function.

Whenever a function is dropped, all privileges on the user-defined function are
also dropped. Any plans or packages that are dependent on the function
dropped are made inoperative.

You can identify the particular function to be dropped by its name, function
signature, or specific name. If the function was defined with a table parameter
(the LIKE TABLE was specified in the CREATE FUNCTION statement to
indicate that one of the input parameters is a transition table), the function
signature cannot be used to identify the function. Instead, identify the function
with its function name, if unique, or with its specific name.

FUNCTION function-name RESTRICT
Identifies the function by its name. There must be exactly one function with
function-name in the implicitly or explicitly specified schema; otherwise, an
error occurs.

FUNCTION function-name (parameter-type,...) RESTRICT
Provides the function signature, which uniquely identifies the function. There
must be exactly one function with the function signature in the implicitly or
explicitly specified schema; otherwise, an error occurs.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the
input parameters is a transition table), the function signature cannot be

DROP

712 SQL Reference

used to uniquely identify the function. Instead, use one of the other syntax
variations to identify the function with its function name, if unique, or its
specific name.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, DB2 searches the SQL
path to resolve the schema name for the distinct type.

The data types of the parameters must match the data types that were
specified on the CREATE FUNCTION statement in the corresponding
position. The number of data types and the logical concatenation of the
data types are used to identify the function.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

v Empty parentheses indicate that DB2 ignores the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

The specific value for FLOAT(n) does not have to exactly match the
defined value of the source function because 1<=n<= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 601.

For data types with a subtype or encoding scheme attribute, specifying
the FOR DATA clause or CCSID clause is optional. Omission of either
clause indicates that DB2 ignores the attribute when determining
whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

SPECIFIC FUNCTION specific-name RESTRICT
Identifies the function by its specific name, which was explicitly specified or
implicitly created when the function was created.

INDEX index-name
Identifies the index to be dropped. The name must identify a user-defined index
that exists at the current server but must not identify a partitioning index, or a

DROP

Chapter 5. Statements 713

populated index on an auxiliary table. (For details on dropping user-defined
indexes on catalog tables, see “SQL statements allowed on the catalog” on
page 955.) A partitioning index on table T can only be dropped by dropping the
table space that contains T. A populated index on an auxiliary table can only be
dropped by dropping the base table.

Whenever an index is directly or indirectly dropped, its index space is also
dropped. The name of a dropped index space cannot be reused until a commit
operation is performed.

If the index is a unique index used to enforce a unique constraint (primary or
unique key), the unique constraint must be dropped before the index can be
dropped. In addition, if a unique constraint supports a referential constraint, the
index cannot be dropped unless the referential constraint is dropped.

However, a unique index (for a unique key only) can be dropped without first
dropping the unique key constraint if the unique key was created in a release of
DB2 before Version 7 and if the unique key constraint has no associated
referential constraints. For information about dropping constraints, see “ALTER
TABLE” on page 398.

If a unique index is dropped and that index was defined on a ROWID column
that is defined as GENERATED BY DEFAULT, the table can still be used, but
rows cannot be inserted into that table.

If an empty index on an auxiliary table is dropped, the base table is marked
incomplete.

PACKAGE collection-id.package-id
Identifies the package version to be dropped. The name plus the implicitly or
explicitly specified version-id must identify a package version that exists at the
current server. Omission of the version-id is an implicit specification of the null
version. The name must not identify a trigger package. A trigger package can
only be dropped by dropping the associated trigger or subject table.

Whenever the last or only version of a package is dropped, all privileges on the
package are dropped and all plans that are dependent on the execute privilege
of the package are invalidated.

version-id or VERSION version-id
version-id is the version identifier that was assigned to the package’s
DBRM when the DBRM was created. If version-id is not specified, a null
string is used as the version identifier.

Delimit the version identifier when it:
v Is generated by the VERSION(AUTO) precompiler option
v Begins with a digit
v Contains lowercase or mixed-case letters

For more on version identifiers, see the section on preparing an application
program for execution in Part 5 of DB2 Application Programming and SQL
Guide.

PROCEDURE procedure-name RESTRICT
Identifies the stored procedure to be dropped. The name must identify a stored
procedure that has been defined with the CREATE PROCEDURE statement at

DROP

714 SQL Reference

|
|
|
|

|
|
|
|
|

the current server. The required keyword RESTRICT prevents the procedure
from being dropped if a trigger definition contains a CALL statement with the
name of the procedure. 38

When a procedure is directly or indirectly dropped, all privileges on the
procedure are also dropped. In addition, any plans or packages that are
dependent on the procedure are made inoperative.

STOGROUP stogroup-name
Identifies the storage group to be dropped. The name must identify a storage
group that exists at the current server but not a storage group that is used by
any table space or index space.

For information on the effect of dropping the default storage group of a
database, see “Dropping a default storage group” on page 716.

SYNONYM synonym
Identifies the synonym to be dropped. In a static DROP SYNONYM statement,
the name must identify a synonym that is owned by the owner of the plan or
package. In a dynamic DROP SYNONYM statement, the name must identify a
synonym that is owned by the SQL authorization ID. Thus, using interactive
SQL, a user with SYSADM authority can drop any synonym by first setting
CURRENT SQLID to the owner of the synonym.

Dropping a synonym has no effect on any view or alias that was defined using
the synonym, nor does it invalidate any plans or packages that use such views
or aliases.

TABLE table-name
Identifies the table to be dropped. The name must identify a table that exists at
the current server but must not identify a catalog table, a table in a partitioned
table space, or a populated auxiliary table. A table in a partitioned table space
can only be dropped by dropping the table space. A populated auxiliary table
can only be dropped by dropping the associated base table.

Whenever a table is directly or indirectly dropped, all privileges on the table, all
referential constraints in which the table is a parent or dependent, and all
synonyms, views, and indexes defined on the table are also dropped. If the
table space for the table was implicitly created, it is also dropped.

If a table with LOB columns is dropped, the auxiliary tables associated with the
table and the indexes on the auxiliary tables are also dropped. Any LOB table
spaces that were implicitly created for the auxiliary tables are also dropped.

If an empty auxiliary table is dropped, the definition of the base table is marked
incomplete.

TABLESPACE database-name.table-space-name
Identifies the table space to be dropped. The name must identify a table space
that exists at the current server. The database name must not be DSNDB06.
Omission of the database name is an implicit specification of DSNDB04.

Whenever a table space is directly or indirectly dropped, all the tables in the
table space are also dropped. The name of a dropped table space cannot be
reused until a commit operation is performed.

A table space in a TEMP database can be dropped only if it does not contain
an active declared temporary table. A LOB table space can be dropped only if it
does not contain an auxiliary table.

38. Dependencies can be checked only if the procedure name is specified as a literal and not via a host variable in the CALL
statement.

DROP

Chapter 5. Statements 715

Whenever a base table space that contains tables with LOB columns is
dropped, all the auxiliary tables and indexes on those auxiliary tables that are
associated with the base table space are also dropped.

TRIGGER trigger-name
Identifies the trigger to be dropped. The name must identify a trigger that exists
at the current server.

Whenever a trigger is directly or indirectly dropped, all privileges on the trigger
are also dropped and the associated trigger package is freed. The name of that
trigger package is the same as the trigger name and the collection ID is the
schema name.

VIEW view-name
Identifies the view to be dropped. The name must identify a view that exists at
the current server.

Whenever a view is directly or indirectly dropped, all privileges on the view and
all synonyms and views that are defined on the view are also dropped.

Notes
Restrictions on DROP: DROP is subject to these restrictions:

v DROP DATABASE cannot be performed while a DB2 utility has control of any
part of the database.

v DROP INDEX cannot be performed while a DB2 utility has control of the index or
its associated table space.

v DROP PACKAGE or DROP TRIGGER (which implicitly drops the trigger
package) cannot be performed while the package or trigger package is in use by
an application. For applications that are bound with RELEASE(COMMIT), you
can drop the package or trigger package at a commit point. For applications that
are bound with RELEASE(DEALLOCATE), you can drop the package or trigger
package only when the application’s thread is deallocated.

v DROP TABLE cannot be performed while a DB2 utility has control of the table
space that contains the table.

v DROP TABLESPACE cannot be performed while a DB2 utility has control of the
table space.

In a data sharing environment, the following restrictions also apply:

v If any member has an active resource limit specification table (RLST) you cannot
drop the database or table space that contains the table, the table itself, or any
index on the table.

v If the member executing the drop cannot access the DB2-managed data sets,
only the catalog and directory entries for those data sets are removed.

Objects that have certain dependencies cannot be dropped. For information on
these restrictions, see Table 49 on page 719.

Dropping a parent table: DROP is not DELETE and therefore does not involve
delete rules.

Dropping a default storage group: If you drop the default storage group of a
database, the database no longer has a legitimate default. You must then specify
USING in any statement that creates a table space or index in the database. You
must do this until you either:
v Create another storage group with the same name using the CREATE

STOGROUP statement, or

DROP

716 SQL Reference

|

v Designate another default storage group for the database using the ALTER
DATABASE statement.

Dropping a table space or index: To drop a table space or index, the size of the
buffer pool associated with the table space or index must not be zero.

Dropping a table space in a work file database: If one member of a data sharing
group drops a table space in a work file database, or an entire work file database,
that belongs to another member, DB2-managed data sets that the executing
member cannot access are not dropped. However, the catalog and directory entries
for those data sets are removed.

Dropping resource limit facility (governor) indexes, tables, and table spaces:
While the RLST is active, you cannot issue a DROP DATABASE, DROP INDEX,
DROP TABLE, or DROP TABLESPACE statement for an object associated with an
RLST that is active on any member of a data sharing group. See Part 5 (Volume 2)
of DB2 Administration Guide for details.

Dropping a temporary table: To drop a created temporary table or a declared
temporary table, use the DROP TABLE statement.

Dropping an alias: Dropping a table or view does not drop its aliases. To drop an
alias, use the DROP ALIAS statement.

Dropping an index on an auxiliary table and an auxiliary table: You can
explicitly drop an empty index on an auxiliary table with the DROP INDEX
statement. An empty or populated index on an auxiliary table is implicitly dropped
when:
v The auxiliary table is empty and it is explicitly dropped (empty indexes only).
v The associated base table for the auxiliary table is dropped.
v The base table space that contains the associated base table is dropped.

You can explicitly drop an empty auxiliary table with the DROP TABLE statement.
An empty or populated auxiliary table is implicitly dropped when:
v The associated base table for the auxiliary table is dropped.
v The base table space that contains the associated base table is dropped.

Table 48 shows which DROP statements implicitly or explicitly cause an auxiliary
table and the index on that table to be dropped, as indicated by the 'D' in the
column.

Table 48. Effect of various DROP statements on auxiliary tables and indexes

Statement

Auxiliary table Index on auxiliary table

Populated Empty Populated Empty

DROP TABLESPACE
(base table space)

D D D D

DROP TABLE
(base table)

D D D D

DROP TABLE
(auxiliary table)

- D - D

DROP INDEX (index
on auxiliary table)

- - - D

Note: D indicates that the table or index is dropped.

DROP

Chapter 5. Statements 717

Dropping a migrated index or table space: Here, “migration” means migrated by
the Hierarchical Storage Manager (DFSMShsm™). DB2 does not wait for any recall
of the migrated data sets. Hence, recall is not a factor in the time it takes to
execute the statement.

Deleting SYSLGRNG records for dropped table spaces: After dropping a table
space, you cannot delete the associated records. If you want to remove the
records, you must quiesce the table space, and then run the MODIFY RECOVERY
utility before dropping the table space. If you delete the SYSLGRNG records and
drop the table space, you cannot reclaim the table space.

Dependencies when dropping objects: Whenever an object is directly or
indirectly dropped, other objects that depend on the dropped object might also be
dropped. (The catalog stores information about the dependencies of objects on
each other.) The following semantics determine what happens to a dependent
object when the object that it depends on (the underlying object) is dropped:

Cascade (D) Dropping the underlying object causes the dependent object to be
dropped. However, if the dependent object cannot be dropped
because it has a restrict dependency on another object, the drop of
the underlying object fails.

Restrict (R) The underlying object cannot be dropped if a dependent object
exists.

Inoperative (O)
Dropping the underlying object causes the dependent object to
become inoperative.

Invalidation (V)
Dropping the underlying object causes the dependent object to
become invalidated.

For objects that directly depend on others, Table 49 on page 719 uses the letter
abbreviations above to summarize what happens to a dependent object when its
underlying object is specified in a DROP statement. Additional objects can be
indirectly affected, too.

To determine the indirect effects of a DROP statement, assess what happens to the
dependent object and whether the dependent object has objects that depend on it.
For example, assume that view B is defined on table A and view C is defined on
view B. In Table 49 on page 719, the 'D' in the VIEW column of the DROP TABLE
row indicates that view B is dropped when table A is dropped. Next, because view
C is dependent on view B, check the VIEW column for DROP VIEW. The 'D' in the
column indicates that view C will be dropped, too.

DROP

718 SQL Reference

Table 49. Effect of dropping objects that have dependencies

DROP statement

Type of object

A
L
I
A
S

D
A
T
A
B
A
S
E

D
I
S
T
I
N
C
T

T
Y
P
E

F
U
N
C
T
I
O
N

I
N
D
E
X

P
A
C
K
A
G
E1

P
R
O
C
E
D
U
R
E

S
T
O
G
R
O
U
P

S
Y
N
O
N
Y
M

T
A
B
L
E

T
A
B
L
E
S
P
A
C
E

T
R
I
G
G
E
R

V
I
E
W

DROP ALIAS - - - - - V - - - - - - -

DROP DATABASE - - - - D2 - - - - D D - D

DROP DISTINCT TYPE - - - R3 - - R4 - - R - - -

DROP FUNCTION - - - R5 - O - - - - - R R

DROP INDEX2,6 - - - - - V - - - - - V -

DROP PACKAGE7 - - - - - - - - - - - - -

DROP PROCEDURE - - - - - O - - - - - R -

DROP STOGROUP - - - - R8 - - - - - R8 - -

DROP SYNONYM - - - - - - - - - - - - -

DROP TABLE9,10 - - - - D V - - D - - D11 D

DROP TABLESPACE12 - - - - D V - - - D - - -

DROP TRIGGER - - - - - - - - - - - - -

DROP VIEW - - - - - V - - D - - - D

Legend:
D Dependent object is dropped.
O Dependent object is made inoperative.
V Dependent object is invalidated.
R DROP statement fails.
Notes:

1. The PACKAGE column represents packages for user-defined functions, procedures, and triggers, as well as other packages.
The PACKAGE column also applies for plans.

2. The index space associated with the index is dropped.

3. If a function is dependent on the distinct type being dropped, the distinct type cannot be dropped unless the function is one of
the cast functions that was created for the distinct type.

4. If the definition of a parameter of a stored procedure uses the distinct type, the distinct type cannot be dropped.

5. If other user-defined functions are sourced on the user-defined function being dropped, the function cannot be dropped.

6. An index on an auxiliary table cannot be explicitly dropped.

7. A trigger package cannot be explicitly dropped with DROP PACKAGE. A trigger package is implicitly dropped when the
associated trigger or subject table is dropped.

8. A storage group cannot be dropped if it is used by any table space or index space.

9. An auxiliary table cannot be explicitly dropped with DROP TABLE. An auxiliary table is implicitly dropped when the associated
base table is dropped.

10. If an implicit table space was created when the table was created, the table space is also dropped.

11. When a subject table is dropped, the associated trigger and trigger package are also dropped.

12. A LOB table space cannot be dropped until the base table with the LOB columns is dropped. A table space in a TEMP database
cannot be dropped if it contains an active declared temporary table.

DROP

Chapter 5. Statements 719

Examples
Example 1: Drop table DSN8710.DEPT.

DROP TABLE DSN8710.DEPT;

Example 2: Drop table space DSN8S71D in database DSN8D71A.
DROP TABLESPACE DSN8D71A.DSN8S71D;

Example 3: Drop the view DSN8710.VPROJRE1:
DROP VIEW DSN8710.VPROJRE1;

Example 4: Drop the package DSN8CC0 with the version identifier VERSZZZZ. The
package is in the collection DSN8CC61. Use the version identifier to distinguish the
package to be dropped from another package with the same name in the same
collection.

DROP PACKAGE DSN8CC61.DSN8CC0 VERSION VERSZZZZ;

Example 5: Drop the package DSN8CC0 with the version identifier
“1994-07-14-09.56.30.196952”. When a version identifier is generated by the
VERSION(AUTO) precompiler option, delimit the version identifier.

DROP PACKAGE DSN8CC61.DSN8CC0 VERSION "1994-07-14-09.56.30.196952";

Example 6: Drop the distinct type DOCUMENT, if it is not currently in use:
DROP DISTINCT TYPE DOCUMENT RESTRICT;

Example 7: Assume that you are SMITH and that ATOMIC_WEIGHT is the only
function with that name in schema CHEM. Drop ATOMIC_WEIGHT.

DROP FUNCTION CHEM.ATOMIC_WEIGHT RESTRICT;

Example 8: Assume that you are SMITH and that you created the function CENTER
in schema SMITH. Drop CENTER, using the function signature to identify the
function instance to be dropped.

DROP FUNCTION CENTER(INTEGER, FLOAT) RESTRICT;

Example 9: Assume that you are SMITH and that you created another function
named CENTER, which you gave the specific name FOCUS97, in schema
JOHNSON. Drop CENTER, using the specific name to identify the function instance
to be dropped.

DROP SPECIFIC FUNCTION JOHNSON.FOCUS97 RESTRICT;

Example 10: Assume that you are SMITH and that stored procedure OSMOSIS is in
schema BIOLOGY. Drop OSMOSIS.

DROP PROCEDURE BIOLOGY.OSMOSIS RESTRICT;

Example 11: Assume that you are SMITH and that trigger BONUS is in your
schema. Drop BONUS.

DROP TRIGGER BONUS;

DROP

720 SQL Reference

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable declare
section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of a host variable declaration section. A host
variable section starts with a BEGIN DECLARE SECTION statement described in
“BEGIN DECLARE SECTION” on page 433.

The following rules are enforced by the precompiler only if the host language is C
or the STDSQL(YES) precompiler option is specified:

v A variable referred to in an SQL statement must be declared within a host
variable declaration section of the source program.

v BEGIN DECLARE SECTION and END DECLARE SECTION statements must be
paired and must not be nested.

v Host variable declaration sections can contain only host variable declarations,
SQL INCLUDE statements that include host variable declarations, or DECLARE
VARIABLE statements.

Notes
Host variable declaration sections are only required if the STDSQL(YES) option is
specified or the host language is C. However, declare sections can be specified for
any host language so that the source program can conform to IBM SQL. If declare
sections are used, but not required, variables declared outside a declare section
should not have the same name as variables declared within a declare section.

Example
EXEC SQL BEGIN DECLARE SECTION;

(host variable declarations)

EXEC SQL END DECLARE SECTION;

�� END DECLARE SECTION ��

END DECLARE SECTION

Chapter 5. Statements 721

|
|
|

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
See “PREPARE” on page 792 for the authorization required to create a prepared
statement.

Syntax

Description
statement-name

Identifies the prepared statement to be executed. statement-name must identify
a statement that was previously prepared within the unit of work and the
prepared statement must not be a SELECT statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 792.) If the
prepared statement includes parameter markers, you must include USING in
the EXECUTE statement. USING is ignored if there are no parameter markers.

For more on the substitution of values for parameter markers, see “Parameter
marker replacement” on page 723.

host-variable,...
Identifies structures or variables that must be described in the application
program in accordance with the rules for declaring host structures and
variables. In the operational form of the clause, a reference to a structure is
replaced by a reference to each of its variables. After all the replacements,
the number of variables must be the same as the number of parameter
markers in the prepared statement. The nth variable supplies the value for
the nth parameter marker in the prepared statement.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host
variables.

Before the EXECUTE statement is processed, the user must set the
following fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

�� EXECUTE statement-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

EXECUTE

722 SQL Reference

A REXX SQLDA does not contain this field.

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
If LOBs or distinct types are present in the results, there must be additional
SQLVAR entries for each parameter. For more information on the SQLDA,
which includes a description of the SQLVAR and an explanation on how to
determine the number of SQLVAR occurrences, see “SQL descriptor area
(SQLDA)” on page 930.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement.

See “Identifying an SQLDA in C or C⁺⁺” on page 947 for how to represent
descriptor-name in C.

Notes
DB2 can stop the execution of a prepared SQL statement if the statement is taking
too much processor time to finish. When this happens, an error occurs. The
application that issued the statement is not terminated; it is allowed to issue another
SQL statement.

Parameter marker replacement: Before the prepared statement is executed, each
parameter marker in the statement is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and
comparison” on page 64. For a typed parameter marker, the attributes of the target
variable are those specified by the CAST specification. For an untyped parameter
marker, the attributes of the target variable are determined according to the context
of the parameter marker. For the rules that affect parameter markers, see
“Parameter markers” on page 798.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column:

v V must be compatible with the target.

v If V is a string, its length must not be greater than the length attribute of the
target.

v If V is a number, the absolute value of its integral part must not be greater than
the maximum absolute value of the integral part of the target.

v If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

v If the target cannot contain nulls, V must not be null.

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is CHAR(8),
the value used in place of P is the value of V padded on the right with two blanks.

EXECUTE

Chapter 5. Statements 723

Errors occurring on EXECUTE: In local and remote processing, the
DEFER(PREPARE) and REOPT(VARS) bind options can cause some errors that
are normally issued during PREPARE processing to be issued on EXECUTE.

Example
In this example, an INSERT statement with parameter markers is prepared and
executed. S1 is a structure that corresponds to the format of DSN8710.DEPT.

EXEC SQL PREPARE DEPT_INSERT FROM
'INSERT INTO DSN8710.DEPT VALUES(?,?,?,?)';

(Check for successful execution and read values into S1)

EXEC SQL EXECUTE DEPT_INSERT USING :S1;

EXECUTE

724 SQL Reference

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:

v Prepares an executable form of an SQL statement from a string form of the
statement

v Executes the SQL statement

v Destroys the executable form

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by EXECUTE IMMEDIATE. For example, see “INSERT” on
page 778 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE.

Syntax

Description
string-expression

string-expression is any PL/I expression that yields a string. If the source
program does not include any DECLARE VARIABLE statements, an optional
colon can precede the string-expression. The colon introduces PL/I syntax.
Therefore, host variables within a string-expression that includes operators or
functions should not be preceded with a colon. However, if the source program
includes at least one DECLARE VARIABLE statement, a string-expression
cannot be preceded by a colon. An expression that consists of just a variable
name preceded by a colon is interpreted as a host-variable, not as a
string-expression. The precompiler-generated structures for a string-expression
use an EBCDIC CCSID.

host-variable
For languages other than PL/I, host-variable must be specified. It must identify
a host variable that is described in the application program in accordance with
the rules for declaring character string variables. The host variable must not
have a CLOB data type, and an indicator variable must not be specified. In
Assembler language, C, and COBOL, the host variable must be a
varying-length string variable. In C, it must not be a NUL-terminated string.

In PL/I, if the source program includes at least one DECLARE VARIABLE
statement, a host variable (preceded by a colon) is considered a host-variable
and must be a varying-length string variable. The host variable may be either a
fixed-length or varying-length string variable if the source program does not
include any DECLARE VARIABLE statements. It is then considered a

�� EXECUTE IMMEDIATE string-expression
host-variable

��

EXECUTE IMMEDIATE

Chapter 5. Statements 725

|
|
|
|
|
|
|
|
#
#

#
#
#
#
#

string-expression. When a string-expression is used, the precompiler-generated
structures for it use an EBCDIC CCSID and an informational message is
issued.

Notes
The value of the identified host variable or the specified string-expression is called
the statement string.

The statement string must be one of the following SQL statements:

ALTER RENAME

COMMENT ON ROLLBACK

COMMIT ROLLBACK

CREATE SET CURRENT DEGREE

DELETE SET CURRENT LOCALE LC_CTYPE

DROP SET CURRENT OPTIMIZATION HINT

EXPLAIN SET CURRENT PRECISION

GRANT SET CURRENT RULES

INSERT SET CURRENT SQLID

LABEL ON SET PATH

LOCK TABLE UPDATE

The statement string must not include parameter markers or references to host
variables, must not begin with EXEC SQL, and must not terminate with END-EXEC
or a semicolon.

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SQL statement is invalid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SQL statement is valid, but an error occurs during its execution, that
error condition is reported in the SQLCA.

DB2 can stop the execution of a prepared SQL statement if the statement is taking
too much CPU time to finish. When this happens an error occurs. The application
that issued the statement is not terminated; it is allowed to issue another SQL
statement.

If the same SQL statement is to be executed more than once, it is more efficient to
use the PREPARE and EXECUTE statements rather than the EXECUTE
IMMEDIATE statement.

Example
In this PL/I example, the EXECUTE IMMEDIATE statement is used to execute a
DELETE statement in which the rows to be deleted are determined by a
search-condition specified by the value of PREDS.

EXEC SQL EXECUTE IMMEDIATE 'DELETE FROM DSN8710.DEPT
WHERE' || PREDS;

EXECUTE IMMEDIATE

726 SQL Reference

#
#
#

EXPLAIN
The information about this statement is Product-sensitive Programming Interface
and Associated Guidance Information, as defined in “Appendix H. Notices” on
page 1117.

The EXPLAIN statement obtains information about access path selection for an
explainable statement. A statement is explainable if it is a SELECT or INSERT
statement, or the searched form of an UPDATE or DELETE statement. The
information obtained is placed in a user-supplied plan table.

Optionally, EXPLAIN can also obtain and place information in two additional tables.
A user-supplied statement table can be populated with information about the
estimated cost of executing the explainable statement. A user-supplied function
table can be populated with information about how DB2 resolves the user-defined
functions that are referred to in the explainable statement.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The authorization rules are those defined for the SQL statement specified in the
EXPLAIN statement. For example, see the description of the DELETE statement for
the authorization rules that apply when a DELETE statement is explained.

If the EXPLAIN statement is embedded in an application program, the authorization
rules that apply are those defined for embedding the specified SQL statement in an
application program. In addition, the authorization ID of the owner of the plan or
package must also be the owner of a plan table named PLAN_TABLE.

If the EXPLAIN statement is dynamically prepared, the authorization rules that apply
are those defined for dynamically preparing the specified SQL statement. In
addition, the SQL authorization ID of the process must also be the owner of a plan
table named PLAN_TABLE.

Syntax

Description
PLAN

Inserts one row into the plan table for each step used in executing
explainable-sql-statement. The steps for enforcing referential constraints are not
included. See “Creating a plan table” on page 729 and Table 50 on page 730 for
the format and column descriptions of the plan table.

If a statement table exists, a row that provides a cost estimate of processing the
explainable statement is inserted into the statement table. See “Creating a
statement table” on page 735 and Table 51 on page 735 for the format and
column descriptions of the statement table.

�� EXPLAIN PLAN
ALL SET QUERYNO=integer

FOR explainable-sql-statement ��

EXPLAIN

Chapter 5. Statements 727

If a function table exists, one row is inserted into the function table for each
user-defined function that is referred to by the explainable statement. See
“Creating a function table” on page 736 and Table 52 on page 737 for the format
and column descriptions of the function table.

ALL
Has the same effect as PLAN.

SET QUERYNO = integer
Associates integer with explainable-sql-statement. The column QUERYNO is
given the value integer in every row inserted into the plan table, statement
table, or function table by the EXPLAIN statement. If QUERYNO is not
specified, DB2 itself assigns a number. For an embedded EXPLAIN statement,
the number is the statement number that was assigned by the precompiler and
placed in the DBRM.

FOR explainable-sql-statement
Specifies the SQL statement to be explained. explainable-sql-statement can be
any explainable SQL statement. If EXPLAIN is embedded in a program, the
statement can contain references to host variables. If EXPLAIN is dynamically
prepared, the statement can contain parameter markers. Host variables that
appear in the statement must be defined in the statement’s program.

The statement must refer to objects at the current server.

explainable-sql-statement must not contain a QUERYNO clause. To specify the
value of the QUERYNO column in plan table for the statement being explained,
use the SET QUERYNO = clause of the EXPLAIN statement.

explainable-sql-statement cannot be a statement-name or a host-variable. To
use EXPLAIN to get information about dynamic SQL statements, you must
prepare the entire EXPLAIN statement dynamically.

To obtain information about an explainable SQL statement that references a
declared temporary table, the EXPLAIN statement must be executed in the
same application process in which the table was declared. For static EXPLAIN
statements, the information is not obtained at bind-time but at run-time when
the EXPLAIN statement is incrementally bound.

Notes
Output from EXPLAIN: Output from EXPLAIN is one or more rows of data inserted
into the plan table. Rows are also inserted into the statement table and function
table if the tables exist. The plan table must be created before the EXPLAIN
statement is executed. Unless you need the information that the statement table or
function table provides, it is not necessary to create either table to use EXPLAIN.
The tables have the following names:
plan table userid.PLAN_TABLE
statement table userid.DSN_STATEMNT_TABLE
function table userid.DSN_FUNCTION_TABLE

where userid is:

v The owner of the plan or package if the EXPLAIN statement is embedded in a
plan or package.

v The SQL authorization ID of the process if the statement is dynamically prepared.

For information on using the plan table and the statement table, see Part 5 (Volume
2) of DB2 Administration Guide. For information on using the function table, see
Part 3 of DB2 Application Programming and SQL Guide.

EXPLAIN

728 SQL Reference

Output from BIND or REBIND: DB2 can also add rows to a plan table, statement
table, and function table when a plan or package is bound or rebound. This addition
of rows occurs when the BIND or REBIND subcommand is executed with the
EXPLAIN(YES) option in effect. The option requires that rows be added for every
explainable statement in the plan or package being bound. For a plan, these do not
include statements in the packages that can be used with the plan. For either a
package or plan, they do not include explainable statements within EXPLAIN
statements nor do they include explainable statements that refer to declared
temporary tables, which are incrementally bound at run-time.

The plan table must exist when the BIND or REBIND subcommand is executed.
Unless you need the information that the statement table or function table provides,
neither table has to exist. Only the tables that exist receive new rows. The tables
have the following names:
plan table userid.PLAN_TABLE
statement table userid.DSN_STATEMNT_TABLE
function table userid.DSN_FUNCTION_TABLE

where userid is the owner of the plan or package.

Creating a plan table: To create a plan table, execute the following SQL statement:
CREATE TABLE userid.PLAN_TABLE

(QUERYNO INTEGER NOT NULL,
QBLOCKNO SMALLINT NOT NULL,
APPLNAME CHAR(8) NOT NULL,
PROGNAME CHAR(8) NOT NULL,
PLANNO SMALLINT NOT NULL,
METHOD SMALLINT NOT NULL,
CREATOR CHAR(8) NOT NULL,
TNAME CHAR(18) NOT NULL,
TABNO SMALLINT NOT NULL,
ACCESSTYPE CHAR(2) NOT NULL,
MATCHCOLS SMALLINT NOT NULL,
ACCESSCREATOR CHAR(8) NOT NULL,
ACCESSNAME CHAR(18) NOT NULL,
INDEXONLY CHAR(1) NOT NULL,
SORTN_UNIQ CHAR(1) NOT NULL,
SORTN_JOIN CHAR(1) NOT NULL,
SORTN_ORDERBY CHAR(1) NOT NULL,
SORTN_GROUPBY CHAR(1) NOT NULL,
SORTC_UNIQ CHAR(1) NOT NULL,
SORTC_JOIN CHAR(1) NOT NULL,
SORTC_ORDERBY CHAR(1) NOT NULL,
SORTC_GROUPBY CHAR(1) NOT NULL,
TSLOCKMODE CHAR(3) NOT NULL,
TIMESTAMP CHAR(16) NOT NULL,
REMARKS VARCHAR(254) NOT NULL,
PREFETCH CHAR(1) NOT NULL WITH DEFAULT,
COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT,
MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT,
VERSION VARCHAR(64) NOT NULL WITH DEFAULT,
COLLID CHAR(18) NOT NULL WITH DEFAULT,
ACCESS_DEGREE SMALLINT ,
ACCESS_PGROUP_ID SMALLINT ,
JOIN_DEGREE SMALLINT ,
JOIN_PGROUP_ID SMALLINT ,
SORTC_PGROUP_ID SMALLINT ,
SORTN_PGROUP_ID SMALLINT ,
PARALLELISM_MODE CHAR(1) ,
MERGE_JOIN_COLS SMALLINT ,
CORRELATION_NAME CHAR(18) ,
PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT,
JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT,

EXPLAIN

Chapter 5. Statements 729

GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
IBM_SERVICE_DATA VARCHAR(254) NOT NULL WITH DEFAULT,
WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT,
QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT,
BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT,
OPTHINT CHAR(8) NOT NULL WITH DEFAULT,
HINT_USED CHAR(8) NOT NULL WITH DEFAULT,
PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT,
PARENT_QBLOCKNO SMALLINT NOT NULL WITH DEFAULT,
TABLE_TYPE CHAR(1))
IN database-name.table-space-name;

where database-name.table-space-name identifies a database and table space you
have authorization to use.

Plan table column descriptions: Table 50 explains the columns in PLAN_TABLE.
The explanations apply both to rows resulting from the execution of an EXPLAIN
statement and to rows resulting from a bind or rebind.

Each row in a plan table describes a step in the execution of a query or subquery in
an explainable statement. The column values for the row identify, among other
things, the query or subquery, the tables involved, and the method used to carry out
the step.

Table 50. Descriptions of columns in PLAN_TABLE

Column Name Description

QUERYNO A number intended to identify the statement being explained. For a row produced by
an EXPLAIN statement, specify the number in the QUERYNO clause. For a row
produced by non-EXPLAIN statements, specify the number using the QUERYNO
clause, which is an optional part of the SELECT, INSERT, UPDATE and DELETE
statement syntax. Otherwise, DB2 assigns a number based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number in the source
program, values greater than 32767 are reported as 0. Hence, in a very long program,
the value is not guaranteed to be unique. If QUERYNO is not unique, the value of
TIMESTAMP is unique.

QBLOCKNO The position of the query in the statement being explained (1 for the outermost query,
2 for the next query, and so forth). For better performance, DB2 might merge a query
block into another query block. When that happens, the position number of the
merged query block will not be in QBLOCKNO.

APPLNAME The name of the application plan for the row. Applies only to embedded EXPLAIN
statements executed from a plan or to statements explained when binding a plan.
Blank if not applicable.

PROGNAME The name of the program or package containing the statement being explained.
Applies only to embedded EXPLAIN statements and to statements explained as the
result of binding a plan or package. Blank if not applicable.

PLANNO The number of the step in which the query indicated in QBLOCKNO was processed.
This column indicates the order in which the steps were executed.

EXPLAIN

730 SQL Reference

|
|

Table 50. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

METHOD A number (0, 1, 2, 3, or 4) that indicates the join method used for the step:

0 First table accessed, continuation of previous table accessed, or not used.

1 Nested loop join. For each row of the present composite table, matching rows
of a new table are found and joined.

2 Merge scan join. The present composite table and the new table are scanned
in the order of the join columns, and matching rows are joined.

3 Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a
quantified predicate, or an IN predicate. This step does not access a new
table.

4 Hybrid join. The current composite table is scanned in the order of the
join-column rows of the new table. The new table is accessed using list
prefetch.

CREATOR The creator of the new table accessed in this step, blank if METHOD is 3.

TNAME The name of a table, created or declared temporary table, materialized view, or
materialized table expresssion. The value is blank if METHOD is 3. The column can
also contain the name of a table in the form DSNWFQB(qblockno).
DSNWFQB(qblockno) is used to represent the intermediate result of a UNION ALL or
an outer join that is materialized. If a view is merged, the name of the view does not
appear.

A value of Q in TABLE_TYPE for the name of a view or nested table expresssion
indicates that the materialization was virtual and not actual. Materialization can be
virtual when the view or nested table expression definition contains a UNION ALL that
is not distributed.

TABNO Values are for IBM use only.

ACCESSTYPE The method of accessing the new table:
I By an index (identified in ACCESSCREATOR and ACCESSNAME)
I1 By a one-fetch index scan
N By an index scan when the matching predicate contains the IN keyword
R By a table space scan
M By a multiple index scan (followed by MX, MI, or MU)
MX By an index scan on the index named in ACCESSNAME
MI By an intersection of multiple indexes
MU By a union of multiple indexes
blank Not applicable to the current row

MATCHCOLS For ACCESSTYPE I, I1, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, I1, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, I1, N, or MX, the name of the index; otherwise, blank.

INDEXONLY Whether access to an index alone is enough to carry out the step, or whether data too
must be accessed. Y=Yes; N=No. For exceptions, see Part 5 (Volume 2) of DB2
Administration Guide.

SORTN_UNIQ Whether the new table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTN_JOIN Whether the new table is sorted for join method 2 or 4. Y=Yes; N=No.

SORTN_ORDERBY Whether the new table is sorted for ORDER BY. Y=Yes; N=No.

SORTN_GROUPBY Whether the new table is sorted for GROUP BY. Y=Yes; N=No.

SORTC_UNIQ Whether the composite table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTC_JOIN Whether the composite table is sorted for join method 1, 2 or 4. Y=Yes; N=No.

EXPLAIN

Chapter 5. Statements 731

#
#
#
#
#

#
#
#
#

Table 50. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

SORTC_ORDERBY Whether the composite table is sorted for an ORDER BY clause or a quantified
predicate. Y=Yes; N=No.

SORTC_GROUPBY Whether the composite table is sorted for a GROUP BY clause. Y=Yes; N=No.

TSLOCKMODE An indication of the mode of lock to be acquired on either the new table, or its table
space or table space partitions. If the isolation can be determined at bind time, the
values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation cannot be determined at bind time, then the lock mode determined by
the isolation at run time is shown by the following values.
NS For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR, an S lock.

The data in this column is right justified. For example, IX appears as a blank followed
by I followed by X. If the column contains a blank, then no lock is acquired.

TIMESTAMP Usually, the time at which the row is processed, to the last .01 second. If necessary,
DB2 adds .01 second to the value to ensure that rows for two successive queries
have different values.

REMARKS A field into which you can insert any character string of 254 or fewer characters.

PREFETCH Whether data pages are to be read in advance by prefetch. S = pure sequential
prefetch; L = prefetch through a page list; blank = unknown or no prefetch.

COLUMN_FN_EVAL When an SQL column function is evaluated. R = while the data is being read from the
table or index; S = while performing a sort to satisfy a GROUP BY clause; blank =
after data retrieval and after any sorts.

MIXOPSEQ The sequence number of a step in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure (ACCESSTYPE is MX,
MI, or MU.)

0 For any other rows (ACCESSTYPE is I, I1, M, N, R, or blank.)

VERSION The version identifier for the package. Applies only to an embedded EXPLAIN
statement executed from a package or to a statement that is explained when binding a
package. Blank if not applicable.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
executed from a package or to a statement that is explained when binding a package.
Blank if not applicable.

Note: The following nine columns, from ACCESS_DEGREE through CORRELATION_NAME, contain the null value if
the plan or package was bound using a plan table with fewer than 43 columns. Otherwise, each of them can contain
null if the method it refers to does not apply.

ACCESS_DEGREE The number of parallel tasks or operations activated by a query. This value is
determined at bind time; the actual number of parallel operations used at execution
time could be different. This column contains 0 if there is a host variable.

ACCESS_PGROUP_ID The identifier of the parallel group for accessing the new table. A parallel group is a
set of consecutive operations, executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it could change at execution time.

EXPLAIN

732 SQL Reference

Table 50. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

JOIN_DEGREE The number of parallel operations or tasks used in joining the composite table with the
new table. This value is determined at bind time and can be 0 if there is a host
variable. The actual number of parallel operations or tasks used at execution time
could be different.

JOIN_PGROUP_ID The identifier of the parallel group for joining the composite table with the new table.
This value is determined at bind time; it could change at execution time.

SORTC_PGROUP_ID The parallel group identifier for the parallel sort of the composite table.

SORTN_PGROUP_ID The parallel group identifier for the parallel sort of the new table.

PARALLELISM_MODE The kind of parallelism, if any, that is used at bind time:
I Query I/O parallelism
C Query CP parallelism
X Sysplex query parallelism

MERGE_JOIN_COLS The number of columns that are joined during a merge scan join (Method=2).

CORRELATION_NAME The correlation name of a table or view that is specified in the statement. If there is no
correlation name, then the column is blank.

PAGE_RANGE Whether the table qualifies for page range screening, so that plans scan only the
partitions that are needed. Y = Yes; blank = No.

JOIN_TYPE The type of join:
F FULL OUTER JOIN
L LEFT OUTER JOIN
S STAR JOIN
blank INNER JOIN or no join
RIGHT OUTER JOIN converts to a LEFT OUTER JOIN when you use it, so that
JOIN_TYPE contains L.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN. The column is blank if the
DB2 subsystem was not in a data sharing environment when EXPLAIN was executed.

IBM_SERVICE_DATA Values are for IBM use only.

WHEN_OPTIMIZE When the access path was determined:

blank At bind time, using a default filter factor for any host variables, parameter
markers, or special registers.

B At bind time, using a default filter factor for any host variables, parameter
markers, or special registers; however, the statement is reoptimized at run
time using input variable values for input host variables, parameter markers,
or special registers. The bind option REOPT(VARS) must be specified for
reoptimization to occur.

R At run time, using input variables for any host variables, parameter markers,
or special registers. The bind option REOPT(VARS) must be specified for this
to occur.

EXPLAIN

Chapter 5. Statements 733

Table 50. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

QBLOCK_TYPE For each query block, an indication of the type of SQL operation performed. For the
outermost query, this column identifies the statement type. Possible values:
SELECT SELECT
INSERT INSERT
UPDATE UPDATE
DELETE DELETE
SELUPD SELECT with FOR UPDATE OF
DELCUR DELETE WHERE CURRENT OF CURSOR
UPDCUR UPDATE WHERE CURRENT OF CURSOR
CORSUB Correlated subquery
NCOSUB Noncorrelated subquery
TABLEX Table expression
UNION UNION
UNIONA UNION ALL

BIND_TIME The time at which the plan or package for this statement or query block was bound.
For static SQL statements, this is a full-precision timestamp value. For dynamic SQL
statements, this is the value contained in the TIMESTAMP column of PLAN_TABLE
appended by 4 zeroes.

OPTHINT A string that you use to identify this row as an optimization hint for DB2. DB2 uses this
row as input when choosing an access path.

HINT_USED If DB2 used one of your optimization hints, it puts the identifier for that hint (the value
in OPTHINT) in this column.

PRIMARY_ACCESSTYPE Indicates whether direct row access will be attempted first:

D DB2 will try to use direct row access. If DB2 cannot use direct row access at
runtime, it uses the access path described in the ACCESSTYPE column of
PLAN_TABLE.

blank DB2 will not try to use direct row access.

PARENT_QBLOCKNO A number that indicates the QBLOCKNO of the parent query block.

TABLE_TYPE The type of new table:
F Table function
Q Temporary intermediate result table (not materialized)
T Table
W Work file
The value of the column is null if the query uses GROUP BY, ORDER BY, or
DISTINmill be attempted first:

itself, but must add columns PREFETCH, COLUMN_FN_EVAL, and MIXOPSEQ. If
you add any NOT NULL columns, give them the NOT NULL WITH DEFAULT
attribute.

Missing columns are ignored when rows are added to a plan table.

Plan table migration: You can migrate existing plan tables to subsequent releases
or fall back to prior releases. If you fall back to a prior release, the extra columns
are simply ignored when EXPLAIN is executed. If you migrate to a subsequent
release, the missing columns are likewise ignored.

Creating a statement table: To create a statement table, execute the following
SQL statement:
CREATE TABLE userid.DSN_STATEMNT_TABLE

(QUERYNO INTEGER NOT NULL WITH DEFAULT,
APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
COLLID CHAR(18) NOT NULL WITH DEFAULT,
GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
STMT_TYPE CHAR(6) NOT NULL WITH DEFAULT,
COST_CATEGORY CHAR(1) NOT NULL WITH DEFAULT,
PROCMS INTEGER NOT NULL WITH DEFAULT,
PROCSU INTEGER NOT NULL WITH DEFAULT,
REASON VARCHAR(254) NOT NULL WITH DEFAULT)

IN database-name.table-space-name;

where database-name.table-space-name identifies a database and table space you
have authorization to use.

Statement table column descriptions: Table 51 explains the columns in
DSN_STATEMNT_TABLE. The explanations apply both to rows resulting from the
execution of an EXPLAIN statement and to rows resulting from a bind or rebind.

Each row in the table provides a cost estimate, in service units and milliseconds, of
processing an explainable statement.

Notice that the first five columns of the table are the same as the first five columns
of PLAN_TABLE and DSN_FUNCTION_TABLE.

Table 51. Descriptions of columns in DSN_STATEMNT_TABLE

Column name Description

QUERYNO A number intended to identify the statement being explained. See
the description of the QUERYNO column in Table 50 on page 730
for more information. If QUERYNO is not unique, the value of
EXPLAIN_TIME is unique.

APPLNAME The name of the application plan for the row, or blank. See the
description of the APPLNAME column in Table 50 on page 730 for
more information.

PROGNAME The name of the program or package containing the statement
being explained, or blank. See the description of the PROGNAME
column in Table 50 on page 730 for more information.

COLLID The collection ID for the package, or blank. See the description of
the COLLID column in Table 50 on page 730 for more information.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN, or blank.
See the description of the GROUP_MEMBER column in Table 50
on page 730 for more information.

EXPLAIN

Chapter 5. Statements 735

Table 51. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column name Description

EXPLAIN_TIME The time at which the statement is processed. This time is the
same as the BIND_TIME column in PLAN_TABLE.

STMT_TYPE The type of statement being explained. Possible values are:
SELECT SELECT
INSERT INSERT
UPDATE UPDATE
DELETE DELETE
SELUPD SELECT with FOR UPDATE OF
DELCUR DELETE WHERE CURRENT OF CURSOR
UPDCUR UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY Indicates if DB2 was forced to use default values when making its
estimates. Possible values:
A Indicates that DB2 had enough information to make a cost

estimate without using default values.
B Indicates that some condition exists for which DB2 was

forced to use default values. See the values in REASON
to determine why DB2 was unable to put this estimate in
cost category A.

PROCMS The estimated processor cost, in milliseconds, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 milliseconds, which
is equivalent to approximately 24.8 days. If the estimated value
exceeds this maximum, the maximum value is reported.

PROCSU The estimated processor cost, in service units, for the SQL
statement. The estimate is rounded up to the next integer value.
The maximum value for this cost is 2147483647 service units. If the
estimated value exceeds this maximum, the maximum value is
reported.

REASON A string that indicates the reasons for putting an estimate into cost
category B.

HOST VARIABLES
The statement uses host variables, parameter markers, or
special registers.

TABLE CARDINALITY
The cardinality statistics are missing for one or more of the
tables used in the statement.

UDF The statement uses user-defined functions.

TRIGGERS
Triggers are defined on the target table of an INSERT,
UPDATE, or DELETE statement.

REFERENTIAL CONSTRAINTS
Referential constraints of the type CASCADE or SET
NULL exist on the target table of a DELETE statement.

Creating a function table: To create a function table, execute the following SQL
statement:
CREATE TABLE DSN_FUNCTION_TABLE

(QUERYNO INTEGER NOT NULL WITH DEFAULT,
QBLOCKNO INTEGER NOT NULL WITH DEFAULT,
APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
COLLID CHAR(18) NOT NULL WITH DEFAULT,

EXPLAIN

736 SQL Reference

GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
SCHEMA_NAME CHAR(8) NOT NULL WITH DEFAULT,
FUNCTION_NAME CHAR(18) NOT NULL WITH DEFAULT,
SPEC_FUNC_NAME CHAR(18) NOT NULL WITH DEFAULT,
FUNCTION_TYPE CHAR(2) NOT NULL WITH DEFAULT,
VIEW_CREATOR CHAR(8) NOT NULL WITH DEFAULT,
VIEW_NAME CHAR(18) NOT NULL WITH DEFAULT,
PATH VARCHAR(254) NOT NULL WITH DEFAULT,
FUNCTION_TEXT VARCHAR(254) NOT NULL WITH DEFAULT)

IN database-name.table-space-name;

where database-name.table-space-name identifies a database and table space you
have authorization to use.

Function table column descriptions: Table 52 explains the columns in
DSN_FUNCTION_TABLE. The explanations apply both to rows resulting from the
execution of an EXPLAIN statement and to rows resulting from a bind or rebind.

For each user-defined function that is referred to by the explainable statement, each
row in the function table describes how DB2 resolved the function reference.

Notice that the first five columns of the table are the same as the first five columns
of PLAN_TABLE and DSN_STATEMNT_TABLE.

Table 52. Descriptions of columns in DSN_FUNCTION_TABLE

Column name Description

QUERYNO A number intended to identify the statement being explained. See
the description of the QUERYNO column in Table 50 on page 730
for more information. If QUERYNO is not unique, the value of
EXPLAIN_TIME is unique.

APPLNAME The name of the application plan for the row, or blank. See the
description of the APPLNAME column in Table 50 on page 730 for
more information.

PROGNAME The name of the program or package containing the statement
being explained, or blank. See the description of the PROGNAME
column in Table 50 on page 730 for more information.

COLLID The collection ID for the package, or blank. See the description of
the COLLID column in Table 50 on page 730 for more information.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN, or blank.
See the description of the GROUP_MEMBER column in Table 50
on page 730 for more information.

EXPLAIN_TIME The time at which the statement is processed. This time is the
same as the BIND_TIME column in PLAN_TABLE.

SCHEMA_NAME The schema name of the function invoked in the explained
statement.

FUNCTION_NAME The name of the function invoked in the explained statement.

SPEC_FUNC_ID The specific name of the function invoked in the explained
statement.

FUNCTION_TYPE The type of function invoked in the explained statement. Possible
values are:
S Scalar function
T Table function

EXPLAIN

Chapter 5. Statements 737

Table 52. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Description

VIEW_CREATOR If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the creator of the view. Otherwise,
blank.

VIEW_NAME If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the name of the view. Otherwise,
blank.

PATH The value of the SQL path that was used to resolve the schema
name of the function.

FUNCTION_TEXT The text of the function reference (the function name and
parameters). If the function reference is over 100 bytes, this column
contains the first 100 bytes. For functions specified in infix notation,
FUNCTION_TEXT contains only the function name. For example,
for a function named /, which overloads the SQL divide operator, if
the function reference is A/B, FUNCTION_TEXT contains only /.

Examples
Example 1: Determine the steps required to execute the query 'SELECT X.ACTNO...'.
Assume that no set of rows in the PLAN_TABLE has the value 13 for the
QUERYNO column.

EXPLAIN PLAN SET QUERYNO = 13
FOR SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL

FROM DSN8710.EMPPROJACT X, DSN8710.EMP Y
WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > 0.5
AND (Y.JOB = 'DESIGNER' OR Y.EDLEVEL >= 12)

ORDER BY X.ACTNO, X.PROJNO;

Example 2: Retrieve the information returned in Example 1. Assume that a
statement table exists, so also retrieve the estimated cost of processing the query.
Use the following query, which joins the plan table and the statement table.

SELECT * FROM PLAN_TABLE A, DSN_STATEMNT_TABLE B
WHERE A.QUERYNO = 13 and B.QUERYNO = 13
ORDER BY A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

EXPLAIN

738 SQL Reference

FETCH
The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 665 for an explanation of the authorization
required to use a cursor.

Syntax

�� FETCH
(1)

INSENSITIVE
(2)

SENSITIVE

NEXT

PRIOR
FIRST
LAST
CURRENT

(3)
BEFORE

(3)
AFTER
ABSOLUTE host-variable

integer-constant
RELATIVE host-variable

integer-constant

FROM
cursor-name �

�
single-fetch-clause

��

single-fetch-clause:

�

,

INTO host-variable
(4)

INTO DESCRIPTOR descriptor-name

Notes:

1 The default depends on the sensitivity of the cursor. If INSENSITIVE is specified on the
DECLARE CURSOR, then the default is INSENSITIVE and if SENSITIVE is specified on the
DECLARE CURSOR, then the default is SENSITIVE.

2 If INSENSITIVE or SENSITIVE is specified, a single-fetch-clause must be specified.

3 If BEFORE or AFTER is specified, a single-fetch-clause, SENSITIVE, or INSENSITIVE must not
be specified.

4 ″USING DESCRIPTOR″ may be used as a synonym for ″INTO DESCRIPTOR″.

FETCH

Chapter 5. Statements 739

Description
INSENSITIVE

Returns the row from the result table as it is. If the row has been previously
fetched with a FETCH SENSITIVE, it reflects changes made outside this cursor
before the FETCH SENSITIVE statement was issued. Positioned updates and
deletes are reflected with FETCH INSENSITIVE if the same cursor was used
for the positioned update or delete.

INSENSITIVE can be specified for a cursor defined as INSENSITIVE or
SENSITIVE. For an INSENSITIVE cursor, specifying INSENSITIVE is optional
because it is the default.

SENSITIVE
Updates the fetched row in the result table from the corresponding row in the
base table of the cursor’s SELECT statement and returns the current values.
Thus, it reflects changes made outside this cursor. SENSITIVE can only be
specified for cursors that have been defined with the SENSITIVE STATIC
SCROLL keywords; otherwise, an error occurs and the FETCH has no effect.
For a SENSITIVE cursor, specifying SENSITIVE is optional because it is the
default.

When a FETCH SENSITIVE is requested, the following steps are taken:

1. DB2 retrieves the row of the database that corresponds to the row of the
result table that is about to be fetched.

2. If the corresponding row has been deleted, a delete hole occurs in the result
table, a warning is issued, the cursor is repositioned on the hole, and no
data is fetched. (DB2 marks a row in the result table as a delete hole when
the corresponding row in the database is deleted.)

3. If the corresponding row has not been deleted, the predicate of the
underlying SELECT statement is re-evaluated. If the row no longer satisfies
the predicate, an update hole occurs in the result table, a warning is issued,
the cursor is repositioned on the hole, and no data is fetched. (DB2 marks a
row in the result table as an update hole when an update to the
corresponding row in the database causes the row to no longer qualify for
the result table.)

4. If the corresponding row does not result in a delete or an update hole in the
result table, the cursor is repositioned on the row of the result table and the
data is fetched.

NEXT
Positions the cursor on the next row of the result table relative to the current
cursor position and fetches the row. NEXT is the default if no other cursor
positioning is specified. NEXT may be used for cursors that have not been
declared SCROLL.

Table 53 on page 741 lists situations in which NEXT does not result in positioning
the cursor on the next row.

FETCH

740 SQL Reference

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

Table 53. Situations in which NEXT does not position the cursor on the next row

Current state of the cursor Result of FETCH NEXT

Before the first row Cursor is positioned on the first row (1).

On the last row or after the last row An error occurs, values are not assigned to
host variables, and the cursor is positioned
after the last row.

Before a hole A warning occurs for a delete hole or an
update hole, values are not assigned to host
variables, and the cursor is positioned on the
hole.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

Note:

(1)This row is not applicable in the case of a forward-only cursor (that is when NO SCROLL
was specified implicitly or explicitly).

PRIOR
Positions the cursor on the previous row of the result table relative to the
current cursor position and fetches the row.

Table 54 lists situations in which PRIOR does not result in positioning the cursor on
the previous row.

Table 54. Situations in which PRIOR does not position the cursor on the previous row

Current state of the cursor Result of FETCH PRIOR

Before the first row or on the first row An error occurs, values are not assigned to
host variables, and the cursor is positioned
before the first row.

After a hole A warning occurs for a delete hole or an
update hole, values are not assigned to host
variables, and the cursor is positioned on the
hole.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

FIRST
Positions the cursor on the first row of the result table and fetches the row. If
the first row of the result table is a hole, a warning occurs for a delete hole or
an update hole and values are not assigned to host variables.

LAST
Positions the cursor on the last row of the result table and fetches the row. The
number of rows of the result table is returned in the SQLERRD1 and
SQLERRD2 fields of the SQLCA. If the last row of the result table is a hole, a
warning occurs for a delete hole or an update hole and values are not assigned
to host variables.

CURRENT
Fetches the current row. Does not reposition the cursor, but maintains current
cursor position.

FETCH

Chapter 5. Statements 741

||

||

||

||
|
|

||
|
|
|

||
|
|

|

|
|
|

|
|
|

|
|

||

||

||
|
|

||
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

Table 55 lists situations in which errors occur with CURRENT.

Table 55. Situations in which errors occur with CURRENT

Current state of the cursor Result of FETCH CURRENT

Before the first row or after the last row An error occurs, values are not assigned to
host variables.

On a hole A warning occurs for a delete hole or an
update hole, values are not assigned to host
variables, and the cursor is positioned on the
hole.

Unknown An error occurs, values are not assigned to
host variables, and the cursor position
remains unknown.

BEFORE
Positions the cursor before the first row of the result table. Values are not
assigned to host variables.

AFTER
Positions the cursor after the last row of the result table. Values are not
assigned to host variables. If the resulting cursor position is after the last row,
the number of rows of the result table are returned in the SQLERRD1 and
SQLERRD2 fields of the SQLCA.

ABSOLUTE
Evaluates host-variable or integer-constant to an integral value k. If a
host-variable is specified, it must be an exact numeric type with zero scale and
must not include an indicator variable. The possible data types for the host
variable are DECIMAL(n,0) or INTEGER. The DECIMAL data type is limited to
DECIMAL(18,0). An integer-constant can be up to 31 digits, depending on the
application language.

If k=0, the cursor is positioned before the first row of the result table. Otherwise,
ABSOLUTE positions the cursor to row k of the result table if k>0, or to k rows
from the bottom of the table if k<0. For example, ″ABSOLUTE -1″ is the same
as ″LAST″.

If an absolute positon is specified that is before the first row or after the last row
of the result table, a warning occurs, values are not assigned to host variables,
and the cursor is positioned either before the first row or after the last row. If the
resulting cursor position is after the last row, the number of rows of the result
table are returned in the SQLERRD1 and SQLERRD2 fields of the SQLCA. If
row k of the result table is a hole, a warning occurs and values are not
assigned to host variables.

FETCH ABSOLUTE 0 results in positioning before the first row and a warning is
issued. FETCH BEFORE results in positioning before the first row and no
warning is issued.

FETCH

742 SQL Reference

|

||

||

||
|

||
|
|
|

||
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

Table 56 lists some synonymous specifications.

Table 56. Synonymous Scroll Specifications for ABSOLUTE

Specification Alternative

ABSOLUTE 0 (but with a warning) BEFORE (without a warning)

ABSOLUTE +1 FIRST

ABSOLUTE -1 LAST

ABSOLUTE -m, 0<m≤n ABSOLUTE n+1-m

ABSOLUTE n LAST

ABSOLUTE -n FIRST

ABSOLUTE x (with a warning) AFTER (without a warning)

ABSOLUTE -x (with a warning) BEFORE (without a warning)

Note:

Assume: 0<=m<=n<x Where, n is the number of rows in the result table.

RELATIVE
Evaluates host-variable or integer-constant to an integral value k. If a
host-variable is specified, it must be an exact numeric type with zero scale and
must not include an indicator variable. The possible data types for the host
variable are DECIMAL(n,0) or INTEGER. The DECIMAL data type is limited to
DECIMAL(18,0). An integer-constant can be up to 31 digits, depending on the
application language.

RELATIVE positions the cursor to the row in the result table that is either k rows
after the current row if k>0, or ABS(k) rows before the current row if k<0. For
example, ″RELATIVE -1″ is the same as ″PRIOR″. If k=0, the position of the
cursor does not change (that is, ″RELATIVE 0″ is the same as ″CURRENT″).

If a relative position is specified that results in positioning before the first row or
after the last row, a warning is issued, values are not assigned to host
variables, and the cursor is positioned either before the first row or after the last
row. If the resulting cursor position is after the last row, the number of rows of
the result table is returned in the SQLERRD1 and SQLERRD2 fields of the
SQLCA. If the cursor is postioned on a hole and RELATIVE 0 is specified or if
the target row is a hole, a warning occurs and values are not assigned to host
variables. If the cursor position is unknown and RELATIVE 0 is specified, an
error occurs.

Table 57 lists some synonymous specifications.

Table 57. Synonymous Scroll Specifications for RELATIVE

Specification Alternative

RELATIVE +1 NEXT

RELATIVE -1 PRIOR

RELATIVE 0 CURRENT

RELATIVE +r (with a warning) AFTER (without a warning)

RELATIVE -r (with a warning) BEFORE (without a warning)

Note:

r has to be large enough to position the cursor beyond either end of the result table.

FETCH

Chapter 5. Statements 743

|

||

||

||

||

||

||

||

||

||

||

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

||

||

||

||

||

||

||

|

|
|

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor name must
identify a declared cursor, as explained in the description of the DECLARE
CURSOR statement in “Notes” on page 668, or an allocated cursor, as
explained in “ALLOCATE CURSOR” on page 338. When the FETCH statement
is executed, the cursor must be in the open state.

single-fetch-clause
When single-fetch-clause is specified, SENSITIVE or INSENSITIVE must be
specified. The single-fetch-clause must not be specified when FETCH BEFORE
or FETCH AFTER position option is specified and it must be specified with all
other position options of FETCH. If an individual fetch operation causes the
cursor to be positioned or to remain positioned on a row, the values of the
result table are assigned to host variables as specified by the
single-fetch-clause.

INTO host-variable,...
Specifies a list of host variables. Each host-variable must identify a structure or
variable that is described in the application program in accordance with the
rules for declaring host structures and variables. In the operational form of
INTO, a reference to a structure is replaced by a reference to each of its
variables. The first value in the result row is assigned to the first host variable,
the second value to the second host variable, and so on.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the host output
variables. Result values from the associated SELECT statement are returned to
the application program in the output host variables.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

A REXX SQLDA does not contain this field.

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Each SQLVAR occurrence describes a host variable or buffer into which a value
in the result set is to be assigned. If LOBs are present in the results, there must
be additional SQLVAR entries for each column of the result table. If the result
table contains only base types and distinct types, multiple SQLVAR entries are
not needed for each column. However, extra SQLVAR entries are needed for
distinct types as well as for LOBs in DESCRIBE and PREPARE INTO
statements. For more information on the SQLDA, which includes a description
of the SQLVAR and an explanation on how to determine the number of
SQLVAR occurrences, see “SQL descriptor area (SQLDA)” on page 930.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

See “Identifying an SQLDA in C or C⁺⁺” on page 947 for how to represent
descriptor-name in C.

FETCH

744 SQL Reference

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Notes
Assignment to host variables:The data type of a host variable must be
compatible with its corresponding value. If the value is numeric, the variable must
have the capacity to represent the whole part of the value. For a datetime value,
the variable must be a character string variable of a minimum length as defined in
“String representations of datetime values” on page 57. If the value is null, an
indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a variable
is made according to the rules described in “Chapter 2. Language elements” on
page 27. If the number of variables is less than the number of values in the row, the
SQLWARN3 field of the SQLCA is set to W. If an assignment error occurs, the
value is not assigned to the variable and no more values are assigned to variables.
Any values that have already been assigned to variables remain assigned.

Providing indicator variable for error condition: If an error occurs as the result
of an arithmetic expression in the SELECT list of an outer SELECT statement
(division by zero, or overflow) or a numeric conversion error occurs, the result is the
null value. As in any other case of a null value, an indicator variable must be
provided and the main variable is unchanged. In this case, however, the indicator
variable is set to -2. Processing of the statement continues as if the error had not
occurred. (However, this error causes a positive SQLCODE.) If you do not provide
an indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. Processing of the statement terminates when the error is encountered. No
value is assigned to the host variable or to later variables, though any values that
have already been assigned to variables remain assigned.

Cursor positioning: An open cursor has three possible positions:
v Before a row
v On a row
v After the last row

When a scrollable or non-scrollable cursor is opened, it is positioned before the first
row in the result table. If a cursor is on a row, that row is called the current row of
the cursor. A cursor referred to in an UPDATE or DELETE statement must be
positioned on a row. A cursor can only be on a row as a result of a FETCH
statement. If the cursor was declared SENSITIVE STATIC SCROLL, the row may
be a hole, from which no values may be fetched.

The current row of a cursor cannot be updated or deleted by another application
process if it is locked. Unless it is already locked because it was inserted or
updated by the application process during the current unit of work, the current row
of a cursor is not locked if:

v The isolation level is UR, or

v The isolation level is CS, and
– The result table of the cursor is read-only
– The bind option CURRENTDATA(NO) is in effect

For scrollable cursors, the cursor position after an error varies depending on the
type of error:

v When an operation is attempted against an update or delete hole, or when an
update or delete hole is detected, the cursor is positioned on the hole.

v When a FETCH operation is attempted past the end of file, the cursor is
positioned after the last row.

FETCH

Chapter 5. Statements 745

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

v When a FETCH operation is attempted before the beginning of file, the cursor is
positioned before the first row.

v When an error causes the cursor position to be invalid such as when a
positioned update or positioned delete error occurs that causes a rollback, the
cursor is closed.

Cursor position after exception condition:If an error occurs during the execution
of a fetch operation, the position of the cursor and the result of any later fetch is
unpredictable. It is possible for an error to occur that makes the position of the
cursor invalid, in which case the cursor is closed.

If an individual fetch operation specifies a destination that is outside the range of
the cursor, a warning is issued (except for FETCH BEFORE or FETCH AFTER), the
cursor is positioned before or after the result table, and values are not assigned to
host variables.

Sensitivity of SENSITIVE STATIC SCROLL cursors to database changes: When
SENSITIVE STATIC SCROLL has been declared, the following rules apply:

v For the result of an update operation to be visible within a cursor after ″open,″
the update operation must be a positioned update executed against the cursor, or
a FETCH SENSITIVE in a STATIC cursor must be executed against a row which
has been updated by some other means (that is., a searched update, committed
updates of others, or an update with another cursor in the same process).

v Another process can update the base table of the SELECT statement so that the
current values no longer satisfy the WHERE clause. In this case, an ″update
hole″ effectively exists during the time the values in the base table do not satisfy
the WHERE clause, and the row is no longer accessible through the cursor.
When an attempt is made to fetch a row that has been identified as an update
hole, no values are returned, and a warning is issued.

Under SENSITIVE STATIC SCROLL cursors, update holes are only identified
during positioned update, positioned delete, and FETCH SENSITIVE operations.
Each positioned update, positioned delete, and FETCH SENSITIVE operation
does the necessary tests to determine if an update hole exists.

v For the result of a delete operation to be visible within a SENSITIVE STATIC
SCROLL cursor, the delete operation must be a positioned delete executed
against the cursor or a FETCH SENSITIVE in a STATIC cursor must be executed
against a row that has been deleted by some other means (that is, a searched
delete, committed deletes of others, or a delete with another cursor in the same
process).

v Another process, or the even the same process, may delete a row in the base
table of the SELECT statement so that a row of the cursor no longer has a
corresponding row in the base table. In this case, a ″delete hole″ effectively
exists, and that row is no longer accessible through the cursor. When an attempt
is made to fetch a row that has been identified as a delete hole, no values are
returned, and a warning is issued.

Under SENSITIVE STATIC SCROLL cursors, delete holes are identified during
positioned update, positioned delete, and FETCH SENSITIVE operations.

v Inserts into the base table or tables of SENSITIVE STATIC SCROLL cursors are
not seen after the cursor is opened.

LOB locators: When information is retrieved into LOB locators and it is not
necessary to retain the locator across FETCH statements, it is a good practice to
issue a FREE LOCATOR statement before issuing another FETCH statement
because locator resources are limited.

FETCH

746 SQL Reference

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

Example
The FETCH statement fetches the results of the SELECT statement into the
application program variables DNUM, DNAME, and MNUM. When no more rows
remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8710.DEPT
WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

END;

EXEC SQL CLOSE C1;

FETCH

Chapter 5. Statements 747

FREE LOCATOR
The FREE LOCATOR statement removes the association between a LOB locator
variable and its value.

Invocation
This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. FREE LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement.

Authorization
None required.

Syntax

Description
host_variable,...

Identifies a host-variable locator variable that must have been previously
declared according to the rules for declaring host-variable locator variables. The
locator variable type must be a binary large object locator, a character large
object locator, or a double-byte character large object locator.

After the FREE LOCATOR statement is executed, each locator variable in the
host-variable list is no longer associated with the string value it represented.

If a locator variable is not an established locator within the current unit of work,
an invalid locator error occurs. When this error occurs and more than one host
variable was specified in the FREE LOCATOR statement, only the locators up
to the first invalid locator are freed. Locators listed after the first invalid locator
are not freed.

Example
Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the
column values. Free the CLOB locator variables LOCRES and LOCHIST, and the
BLOB locator variable LOCPIC.

EXEC SQL FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC

�� FREE LOCATOR �

,

host_variable ��

FREE LOCATOR

748 SQL Reference

GRANT
The GRANT statement grants privileges to authorization IDs. There is a separate
form of the statement for each of these classes of privilege:
v Collection
v Database
v Distinct type
v Function or stored procedure
v Package
v Plan
v Schema
v System
v Table or view
v Use

The applicable objects are always at the current server. The grants are recorded in
the current server’s catalog.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

Authorization
To grant a privilege P, the privilege set must include one of the following:
v The privilege P WITH GRANT OPTION
v Ownership of the object on which P is a privilege
v SYSADM authority

The presence of SYSCTRL authority in the privilege set allows the granting of all
authorities except:
v DBADM on databases
v DELETE, INSERT, SELECT, and UPDATE on user tables or views
v EXECUTE on plans, packages, functions, or stored procedures
v PACKADM on collections
v SYSADM authority

Except for views, the GRANT option for privileges on a table is also inherent in
DBADM authority for its database, provided DBADM authority was acquired with the
GRANT option. See “CREATE VIEW” on page 658 for a description of the rules that
apply to views.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the authorization ID of the owner of the plan or package.
If the statement is dynamically prepared, the privilege set is the privileges that are
held by the SQL authorization ID of the process.

GRANT

Chapter 5. Statements 749

Syntax

Description
authorization-specification

Names one or more privileges in one of the formats described below. The same
privilege must not be specified more than once.

TO
Specifies to what authorization IDs the privileges are granted.

authorization-name,...
Lists one or more authorization IDs.

The value of CURRENT RULES determines whether you can use the ID of
the GRANT statement itself (to grant privileges to yourself). When
CURRENT RULES is:

DB2
You cannot use the ID of the GRANT statement.

STD
You can use the ID of the GRANT statement.

PUBLIC
Grants the privileges to all users at the current server, including database
requesters using DRDA access.

PUBLIC AT ALL LOCATIONS
Grants the privileges to all users in the network. Applies to table privileges
only, excluding ALTER, INDEX, REFERENCES, and TRIGGER.

PUBLIC AT ALL LOCATIONS applies to DB2 private protocol access only.

WITH GRANT OPTION
Allows the named users to grant the privileges to others. Granting an
administrative authority with this option allows the user to specifically grant any
privilege belonging to that authority. If you omit WITH GRANT OPTION, the
named users cannot grant the privileges to others unless they have that
authority from some other source.

GRANT authority cannot be passed to PUBLIC or to PUBLIC AT ALL
LOCATIONS. When WITH GRANT OPTION is used with either of these, a
warning is issued, and the named privileges are granted, but without GRANT
authority.

�� GRANT authorization-specification �

,

TO authorization-name
PUBLIC

(1)
PUBLIC AT ALL LOCATIONS

�

�
WITH GRANT OPTION

��

Notes:

1 PUBLIC AT ALL LOCATIONS may be removed in a later release of DB2.

GRANT

750 SQL Reference

Notes
For more on DB2 privileges, read Part 3 (Volume 1) of DB2 Administration Guide.
For information on access control authorization, see Appendix B (Volume 2) of DB2
Administration Guide

A grant is the granting of a specific privilege by a specific grantor to a specific
grantee. The grantor for a given GRANT statement is the authorization ID for the
privilege set; that is, the SQL authorization ID of the process or the authorization ID
of the owner of the plan or package. The grantee, as recorded in the catalog, is an
authorization ID, PUBLIC, or PUBLIC*, where PUBLIC* denotes PUBLIC AT ALL
LOCATIONS.

Duplicate grants from the same grantor are not recorded in the catalog. Otherwise,
the result of executing a GRANT statement is recorded as one or more grants in
the current server’s catalog.

If more than one privilege or authorization-name is specified after the TO keyword
and one of the grants is in error, execution of the statement is stopped and no
grants are made. The status of the privilege or privileges granted is recorded in the
catalog for each authorization-name.

Different grantors can grant the same privilege to a single grantee. The grantee
retains that privilege as long as one or more of those grants are recorded in the
catalog. Privileges that imply other privileges are also termed authorities. Grants are
removed from the catalog by executing SQL REVOKE statements.

Whenever a grant is made for a database, distinct type, package, plan, schema,
stored procedure, table, trigger, user-defined function, view, or USE privilege for an
object that does not exist, an SQL return code is issued and the grant is not made.

PUBLIC AT ALL LOCATIONS: PUBLIC AT ALL LOCATIONS can continue to be
specified as an alternative to PUBLIC as in prior releases. However, support for
PUBLIC AT ALL LOCATIONS may be removed in a later release when support for
DB2 private protocol access is removed. PUBLIC AT ALL LOCATIONS was
introduced and was intended for use only with DB2 private protocol access.

GRANT

Chapter 5. Statements 751

|
|
|
|
|

GRANT (collection privileges)
This form of the GRANT statement grants privileges on collections.

Syntax

Description
CREATE IN

Grants the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Grants package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is granted. The
collections do not have to exist.

COLLECTION *
Indicates that the specified privilege is granted on all collections including those
that do not currently exist.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Example
Grant the privilege to create new packages in collections QAACLONE and
DSN8CC61 to CLARK.

GRANT CREATE IN COLLECTION QAACLONE, DSN8CC61 TO CLARK;

�� �

,

GRANT CREATE ON COLLECTION collection-id
PACKADM IN *

�

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

GRANT (collection privileges)

752 SQL Reference

GRANT (database privileges)
This form of the GRANT statement grants privileges on databases.

Syntax

Description
Each keyword listed grants the privilege described, but only as it applies to or within
the databases named in the statement.

DBADM
Grants the database administrator authority.

DBCTRL
Grants the database control authority.

DBMAINT
Grants the database maintenance authority.

CREATETAB
Grants the privilege to create new tables. For a TEMP database, PUBLIC
implicitly has the CREATETAB privilege (without GRANT authority) to define
declared temporary tables; this privilege is not recorded in the DB2 catalog, and
it cannot be revoked.

CREATETS
Grants the privilege to create new table spaces.

DISPLAYDB
Grants the privilege to issue the DISPLAY DATABASE command.

DROP
Grants the privilege to issue the DROP or ALTER DATABASE statements for
the designated databases.

�� GRANT �

,

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STATS
STOPDB

�

,

ON DATABASE database-name �

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

GRANT (database privileges)

Chapter 5. Statements 753

IMAGCOPY
Grants the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility.

LOAD
Grants the privilege to use the LOAD utility to load tables.

RECOVERDB
Grants the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Grants the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Grants the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Grants the privilege to issue the START DATABASE command.

STATS
Grants the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.

STOPDB
Grants the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which privileges are to be granted. For each named
database, the grantor must have all the specified privileges with the GRANT
option. Each name must identify a database that exists at the current server.
DSNDB01 must not be identified; however, a grant of a privilege on DSNDB06
implies the granting of the same privilege on DSNDB01 for utility operations
only.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Examples
Example 1: Grant drop privileges on database DSN8D71A to user PEREZ.

GRANT DROP
ON DATABASE DSN8D71A
TO PEREZ;

Example 2: Grant repair privileges on database DSN8D71A to all local users.
GRANT REPAIR

ON DATABASE DSN8D71A
TO PUBLIC;

Example 3: Grant authority to create new tables and load tables in database
DSN8D71A to users WALKER, PIANKA, and FUJIMOTO, and give them grant
privileges.

GRANT CREATETAB,LOAD
ON DATABASE DSN8D71A
TO WALKER,PIANKA,FUJIMOTO
WITH GRANT OPTION;

GRANT (database privileges)

754 SQL Reference

GRANT (distinct type or JAR privileges)
This form of the GRANT statement grants the privilege to use distinct types
(user-defined data types) or JARs.

Syntax

Description
USAGE

Grants the privilege to use the identified distinct types or grants the privilege to
use the identified JARs.

DISTINCT TYPE distinct-type-name
Identifies the distinct type. The name, including the implicit or explicit schema
name, must identify a unique distinct type that exists at the current server. If
you do not explicitly qualify the distinct type name, it is implicitly qualified with a
schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

JAR jar-name
Identifies the JAR. The name, including the implicit or explicit schema name,
must identify a unique JAR that exists at the current server. If you do not
explicitly qualify the JAR name, it is implicitly qualified with a schema name
according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

�� GRANT USAGE ON �

�

,
(1)

DISTINCT TYPE distinct-type-name
,

JAR jar-name

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

Notes:

1 DATA can be used as a synonym for DISTINCT. DISTINCT is the keyword that is used on
CREATE.

GRANT (distinct type or JAR privileges)

Chapter 5. Statements 755

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Examples
Example 1: Grant the USAGE privilege on distinct type SHOE_SIZE to user
JONES. This GRANT statement does not give JONES the privilege to execute the
cast functions that are associated with the distinct type SHOE_SIZE.

GRANT USAGE ON DISTINCT TYPE SHOE_SIZE TO JONES;

Example 2: Grant the USAGE privilege on distinct type US_DOLLAR to all users at
the current server.

GRANT USAGE ON DISTINCT TYPE US_DOLLAR TO PUBLIC;

Example 3: Grant the USAGE privilege on distinct type CANADIAN_DOLLAR to the
administrative assistant (ADMIN_A), and give this user the ability to grant the
USAGE privilege on the distinct type to others. The administrative assistant cannot
grant the privilege to execute the cast functions that are associated with the distinct
type CANADIAN_DOLLAR because WITH GRANT OPTION does not give the
administrative assistant the EXECUTE authority on these cast functions.

GRANT (function or procedure privileges)
This form of the GRANT statement grants privileges on user-defined functions, cast
functions that are generated for distinct types, and stored procedures.

Syntax

�� GRANT EXECUTE ON �

�

�

�

,

FUNCTION function-name
,

()
parameter-type

*
,

SPECIFIC FUNCTION specific-name
,

PROCEDURE procedure-name
*

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

parameter type:

�� data-type
AS LOCATOR

��

data type:

�� built-in-data-type
distinct-type-name

��

GRANT (function or procedure privileges)

Chapter 5. Statements 757

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the privilege is granted. The function must exist
at the current server, and it must be a function that was defined with the
CREATE FUNCTION statement or a cast function that was generated by a
CREATE DISTINCT TYPE statement.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the input
parameters is a transition table), the function signature cannot be used to
identify the function. Instead, identify the function with its function name, if
unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. You can identify a function by its name
only if there is exactly one function with function-name in the schema. If you
do not explicitly qualify the function name with a schema name, the function
name is implicitly qualified with a schema name according to the following
rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name
is the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

An * can be specified for a qualified on unqualified function-name. An * (or
schema-name.*) indicates that the privilege is granted on all the functions in
the schema including those that do not currently exist. Specifying an * does
not affect any EXECUTE privileges that are already granted on a function.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the
function.

function-name
Specifies the name of the function. If you do not explicitly qualify the
function name with a schema name, the function name is implicitly
qualified with a schema name as described in the preceding description
for FUNCTION function-name.

(parameter-type,...)
Identifies the number of input parameters of the function and their data
types.

The data type of each parameter must match the data type that was
specified in the CREATE FUNCTION statement for the parameter in the
corresponding position. The number of data types and the logical
concatenation of the data types is used to uniquely identify the function.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

v Empty parentheses indicate that DB2 ignores the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

GRANT (function or procedure privileges)

Chapter 5. Statements 759

The specific value for FLOAT(n) does not have exactly match the
defined value of the source function because 1<=n<= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 601.

For data types with a subtype or encoding scheme attribute, specifying
the FOR DATA clause or CCSID clause is optional. Omission of either
clause indicates that DB2 ignores the attribute when determining
whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server. If you do not
explicitly qualify the procedure name with a schema name, the procedure name
is implicitly qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

An * can be specified for a qualified or unqualified procedure-name. An * (or
schema-name.*) indicates that the privilege is granted on all the stored
procedures in the schema including those that do not currently exist. Specifying
an * does not affect any EXECUTE privileges that are already granted on a
stored procedure.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Examples
Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user
JONES. Assume that there is only one function in the schema with function name
CALC_SALARY.

GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES;

GRANT (function or procedure privileges)

760 SQL Reference

Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all
users at the current server.

GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC;

Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the
administrative assistant and give the assistant the ability to grant the EXECUTE
privilege on this function to others. The function has the specific name
DEPT85_TOT. Assume that the schema has more than one function that is named
DEPT_TOTALS.

GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT TO ADMIN_A
WITH GRANT OPTION;

Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR
(Human Resources). The function has two input parameters with data types of
INTEGER and CHAR(10), respectively. Assume that the schema has more than one
function that is named NEW_DEPT_HIRES.

GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
TO HR;

You can also code the CHAR(10) data type as CHAR().

GRANT (function or procedure privileges)

Chapter 5. Statements 761

GRANT (package privileges)
This form of the GRANT statement grants privileges on packages.

Syntax

Description
BIND

Grants the privilege to use the BIND and REBIND subcommands for the
designated packages.

The BIND package privilege is used to add a new version of an existing
package. For details on the authorization required to create new packages and
new versions of existing packages, see “Notes” on page 763.

COPY
Grants the privilege to use the COPY option of the BIND subcommand for the
designated packages.

EXECUTE
Grants the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Grants all package privileges for which you have GRANT authority for the
packages named in the ON clause.

ON PACKAGE collection-id.package-id,...
Identifies packages for which you are granting privileges. The granting of a
package privilege applies to all versions of a package. The list can
simultaneously contain items of the following two forms:

v collection-id.package-id explicitly identifies a single package. The name must
identify a package that exists at the current server.

v collection-id.* applies to every package in the indicated collection. This
includes packages that currently exist and future packages. The grant applies
to a collection at the current server, but the collection-id does not have to
identify a collection that exists when the grant is made.

�� �

�

,

GRANT ALL ON PACKAGE collection-id. package-id
, PROGRAM *

BIND
COPY

EXECUTE
RUN

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

GRANT (package privileges)

762 SQL Reference

To grant a privilege in this form requires PACKADM with the WITH GRANT
OPTION over the collection or all collections, SYSADM, or SYSCTRL
authority. Because of this fact, WITH GRANT OPTION, if included in the
statement, is ignored for grants of this form, but not for grants for specific
packages.

The word PROGRAM can be used in place of PACKAGE.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Notes
The authorization required to add a new package or a new version of an existing
package depends on the value of field BIND NEW PACKAGE on installation panel
DSNTIPP. The default value is BINDADD.

If the value of BIND NEW PACKAGE is BINDADD, the primary authorization ID
must have one of the following to add a new package or a new version of an
existing package to a collection:

v The BINDADD system privilege and either the CREATE IN privilege or
PACKADM authority for the collection or for all collections

v SYSADM or SYSCTRL authority

If the value of BIND NEW PACKAGE is BIND, the primary authorization ID must
have one of the following to add a new package or a new version of an existing
package to a collection:

v The BINDADD system privilege and either the CREATE IN privilege or
PACKADM authority for the collection or for all collections

v SYSADM or SYSCTRL authority

v PACKADM authority for the collection or for all collections

v The BIND package privilege (can only add a new version of an existing package)

Examples
Example 1: Grant the privilege to copy all packages in collection DSN8CC61 to
LEWIS.

GRANT COPY ON PACKAGE DSN8CC61.* TO LEWIS;

Example 2: You have the BIND privilege with GRANT authority over the package
CLCT1.PKG1. You have the EXECUTE privilege with GRANT authority over the
package CLCT2.PKG2. You have no other privileges with GRANT authority over
any package in the collections CLCT1 AND CLCT2. Hence, the following statement,
when executed by you, grants LEWIS the BIND privilege on CLCT1.PKG1 and the
EXECUTE privilege on CLCT2.PKG2, and makes no other grant. The privileges
granted include no GRANT authority.

GRANT ALL ON PACKAGE CLCT1.PKG1, CLCT2.PKG2 TO JONES;

GRANT (package privileges)

Chapter 5. Statements 763

GRANT (plan privileges)
This form of the GRANT statement grants privileges on plans.

Syntax

Description
BIND

Grants the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans. (The authority to create new plans using BIND ADD is a
system privilege.)

EXECUTE
Grants the privilege to run programs that use the identified plans.

ON PLAN plan-name,...
Identifies the application plans on which the privileges are granted. For each
identified plan, you must have all specified privileges with the GRANT option.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Examples
Example 1: Grant the privilege to bind plan DSN8IP71 to user JONES.

GRANT BIND ON PLAN DSN8IP71 TO JONES;

Example 2: Grant privileges to bind and execute plan DSN8CP71 to all users at the
current server.

GRANT BIND,EXECUTE ON PLAN DSN8CP71 TO PUBLIC;

Example 3: Grant the privilege to execute plan DSN8CP71 to users ADAMSON and
BROWN with grant option.

GRANT EXECUTE ON PLAN DSN8CP71 TO ADAMSON,BROWN WITH GRANT OPTION;

�� �

,

GRANT BIND
EXECUTE

�

,

ON PLAN plan-name �

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

GRANT (plan privileges)

764 SQL Reference

GRANT (schema privileges)
This form of the GRANT statement grants privileges on schemas.

Syntax

Description
ALTERIN

Grants the privilege to alter stored procedures and user-defined functions, or
specify a comment for distinct types, cast functions that are generated for
distinct types, stored procedures, triggers, and user-defined functions in the
designated schemas.

CREATEIN
Grants the privilege to create distinct types, stored procedures, triggers, and
user-defined functions in the designated schemas.

DROPIN
Grants the privilege to drop distinct types, stored procedures, triggers, and
user-defined functions in the designated schemas.

SCHEMA schema-name
Identifies the schemas on which the privilege is granted. The schemas do not
need to exist when the privilege is granted.

SCHEMA *
Indicates that the specified privilege is granted on all schemas including those
that do not currently exist.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Examples
Example 1: Grant the CREATEIN privilege on schema T_SCORES to user JONES.

GRANT CREATEIN ON SCHEMA T_SCORES TO JONES;

Example 2: Grant the CREATEIN privilege on schema VAC to all users at the
current server.

GRANT CREATEIN ON SCHEMA VAC TO PUBLIC;

�� GRANT �

,

ALTERIN ON
CREATEIN
DROPIN

SCHEMA �

,

schema-name
*

�

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

GRANT (schema privileges)

Chapter 5. Statements 765

Example 3: Grant the ALTERIN privilege on schema DEPT to the administrative
assistant and give the grantee the ability to grant ALTERIN privileges on this
schema to others.

GRANT ALTERIN ON SCHEMA DEPT TO ADMIN_A
WITH GRANT OPTION;

Example 4: Grant the CREATEIN, ALTERIN, and DROPIN privileges on schemas
NEW_HIRE, PROMO, and RESIGN to HR (Human Resources).

GRANT CREATEIN, ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN TO HR;

GRANT (schema privileges)

766 SQL Reference

GRANT (system privileges)
This form of the GRANT statement grants system privileges.

Syntax

Description
ARCHIVE

Grants the privilege to use the ARCHIVE LOG and SET LOG commands.

BINDADD
Grants the privilege to create plans and packages by using the BIND
subcommand with the ADD option.

BINDAGENT
Grants the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A warning is issued if WITH GRANT OPTION is specified when granting this
privilege.

BSDS
Grants the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Grants the privilege to use the CREATE ALIAS statement.

CREATEDBA
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

�� �

,

GRANT ARCHIVE
BINDADD
BINDAGENT
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG
CREATETMTAB
DISPLAY
MONITOR1
MONITOR2
RECOVER
STOPALL
STOSPACE
SYSADM
SYSCTRL
SYSOPR
TRACE

�

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

GRANT (system privileges)

Chapter 5. Statements 767

CREATEDBC
Grants the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

CREATESG
Grants the privilege to create new storage groups.

CREATETMTAB
Grants the privilege to use the CREATE GLOBAL TEMPORARY TABLE
statement.

DISPLAY
Grants the privilege to use the following commands:
v The DISPLAY ARCHIVE command for archive log information
v The DISPLAY BUFFERPOOL command for the status of buffer pools
v The DISPLAY DATABASE command for the status of all databases
v The DISPLAY LOCATION command for statistics about threads with a

distributed relationship
v The DISPLAY LOG command for log information, including the status of the

offload task
v The DISPLAY THREAD command for information on active threads within

DB2
v The DISPLAY TRACE command for a list of active traces

MONITOR1
Grants the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Grants the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. Users with
MONITOR2 privileges have MONITOR1 privileges.

RECOVER
Grants the privilege to issue the RECOVER INDOUBT command.

STOPALL
Grants the privilege to issue the STOP DB2 command.

STOSPACE
Grants the privilege to use the STOSPACE utility.

SYSADM
Grants all DB2 privileges except for a few reserved for installation SYSADM
authority. The privileges the user possesses are all grantable, including the
SYSADM authority itself. The privileges the user lacks restrict what the user can
do with the directory and the catalog. Using WITH GRANT OPTION when
granting SYSADM is redundant but valid. For more on SYSADM and install
SYSADM authority, see Part 3 (Volume 1) of DB2 Administration Guide.

SYSCTRL
Grants the system control authority, which allows the user to have most of the
privileges of a system administrator but excludes the privileges to read or
change user data. Using WITH GRANT OPTION when granting SYSCTRL is
redundant but valid. For more information on SYSCTRL authority, see Part 3
(Volume 1) of DB2 Administration Guide.

SYSOPR
Grants the privilege to have system operator authority.

GRANT (system privileges)

768 SQL Reference

TRACE
Grants the privilege to issue the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
If you grant the SYSADM or SYSCTRL system privilege, WITH GRANT
OPTION is valid but unnecessary. It is unnecessary because whoever is
granted SYSADM or SYSCTRL has that authority and all the privileges it
implies, with the GRANT option.

Examples
Example 1: Grant DISPLAY privileges to user LUTZ.

GRANT DISPLAY
TO LUTZ;

Example 2: Grant BSDS and RECOVER privileges to users PARKER and
SETRIGHT, with the WITH GRANT OPTION.

GRANT BSDS,RECOVER
TO PARKER,SETRIGHT
WITH GRANT OPTION;

Example 3: Grant TRACE privileges to all local users.
GRANT TRACE

TO PUBLIC;

GRANT (system privileges)

Chapter 5. Statements 769

GRANT (table or view privileges)
This form of the GRANT statement grants privileges on tables and views.

Syntax

Description
ALL or ALL PRIVILEGES

Grants all table or view privileges for which you have GRANT authority, for the
tables and views named in the ON clause. Does not include ALTER, INDEX,
REFERENCES, or TRIGGER for a grant to PUBLIC AT ALL LOCATIONS.

If you do not use ALL, you must use one or more of the keywords in the
following list. For each keyword that you use, you must have GRANT authority
for that privilege on every table or view identified in the ON clause.

ALTER
Grants the privilege to use the ALTER TABLE statement. ALTER cannot be
granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies an auxiliary table or a view.

DELETE
Grants the privilege to use the DELETE statement. DELETE cannot be granted
on an auxiliary table.

�� GRANT

�

�

�

PRIVILEGES
ALL

,

ALTER
DELETE
INDEX
INSERT
SELECT
REFERENCES

,

(column-name)
TRIGGER
UPDATE

,

(column-name)

�

,
TABLE

ON table-name
view-name

�

� �

,

TO authorization-name
PUBLIC

(1)
PUBLIC AT ALL LOCATIONS

WITH GRANT OPTION
��

Notes:

1 PUBLIC AT ALL LOCATIONS may be removed in a later release of DB2.

GRANT (table or view privileges)

770 SQL Reference

INDEX
Grants the privilege to use the CREATE INDEX statement. INDEX cannot be
granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies a view.

INSERT
Grants the privilege to use the INSERT statement. INSERT cannot be granted
on an auxiliary table.

REFERENCES(column-name,...)
Grants the privilege to define and drop a referential constraint in which the table
is a parent. Grantees can create referential constraints by using all the named
columns in the parent key. If a list of columns is not specified, REFERENCES
applies to all the columns of every table identified in the ON clause.
REFERENCES cannot be granted to PUBLIC AT ALL LOCATIONS. Nor can it
be used if the statement identifies an auxiliary table or a view.

If you specify a list of columns, each column-name must be the unqualified
name of a column in a table identified in the ON clause.

SELECT
Grants the privilege to use the SELECT statement. SELECT cannot be granted
on an auxiliary table.

TRIGGER
Grants the privilege to use the CREATE TRIGGER statement. TRIGGER cannot
be granted to PUBLIC AT ALL LOCATIONS. Nor can it be used if the statement
identifies an auxiliary table or a view.

UPDATE
Grants the privilege to use the UPDATE statement. UPDATE cannot be granted
on an auxiliary table.

UPDATE(column-name,...)
Grants the privilege to use the UPDATE statement to update only the columns
named. Each column-name must be the unqualified name of a column of every
table or view identified in the ON clause. Each column-name must not identify a
column of an auxiliary table.

ON or ON TABLE
Specifies the tables or views on which you are granting the privileges. The list
can be a list of table names or view names, or a combination of the two. A
declared temporary table must not be identified.

If you use GRANT ALL, then for each named table or view, the privilege set
(described in “Authorization” in “GRANT” on page 749) must include at least
one privilege with the GRANT option.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

Notes
The REFERENCES privilege does not replace the ALTER privilege. It was added to
conform to the SQL standard. To define a foreign key that references a parent table,
you must have either the REFERENCES or the ALTER privilege, or both.

GRANT (table or view privileges)

Chapter 5. Statements 771

For a created temporary table or a view of a created temporary table, only ALL or
ALL PRIVILEGES can be granted. Specific table or view privileges cannot be
granted. In addition, only the ALTER, DELETE, INSERT, and SELECT privileges
apply to a created temporary table.

For a declared temporary table, no privileges can be granted. When a declared
temporary table is defined, PUBLIC implicitly receives all table privileges (without
GRANT authority) for the table. These privileges are not recorded in the DB2
catalog, and they cannot be revoked.

For an auxiliary table, only the INDEX privilege can be granted. DELETE, INSERT,
SELECT, and UPDATE privileges on the base table that is associated with the
auxiliary table extend to the auxiliary table.

PUBLIC AT ALL LOCATIONS: PUBLIC AT ALL LOCATIONS can continue to be
specified as an alternative to PUBLIC as in prior releases. However, support for
PUBLIC AT ALL LOCATIONS may be removed in a later release when support for
DB2 private protocol access is removed. PUBLIC AT ALL LOCATIONS was
introduced and was intended for use only with DB2 private protocol access.

Examples
Example 1: Grant SELECT privileges on table DSN8710.EMP to user PULASKI.

GRANT SELECT ON DSN8710.EMP TO PULASKI;

Example 2: Grant UPDATE privileges on columns EMPNO and WORKDEPT in
table DSN8710.EMP to all users at the current server.

GRANT UPDATE (EMPNO,WORKDEPT) ON TABLE DSN8710.EMP TO PUBLIC;

Example 3: Grant all privileges on table DSN8710.EMP to users KWAN and
THOMPSON, with the WITH GRANT OPTION.

GRANT ALL ON TABLE DSN8710.EMP TO KWAN,THOMPSON WITH GRANT OPTION;

Example 4: Grant the SELECT and UPDATE privileges on the table
DSN8710.DEPT to every user in the network.

GRANT SELECT, UPDATE ON TABLE DSN8710.DEPT
TO PUBLIC AT ALL LOCATIONS;

Even with this grant, it is possible that some network users do not have access to
the table at all, or to any other object at the table’s subsystem. Controlling access
to the subsystem involves the communications databases at the subsystems in the
network. The tables for the communication databases are described in “Appendix D.
DB2 catalog tables” on page 949. Controlling access is described in Part 3 (Volume
1) of DB2 Administration Guide.

GRANT (table or view privileges)

772 SQL Reference

|
|
|
|
|

GRANT (use privileges)
This form of the GRANT statement grants authority to use particular buffer pools,
storage groups, or table spaces.

Syntax

Description
BUFFERPOOL bpname,...

Grants the privilege to refer to any of the identified buffer pools in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement. See “Naming conventions” on page 34 for more details about
bpname.

ALL BUFFERPOOLS
Grants the privilege to refer to any buffer pool in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Grants the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Grants the privilege to refer to any of the identified table spaces in a CREATE
TABLE statement. The default for database-name is DSNDB04.

You cannot grant the privilege for tables spaces that are for declared temporary
tables (table spaces in the TEMP database). For these table spaces, PUBLIC
implicitly has the TABLESPACE privilege (without GRANT authority); this
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

TO
Refer to “GRANT” on page 749 for a description of the TO clause.

WITH GRANT OPTION
Refer to “GRANT” on page 749 for a description of the WITH GRANT OPTION
clause.

�� GRANT USE OF �

�

�

,

BUFFERPOOL bpname
ALL BUFFERPOOLS

,

STOGROUP stogroup-name
,

TABLESPACE table-space-name
database-name.

�

� �

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

GRANT (use privileges)

Chapter 5. Statements 773

Notes
You can grant privileges for only one type of object with each statement. Thus, you
can grant the use of several table spaces with one statement, but not the use of a
table space and a storage group. For each object you identify, you must have the
USE privilege with GRANT authority.

Examples
Example 1: Grant authority to use buffer pools BP1 and BP2 to user MARINO.

GRANT USE OF BUFFERPOOL BP1,BP2
TO MARINO;

Example 2: Grant to all local users the authority to use table space DSN8S71D in
database DSN8D71A.

GRANT USE OF TABLESPACE
DSN8D71A.DSN8S71D
TO PUBLIC;

GRANT (use privileges)

774 SQL Reference

HOLD LOCATOR
The HOLD LOCATOR statement allows a LOB locator variable to retain its
association with a value beyond a unit of work.

Invocation
This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. HOLD LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement.

Authorization
None required.

Syntax

Description
host_variable,...

Identifies a host-variable locator variable that must have been previously
declared according to the rules for declaring host variables. The locator variable
type must be a binary large object locator, a character large object locator, or a
double-byte character large object locator.

After the HOLD LOCATOR statement is executed, each locator variable in the
host-variable list has the hold property.

If a locator variable is not an established locator within the current unit of work,
an invalid locator error occurs. When this error occurs and more than one host
variable was specified in the HOLD LOCATOR statement, only the locators up
to the first invalid locator are held. Locators listed after the first invalid locator
are not held.

Notes
A host-variable LOB locator variable that has the hold property is freed (has its
association between it and its value removed) when:
v The SQL FREE LOCATOR statement is executed for the locator variable.
v The SQL ROLLBACK statement is executed.
v The SQL session is terminated.

Example
Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the
values represented by the columns. Give the CLOB locator variables LOCRES and
LOCHIST, and the BLOB locator variable LOCPIC the hold property.

EXEC SQL HOLD LOCATOR :LOCRES, :LOCHIST, :LOCPIC

�� HOLD LOCATOR �

,

host_variable ��

HOLD LOCATOR

Chapter 5. Statements 775

INCLUDE
The INCLUDE statement inserts declarations or code into a source program.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement.

Authorization
None required.

Syntax

Description
SQLCA

Indicates that the description of an SQL communication area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
application program. In COBOL, INCLUDE SQLCA must be specified in the
Working-Storage Section or the Linkage Section. INCLUDE SQLCA must not be
specified if the program is precompiled with the STDSQL(YES) option. Do not
use the INCLUDE statement with REXX.

For a description of the SQLCA, see “SQL communication area (SQLCA)” on
page 923.

SQLDA
Indicates that the description of an SQL descriptor area (SQLDA) is to be
included. It must not be specified in a Fortran. For a description of the SQLDA,
see “SQL descriptor area (SQLDA)” on page 930.

member-name
Names a member of the partitioned data set to be the library input when your
application program is precompiled. It must be a short, ordinary identifier.

The member can contain any host language source statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the Data Division or the
Procedure Division.

Notes
When your application program is precompiled, the INCLUDE statement is replaced
by source statements. Thus, the INCLUDE statement must be specified at a point in
your application program where the resulting source statements are acceptable to
the compiler.

The INCLUDE statement cannot refer to source statements that themselves contain
INCLUDE statements.

�� INCLUDE SQLCA
SQLDA
member-name

��

INCLUDE

776 SQL Reference

|
|

The declarations that are generated by DCLGEN can be used in an application
program by specifying the same member in the INCLUDE statement as in the
DCLGEN LIBRARY parameter.

Example
Include an SQL communications area in a PL/I program.

EXEC SQL INCLUDE SQLCA;

INCLUDE

Chapter 5. Statements 777

INSERT
The INSERT statement inserts rows into a table or view. The table or view can be
at the current server or any DB2 subsystem with which the current server can
establish a connection. Inserting a row into a view also inserts the row into the table
on which the view is based.

There are two forms of this statement:

v The INSERT via VALUES is used to insert a single row into the table or view
using the values provided or referenced.

v The INSERT via SELECT is used to insert one or more rows into the table or
view using values from other tables, or views, or both.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
Authority requirements depend on whether the object identified in the statement is a
user-defined table, a catalog table for which inserts are allowed, or a view:

When a user-defined table is identified: The privilege set must include at least
one of the following:
v The INSERT privilege on the table
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:
v The INSERT privilege on the view
v SYSADM authority

The owner of a view, unlike the owner of a table, might not have INSERT authority
on the view (or can have INSERT authority without being able to grant it to others).
The nature of the view itself can preclude its use for INSERT. For more information,
see the discussion of authority in “CREATE VIEW” on page 658.

If an expression that refers to a function is specified, the privilege set must include
any authority that is necessary to execute the function.

If a fullselect is specified, the privilege set must include authority to execute the
fullselect. For more information about the fullselect authorization rules, see
“Authorization” on page 300.

If the statement is embedded in an application program, the privilege set is the
privileges that are held by the authorization ID of the owner of the plan or package.
If the statement is dynamically prepared, the privilege set is determined by the
DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is

INSERT

778 SQL Reference

summarized in Table 34 on page 334. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43.)

Syntax

Description
INTO table-name or view-name

Identifies the object of the INSERT statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:

v An auxiliary table

v A catalog table for which inserts are not allowed

v A view of such a catalog table

v A read-only view. (For a description of a read-only view, see “CREATE VIEW”
on page 658.)

A value cannot be inserted into a view column that is derived from:
v A constant, expression, or scalar function
v The same base table column as some other column of the view

If the object of the INSERT statement is a view with such columns, a list of
column names must be specified, and the list must not identify these columns.
In an IMS or CICS application, the DB2 subsystem that contains the identified
table or view must not be a remote DB2 Version 2 Release 3 subsystem.

column-name,...
Specifies the columns for which insert values are provided. Each name must be
an unqualified name that identifies a column of the table or view. The columns
can be identified in any order, but the same column must not be identified more
than once. A view column that cannot accept insert values must not be
identified.

Omission of the column list is an implicit specification of a list in which every
column of the table or view is identified in left-to-right order. This list is

�� INSERT INTO table-name
view-name

�

,

(column-name)

OVERRIDING USER VALUE
�

�

�

VALUES expression
DEFAULT
NULL

,

(expression)
DEFAULT
NULL

fullselect
WITH RR QUERYNO integer

RS
CS

��

INSERT

Chapter 5. Statements 779

established when the statement is bound and therefore does not include
columns that were added to the table after the statement was bound.

The effect of a rebind on INSERT statements that do not include a column list is
that the implicit list of names is re-established. Therefore, the number of
columns into which data is inserted can change and cause an error.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES clause or produced by a
fullselect for a column that is defined as GENERATED ALWAYS is ignored.
Instead, a system-generated value is inserted, overriding the user-specified
value.

Specify OVERRIDING USER VALUE only if the insert involves a column
defined as GENERATED ALWAYS, such as a ROWID column or an identity
column.

VALUES
Specifies one new row in the form of a list of values. The number of values in
the VALUES clause must equal the number of names in the column list. The
first value is inserted in the first column in the list, the second value in the
second column, and so on. If more than one value is specified, the list of values
must be enclosed in parentheses.

expression
Any expression of the type described in “Expressions” on page 110. The
expression must not include a column name. If expression is a single host
variable, the host variable can identify a structure. Any host variable or
structure that is specified must be described in the application program
according to the rules for declaring host structures and variables.

DEFAULT
The default value assigned to the column. If the column is a ROWID
column or an identity column, DB2 will generate a unique value for the
column. You can specify DEFAULT only for columns that have an assigned
default value, ROWID columns, and identity columns.

For information on default values of data types, see the description of the
DEFAULT clause for “CREATE TABLE” on page 601.

NULL
The null value.

For a ROWID or an identity column that was defined as GENERATED
ALWAYS, you must specify DEFAULT unless you specify the OVERRIDING
USER VALUE clause to indicate that any user-specified value will be ignored
and a unique system-generated value will be inserted.

For a ROWID or identity column that is defined as GENERATED BY DEFAULT,
you can specify a value. However, a value can be inserted into ROWID column
defined BY DEFAULT only if a single-column unique index is defined on the
ROWID column and the specified value is a valid row ID value that was
previously generated by DB2. When a value is inserted into an identity column
defined BY DEFAULT, DB2 does not verify that the specified value is a unique
value for the column unless the identity column has a single-column unique
index. Without a unique index, DB2 can guarantee unique values only among
the set of system-generated values as long as NO CYCLE is in effect.

INSERT

780 SQL Reference

|

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. If the
result table is empty, SQLCODE is set to +100, and SQLSTATE is set to
'02000'.

(For an explanation of fullselect, see “fullselect” on page 317.)

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the first
column in the list, the second value in the second column, and so on. Any
values that are produced for a ROWID or identity column must conform to the
rules that are described for those columns under the VALUES clause.

If the object table is self-referencing, the fullselect must not return more than
one row.

WITH
Specifies the isolation level at which the fullselect is executed.
RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the
package or plan in which the statement is bound, with the package isolation
taking precedence over the plan isolation. When a package isolation is not
specified, the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output
and trace records. The number is used for the QUERYNO column of the
plan table for the rows that contain information about this SQL statement.
This number is also used in the QUERYNO column of the
SYSIBM.SYSSTMT and SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is
the statement number assigned during precompilation. Thus, if the
application program is changed and then precompiled, that statement
number might change.

Using the QUERYNO clause to assign unique numbers to the SQL
statements in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on
accessing the plan table, see Part 5 (Volume 2) of DB2 Administration
Guide.

Notes
Insert rules: Insert values must satisfy the following rules. If they do not, or if any
other errors occur during the execution of the INSERT statement, no rows are
inserted and the position of the cursors are not changed.

v Default values. The value inserted in any column that is not in the column list is
the default value of the column. Columns without a default value must be
included in the column list. Similarly, if you insert into a view, the default value is
inserted into any column of the base table that is not included in the view. Hence,
all columns of the base table that are not in the view must have a default value.

INSERT

Chapter 5. Statements 781

|
|
|
|

|

|
|
|
|
|

|
|

|
|
||
||
||

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

v Length. If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the number. If
the insert value of a column is a string, the column must be either a string
column with a length attribute at least as great as the length of the string, or a
datetime column if the string represents a date, time, or timestamp.

v Assignment. Insert values are assigned to columns in accordance with the
assignment rules described in “Chapter 2. Language elements” on page 27.

v Uniqueness constraints. If the identified table or the base table of the identified
view has one or more unique indexes, each row inserted into the table must
conform to the constraints imposed by those indexes.

v Referential constraints. Each nonnull insert value of a foreign key must be equal
to some value of the parent key of the parent table in the relationship.

v Check constraints. The identified table or the base table of the identified view
might have one or more check constraints. Each row inserted must conform to
the conditions imposed by those constraints. Thus, each check condition must be
true or unknown.

v Field and validation procedures. If the identified table or the base table of the
identified view has a field or validation procedure, each row inserted must
conform to the constraints imposed by that procedure.

v Views and the WITH CHECK OPTION. For views defined with WITH CHECK
OPTION, each row you insert into the view must conform to the definition of the
view. If the view you name is dependent on other views whose definitions include
WITH CHECK OPTION, the inserted rows must also conform to the definitions of
those views. For an explanation of the rules governing this situation, see
“CREATE VIEW” on page 658.

For views that are not defined with WITH CHECK OPTION, you can insert rows
that do not conform to the definition of the view. Those rows cannot appear in the
view but are inserted into the base table of the view.

v Omitting the column list. When you omit the column list, you must specify a value
for every column that was present in the table when the INSERT statement was
bound or (for dynamic execution) prepared.

v Triggers. An INSERT statement might cause triggers to be activated. A trigger
might cause other statements to be executed or raise error conditions based on
the insert values.

Number of rows inserted: Normally, after an INSERT statement completes
execution, the value of SQLERRD(3) in the SQLCA is the number of rows inserted.
(For a complete description of the SQLCA, including exceptions to the above
statement, see “SQL communication area (SQLCA)” on page 923.)

Nesting user-defined functions or stored procedures: An INSERT statement can
implicitly or explicitly refer to user-defined functions or stored procedures. This is
known as nesting of SQL statements. A user-defined function or stored procedure
that is nested within the INSERT must not access the table into which you are
inserting values.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired at the execution of a successful INSERT statement. Until a commit or
rollback operation releases the locks, only the application process that performed
the insert can access the inserted row. If LOBs are not inserted into the row,
application processes that are running with uncommitted read can also access the
inserted row. The locks can also prevent other application processes from
performing operations on the table. However, application processes that are running
with uncommitted read can access locked pages and rows.

INSERT

782 SQL Reference

Locks are not acquired on declared temporary tables.

Inserting rows into catalog table SYSIBM.SYSSTRINGS: If the object table is
SYSIBM.SYSSTRINGS, only certain values can be specified, as described in
Appendix B (Volume 2) of DB2 Administration Guide.

Datetime representation when using datetime registers: As explained under
“Datetime special registers” on page 84, when two or more datetime registers are
implicitly or explicitly specified in a single SQL statement, they represent the same
point in time. This is also true when multiple rows are inserted.

Examples
Example 1: Insert values into sample table DSN8710.EMP.

INSERT INTO DSN8710.EMP
VALUES ('000205','MARY','T','SMITH','D11','2866',

'1981-08-10','ANALYST',16,'F','1956-05-22',
16345,500,2300);

Example 2: Assume that SMITH.TEMPEMPL is a created temporary table. Populate
the table with data from sample table DSN8710.EMP.

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM DSN8710.EMP;

Example 3: Assume that SESSION.TEMPEMPL is a declared temporary table.
Populate the table with data from department D11 in sample table DSN8710.EMP.

INSERT INTO SESSION.TEMPEMPL
SELECT *
FROM DSN8710.EMP
WHERE WORKDEPT='D11';

Example 4: Insert a row into sample table DSN8710.EMP_PHOTO_RESUME. Set
the value for column EMPNO to the value in host variable HV_ENUM. Let the value
for column EMP_ROWID be generated because it was defined with a row ID data
type and with clause GENERATED ALWAYS.

INSERT INTO DSN8710.EMP_PHOTO_RESUME(EMPNO, EMP_ROWID)
VALUES (:HV_ENUM, DEFAULT);

You can only insert user-specified values into ROWID columns that are defined as
GENERATED BY DEFAULT and not as GENERATED ALWAYS.. Therefore, in the
above example, if you were to try to insert a value into EMP_ROWID instead of
specifying DEFAULT, the statement would fail unless you also specify
OVERRIDING USER VALUE. For columns that are defined as GENERATED
ALWAYS, the OVERRIDING USER VALUE clause causes DB2 to ignore any
user-specified value and generate a value instead.

For example, assume that you want to copy the rows in
DSN8710.EMP_PHOTO_RESUME to another table that has a similar definition
(both tables have a ROWID columns defined as GENERATED ALWAYS). For the
following INSERT statement, the OVERRIDING USER VALUE clause causes DB2
to ignore the EMP_ROWID column values from DSN8710.EMP_PHOTO_RESUME
and generate values for the corresponding ROWID column in
B.EMP_PHOTO_RESUME.

INSERT INTO B.EMP_PHOTO_RESUME
OVERRIDING USER VALUE
SELECT * FROM DSN8710.EMP_PHOTO_RESUME;

INSERT

Chapter 5. Statements 783

LABEL ON
The LABEL ON statement adds or replaces labels in the descriptions of tables,
views, aliases, or columns in the catalog at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set that is defined below must include at least one of the following:
v Ownership of the table, view, or alias
v DBADM authority for its database (tables only)
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is determined
by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 34 on page 334. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43.)

Syntax

Description
TABLE

Indicates that the label is for a table or a view.

table-name or view-name
Identifies the table or view to which the label applies. The name must
identify a table or view that exists at the current server. table-name must
not identify a declared temporary table. The label is placed into the LABEL
column of the SYSIBM.SYSTABLES catalog table for the row that describes
the table or view.

ALIAS
Identifies the alias to which the comment applies.

alias-name
The name must identify an alias that exists at the current server. The label
is placed in the LABEL column of the SYSIBM.SYSTABLES catalog table
for the row that describes the alias.

��

�

LABEL ON TABLE table-name IS string-constant
view-name

ALIAS alias-name
COLUMN table-name.column-name

view-name.column-name
,

table-name (column-name IS string-constant)
view-name

��

LABEL ON

784 SQL Reference

COLUMN
Indicates that the label is for a column.

table-name.column-name or view-name.column-name
Identifies the column to which the label applies. The name must identify a
column of a table or view that exists at the current server. The name must
not identify a column of a declared temporary table. The label is placed in
the LABEL column of the SYSIBM.SYSCOLUMNS catalog table in the row
that describes the column.

Do not use TABLE or COLUMN to define a label for more than one column
in a table or view. Give the table or view name and then, in parentheses, a list
in the form:

column-name IS string-constant,
column-name IS string-constant,...

See Example 2 below.

The column names must not be qualified, each name must identify a column of
the specified table or view, and that table or view must exist at the current
server.

IS Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length.

Examples
Example 1: Enter a label on the DEPTNO column of table DSN8710.DEPT.

LABEL ON COLUMN DSN8710.DEPT.DEPTNO
IS 'DEPARTMENT NUMBER';

Example 2: Enter labels on two columns in table DSN8710.DEPT.
LABEL ON DSN8710.DEPT
(MGRNO IS 'MANAGER'S EMPLOYEE NUMBER',
ADMRDEPT IS 'ADMINISTERING DEPARTMENT');

LABEL ON

Chapter 5. Statements 785

LOCK TABLE
The LOCK TABLE statement requests a lock on a table or table space at the
current server. The lock is not acquired if the process already holds an appropriate
lock.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privilege set that is defined below must include at least one of the following:
v The SELECT privilege on the identified table
v Ownership of the table
v DBADM authority for the database
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is determined
by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 34 on page 334. (For more details on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43.)

Syntax

Description
table-name

Identifies the table to be locked. The name must identify a table that exists at
the current server. It must not identify a view, a temporary table (created or
declared), or a catalog table. The lock might or might not apply exclusively to
the table. The effect of locking an auxiliary table is to lock the LOB table space
that contains the auxiliary table.

PART integer
Identifies the partition of a partitioned table space to lock. The table identified by
table-name must belong to a partitioned table space that is defined with
LOCKPART YES. The value specified for integer must be an integer that is no
greater than the number of partitions in the table space.

IN SHARE MODE
For a lock on a table that is not an auxiliary table, requests the acquisition of a
lock that prevents other processes from executing anything but read-only
operations on the table. For a lock on a LOB table space, IN SHARE mode
requests a lock that prevents storage from being reallocated. When a LOB table
space is locked, other processes can delete LOBs or update them to a null

�� LOCK TABLE table-name
PART integer

IN SHARE MODE
EXCLUSIVE

��

LOCK TABLE

786 SQL Reference

value, but they cannot insert LOBs with a non-null value. The type of lock that
the process holds after execution of the statement depends on what lock, if any,
the process already holds.

IN EXCLUSIVE MODE
Requests the acquisition of an exclusive lock for the application process. Until
the lock is released, it prevents concurrent processes from executing any
operations on the table. However, unless the lock is on a LOB table space,
concurrent processes that are running at an isolation level of uncommitted read
(UR) can execute read-only operations on the table.

Notes
Releasing locks: If LOCK TABLE is a static SQL statement, the RELEASE option
of bind determines when DB2 releases a lock. For RELEASE(COMMIT), DB2
releases the lock at the next commit point. For RELEASE(DEALLOCATE), DB2
releases the lock when the plan is deallocated (the application ends).

If LOCK TABLE is a dynamic SQL statement, DB2 uses RELEASE(COMMIT) and
releases the lock at the next commit point, unless the table or table space is
referenced by cached dynamic statements. Caching allows DB2 to keep prepared
statements in memory past commit points. In this case, DB2 holds the lock until
deallocation or until the commit after the prepared statements are freed from
memory. Under some conditions, if a lock is held past a commit point, DB2 demotes
the lock state of a segmented table or a nonsegmented table space to an intent
lock at the commit point.

For more information on using LOCK TABLE (such as the size and duration of
locks), and on locking in general, see Part 4 of DB2 Application Programming and
SQL Guide or Part 5 (Volume 2) of DB2 Administration Guide.

Example
Obtain a lock on the sample table named DSN8710.EMP, which resides in a
partitioned table space. The lock obtained applies to every partition and prevents
other application programs from either reading or updating the table.

LOCK TABLE DSN8710.EMP IN EXCLUSIVE MODE;

LOCK TABLE

Chapter 5. Statements 787

|
|
|
|

|
|
|
|
|
|
|
|

OPEN
The OPEN statement opens a cursor.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 665 for the authorization required to use a
cursor.

Syntax

Description
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in “Notes” on page 668 in the description of the DECLARE
CURSOR statement. When the OPEN statement is executed, the cursor must
be in the closed state.

The SELECT statement of the cursor is either:

v The select-statement specified in the DECLARE CURSOR statement, or

v The prepared select-statement identified by the statement-name specified in
the DECLARE CURSOR statement. If the statement has not been
successfully prepared, or is not a select-statement, the cursor cannot be
successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table can be derived during the execution of the OPEN statement and
a temporary copy of a result table can be created to hold them. They can be
derived during the execution of later FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its result
table. If the table is empty the position of the cursor is effectively “after the last
row.” DB2 does not indicate an empty table when the OPEN statement is
executed. But it does indicate that condition, on the first execution of FETCH,
by returning values of +100 for SQLCODE and '02000' for SQLSTATE.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (For an
explanation of parameter markers, see “PREPARE” on page 792.) If the
DECLARE CURSOR statement names a prepared statement that includes

�� OPEN cursor-name

�

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

OPEN

788 SQL Reference

parameter markers, you must use USING. If the prepared statement does not
include parameter markers, USING is ignored.

host-variable,...
Identifies host structures or variables that must be described in the
application program in accordance with the rules for declaring host
structures and variables. When the statement is executed, a reference to a
structure is replaced by a reference to each of its variables. The number of
variables must be the same as the number of parameter markers in the
prepared statement. The nth variable corresponds to the nth parameter
marker in the prepared statement. Where appropriate, locator variables can
be provided as the source of values for parameter markers.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that contains a valid description of the input host
variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

A REXX SQLDA does not contain this field.

v SQLD to indicate the number of variables used in the SQLDA when
processing the statement

v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
If LOBs or distinct types are present in the results, there must be additional
SQLVAR entries for each input host variable. For more information on the
SQLDA, which includes a description of the SQLVAR and an explanation on
how to determine the number of SQLVAR occurrences, see “SQL descriptor
area (SQLDA)” on page 930.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement.

See “Identifying an SQLDA in C or C⁺⁺” on page 947 for how to represent
descriptor-name in C.

When the SELECT statement of the cursor is evaluated, each parameter marker in
the statement is effectively replaced by the value of its corresponding host variable.
For more on the process of replacement, see “Parameter marker replacement” on
page 790.

The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement and contains a host
variable. In this case, the OPEN statement is executed as if each host variable in
the SELECT statement were a parameter marker except that the attributes of the
target variable are the same as the attributes of the host variables in the SELECT
statement. The effect is to override the values of the host variables in the SELECT
statement of the cursor with the values of the host variables specified in the USING
clause. If a predicate of the SELECT refers to a host variable that does not have an
indicator variable, the overriding value is always the value of the main variable
because the indicator variable is ignored without a warning.

OPEN

Chapter 5. Statements 789

#
#

Notes
Errors occurring on OPEN: In local and remote processing, the
DEFER(PREPARE) and REOPT(VARS) bind options can cause some SQL
statements to receive “delayed” errors. For example, an OPEN statement might
receive an SQLCODE that normally occurs during PREPARE processing. Or a
FETCH statement might receive an SQLCODE that normally occurs at OPEN time.

Closed state of cursors: All cursors in an application process are in the closed
state when:
v The application process is started.
v A new unit of work is started for the application process unless the WITH HOLD

option has been used in the DECLARE CURSOR statement.
v A CONNECT has been performed. (CONNECT implicitly closes any open

cursors.)

A cursor can also be in the closed state because:
v A CLOSE statement was executed.
v An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Effect of a temporary copy of a result table: DB2 can process a cursor in two
different ways:

v It can create a temporary copy of the result table during the execution of the
OPEN statement.

v It can derive the result table rows as they are needed during the execution of
later FETCH statements.

If the result table is not read-only, DB2 uses the latter method. If the result table is
read-only, either method could be used. The results produced by these two
methods could differ in the following respects:

When a temporary copy of the result table is used: An error can occur during OPEN
that would otherwise not occur until some later FETCH statement. Moreover,
INSERT, UPDATE, and DELETE statements executed while the cursor is open
cannot affect the result table.

When a temporary copy of the result table is not used: INSERT, UPDATE, and
DELETE statements executed while the cursor is open can affect the result table if
they are issued from the same application process. The effect of such operations is
not always predictable. For example, if cursor C is positioned on a row of its result
table defined as SELECT * FROM T, and you insert a row into T, the effect of that
insert on the result table is not predictable because its rows are not ordered. A later
FETCH C might or might not retrieve the new row of T.

Parameter marker replacement: Before the OPEN statement is executed, each
parameter marker in the query is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within DB2. The assignment
rules are those described for assignment to a column in “Assignment and
comparison” on page 64. For a typed parameter marker, the attributes of the target
variable are those specified by the CAST specification. For an untyped parameter

OPEN

790 SQL Reference

marker, the attributes of the target variable are determined according to the context
of the parameter marker. For the rules that affect parameter markers, see
“Parameter markers” on page 798.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column:

v V must be compatible with the target.

v If V is a string, its length must not be greater than the length attribute of the
target.

v If V is a number, the absolute value of its integral part must not be greater than
the maximum absolute value of the integral part of the target.

v If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is CHAR(8),
the value used in place of P is the value of V padded on the right with two blanks.

Considerations for scrollables cursors: For a scrollable cursor, the OPEN cursor
statement returns the following information in the SQLCA:
v Information on the scrollability of the cursor is returned in SQLWARN1 with the

following values:

– N = non-scrollable

– S = scrollable
v Information on the effective sensitivity of the cursor is returned in SQLWARN4

with the following values:

– I = insensitive

– S = sensitive static

The information can be used by applications (such as an ODBC driver) to
determine what type of FETCH (INSENSITIVE or SENSITIVE) to issue for a
cursor defined as ASENSITIVE.

v Information on the effective capability of the cursor as updatable, deleteable, or
read-only is returned in SQLWARN5 with the following values:

– 1 = Read-Only. (The result table of the query is read-only either because the
content of the SELECT statement was implicitly read-only or FOR
READ/FETCH ONLY was explicitly specified.)

– 2 = Read and DELETE allowed. (The result table of the query is deleteable,
but not updatable.)

– 3 = Read, DELETE, and UPDATE allowed. (The result table of the query is
deleteable and updatable.)

Example
The OPEN statement in the following example places the cursor at the beginning of
the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM DSN8710.DEPT
WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;
DO WHILE (SQLCODE = 0);
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM;

END;
EXEC SQL CLOSE C1;

OPEN

Chapter 5. Statements 791

|
|
|
|

|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|

PREPARE
The PREPARE statement creates an executable SQL statement from a string form
of the statement. The executable form is called a prepared statement. The string
form is called a statement string.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by the PREPARE statement. For example, see “Chapter 4.
Queries” on page 299 for the authorization rules that apply when a SELECT
statement is prepared.

Syntax

�� PREPARE statement-name
INTO descriptor-name

NAMES
USING LABELS

ANY
BOTH

�

�
(1)

FROM string-expression
FROM host-variable

(2)
ATTRIBUTES attr-host-variable

��

Notes:

1 string-expression is only supported for PLI.

2 attr-host-variable must be a string host variable and the content must conform to the rules for
attribute-string. The ATTRIBUTES clause can only be specified before host-variable.

PREPARE

792 SQL Reference

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

INTO
If you use INTO, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor name. Thus, the PREPARE statement:

EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is equivalent to:
EXEC SQL PREPARE S1 FROM :V1;
EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies the SQLDA. For languages other than REXX, SQLN must be set
to indicate the number of SQLVAR occurrences. See “DESCRIBE (prepared
statement or table)” on page 695 and “SQL descriptor area (SQLDA)” on
page 930 for information about how to determine the number of SQLVAR
occurrences to use and for an explanation of the information that is placed
in the SQLDA.

See “Identifying an SQLDA in C or C⁺⁺” on page 947 for how to represent
descriptor-name in C.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist, SQLNAME is set
to length 0.

attribute-string

�� �
(1)

INSENSITIVE
SENSITIVE STATIC

SCROLL
WITH HOLD
WITH RETURN
fetch-first-clause

read-only-clause
update-clause

optimize-clause
isolation-clause

��

Notes:

1 The same clause must not be specified more than once. If the options are not specified, their
defaults are whatever was specified for the corresponding option in an associated DECLARE
CURSOR statement.

PREPARE

Chapter 5. Statements 793

|

|||

|

|

||
|
|
|
|

NAMES
Assigns the name of the column. This is the default.

LABELS
Assigns the label of the column. (Column labels are defined by the
LABEL ON statement.)

ANY
Assigns the column label, and, if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two or
three occurrences of SQLVAR per column, depending on whether the
result set contains distinct types, are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array,
set SQLN to 2×n or 3×n, where n is the number of columns in the
object being described. For each of the columns, the first n occurrences
of SQLVAR, which are the base SQLVAR entries, contain the column
names. Either the second or third n occurrences of SQLVAR, which are
the extended SQLVAR entries, contain the column labels. If there are
no distinct types, the labels are returned in the second set of SQLVAR
entries. Otherwise, the labels are returned in the third set of SQLVAR
entries.

A REXX SQLDA does not include the SQLN field, so you do not need
to set SQLN for REXX programs.

ATTRIBUTES attr-host-variable
Specifies the attributes for this cursor that are in effect if a corresponding
attribute has not been specified as part of the associated SELECT statement. If
attributes are specified in the SELECT statement, they are used instead of the
corresponding attributes specified on the PREPARE statement. In turn, if
attributes are specified in the PREPARE statement, they are used instead of the
corresponding attributes specified on a DECLARE CURSOR statement.

attr-host-variable must identify a host variable that is described in the program
in accordance with the rules for declaring string variables. attr-host-variable
must be a string variable (either fixed-length or varying-length) that has a length
attribute that does not exceed the maximum length of a VARCHAR. Leading
and trailing blanks are removed from the value of the host variable. The host
variable must contain a valid attribute-string.

An indicator variable can be used to indicate whether or not attributes are
actually provided on the PREPARE statement. Thus, applications can use the
same PREPARE statement regardless of whether attributes need to be
specified or not.

The options that can be specified as part of the attribute-string are as follows:

INSENSITIVE, or SENSITIVE STATIC 39

If INSENSITIVE is specified, changes to the database after the result
table is created are not visible to the cursor. INSENSITIVE defines the
sensitivity of the cursor to updates and deletes. A cursor defined as
INSENSITIVE cannot be used for updates and deletes. If the SELECT

39. The scrollability and sensitivity of the cursor are independent and do not have to be specified together. Thus, the cursor might be
defined as SCROLL INSENSITIVE, but the PREPARE statement might specify SENSITIVE STATIC as an override for the
sensitivity.

PREPARE

794 SQL Reference

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

statement contains a FOR UPDATE clause, an error is returned. An
update or delete attempt using an INSENSITIVE scrollable cursor also
results in an error.

If SENSITIVE is specified, changes made to the database after the
result table is created are visible to the cursor. SENSITIVE defines the
sensitivity of the cursor to updates and deletes. The extent of changes
visible to the cursor depends on the sensitivity specified in the FETCH
statement.

Using a non-deterministic function (built-in or user-defined) in the
WHERE clause of select-statement or statement-name of a SENSITIVE
STATIC cursor can cause misleading results. This occurs because DB2
constructs a temporary result table and retrieves rows from this table for
INSENSITIVE FETCH statements. When DB2 processes a SENSITIVE
FETCH statement, rows are fetched from the underlying table and
predicates are re-evaluated if they contain non-correlated subqueries.
Using a non-deterministic function can yield a different result for the
re-evaluated query causing the row to no longer be considered a
match.

STATIC specifies that the size of the result table does not change after
the cursor is opened and positioned updates and positioned deletes are
allowed if the result table is updatable.

Static cursors have visibility to changes made by a cursor using
UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF.
Visibility of changes made outside the cursor is possible with the new
SENSITIVE option of the FETCH statement. A FETCH SENSITIVE can
result in hole in the result table. If the row no longer qualifies the
predicate, it results in an update hole. If the row was deleted, it results
in a delete hole. When a FETCH SENSITIVE detects a delete hole, no
data is returned and the cursor is left positioned on the delete hole.
When a FETCH SENSITIVE detects an update hole, no data is
returned and the cursor is left positioned on the update hole.

Updates through the cursor result in automatic refresh of the row. This
refresh means that the updates can create a hole themselves. This
refresh also means that the refreshed row reflects changes as a result
of update triggers. It is important to reflect these changes to maintain
the consistency of data in the row.

If INSENSITIVE or SENSITIVE STATIC is specified as part of the
ATTRIBUTES clause, SCROLL must be specified either as part of the
ATTRIBUTES clause or as part of the definition of the cursor
(DECLARE CURSOR).

SCROLL 39

SCROLL specifies that the cursor is scrollable.

If SCROLL is specified as part of the ATTRIBUTES clause, a cursor
sensitivity option (INSENSITIVE or SENSITIVE STATIC) must be
specified either as part of the ATTRIBUTES clause or as part of the
definition of the cursor (DECLARE CURSOR).

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit
operation. A cursor declared with WITH HOLD is closed at commit time
if one of the following is true:

PREPARE

Chapter 5. Statements 795

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

v The connection associated with the cursor is in the release pending
status.

v The bind option DISCONNECT(AUTOMATIC) is in effect.

v The environment is one in which the option WITH HOLD is ignored.

When WITH HOLD is specified, a commit operation commits all the
changes in the current unit of work, but releases only locks that are not
required to maintain the cursor. Afterwards, an initial FETCH statement
is required before a positioned update or delete statement can be
executed. After the initial FETCH, the cursor is positioned on the row
following the one it was positioned on before the commit operation.

All cursors are implicitly closed by a connect (Type 1) or rollback
operation. A cursor is also implicitly closed by a commit operation if
WITH HOLD is ignored or not specified.

Cursors that are declared with WITH HOLD in CICS or in IMS
non-message-driven programs will not be closed by a rollback operation
if the cursor was opened in a previous unit of work and no changes
have been made to the database in the current unit of work. The cursor
cannot be closed because CICS and IMS do not broadcast the rollback
request to DB2 for a null unit of work.

If a cursor is closed before the commit operation, the effect is the same
as if the cursor was declared without the option WITH HOLD.

WITH HOLD is ignored in IMS message driven programs (MPP, IFP,
and message-driven BMP). WITH HOLD maintains the cursor position
in a CICS pseudo-conversational program until the end-of-task (EOT).

For details on restrictions that apply to declaring cursors with WITH
HOLD, see Part 2 of DB2 Application Programming and SQL Guide.

WITH RETURN
Specifies that the cursor, if it is declared in a stored procedure, can
return a result set to the caller.

fetch-first-clause
Limits the number of rows that can be fetched. It improves the
performance of queries with potentially large result sets when only a
limited number of rows are needed. If the clause is specified, the
number of rows retrieved will not exceed n, where n is the value of the
integer. An attempt to fetch n+1 rows is handled the same way as
normal end of date. The value of integer must be positive and non-zero.
The default is 1.

If the OPTIMIZE FOR clause is not specified, a default of ″OPTIMIZE
FOR integer ROWS″ is assumed. If both the FETCH FIRST and
OPTIMIZE FOR clauses are specified, the lower of the integer values
from these clauses is used to influence optimization and the
communications buffer size.

read-only-clause
Declares that the result table is read-only and therefore the cursor
cannot be referred to in positioned UPDATE and DELETE statements.

update-clause
Identifies the columns that can updated in a later positioned UPDATE

PREPARE

796 SQL Reference

|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

statement.Each column must be unqualified and must identify a column
of the table or view identified in the first FROM clause of the fullselect.
The clause must not be specified if the result table of the fullselect is
read-only. The clause must also not be specified if a created temporary
table is referenced in the first FROM clause of the select-statement.

If the clause is specified without a list of columns, the columns that can
be updated include all the updatable columns of the table or view that is
identified in the first FROM clause of the fullselect.

optimize-clause
Requests special optimization of the select-statement. If the clause is
omitted, optimization is based on the assumption that all rows of the
result table will be retrieved. If the clause is specified, optimization is
based on the assumption that the number of rows retrieved will not
exceed n, where n is the value of the integer. The clause does not limit
the number of rows that can be fetched or affect the result in any way
other than performance.

isolation-clause
Specifies the isolation level at which the statement is executed. See
“with-clause” on page 325.

FROM
Specifies the statement string. The statement string is the value of the specified
string-expression or the identified host-variable.

string-expression
string-expression is any PL/I expression that yields a string. If the source
program does not include any DECLARE VARIABLE statements, an
optional colon can precede the string-expression. The colon introduces PL/I
syntax. Therefore, host variables within a string-expression that includes
operators or functions should not be preceded with a colon. However, if the
source program includes at least one DECLARE VARIABLE statement, a
string-expression cannot be preceded by a colon. An expression that
consists of just a variable name preceded by a colon is interpreted as a
host-variable, not as a string-expression.

The ATTRIBUTES clause cannot be specified following string-expression.

The precompiler-generated structures for a string-expression use an
EBCDIC CCSID..

host-variable
Must identify a host variable that is described in the application program in
accordance with the rules for declaring string variables. The host variable
must not have a CLOB data type, and an indicator variable must not be
specified. In COBOL and Assembler language, the host variable must be a
varying-length string variable. In C, the host variable must not be a
NUL-terminated string.

In PL/I, if the source program includes at least one DECLARE VARIABLE
statement, a host variable (preceded by a colon) is considered a
host-variable and must be a varying-length string variable. The host variable
may be either a fixed-length or varying-length string variable if the source
program does not include any DECLARE VARIABLE statements. It is then
considered a string-expression. When a string-expression is used, the
precompiler-generated structures for it use an EBCDIC CCSID and an
informational message is issued.

PREPARE

Chapter 5. Statements 797

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

#
#

|
|
|
|
|
|
|

#
#
#
#
#
#
#
#

Notes
Rules for statement strings: The statement string must be one of the following
SQL statements:

ALTER
COMMENT ON
COMMIT
CREATE
DELETE
DROP
EXPLAIN
FREE LOCATOR
GRANT
HOLD LOCATOR
INSERT
LABEL ON
LOCK TABLE
RENAME

REVOKE ROLLBACK
SET CURRENT APPLICATION ENCODING SCHEME
SET CURRENT DEGREE
SET CURRENT LOCALE LC_CTYPE
SET CURRENT OPTIMIZATION HINT
SET CURRENT PRECISION
SET CURRENT RULES
SET CURRENT SQLID
SET PATH
SIGNAL SQLSTATE
UPDATE
select-statement

The statement string must not:
v Begin with EXEC SQL and end with a statement terminator
v Include references to host variables
v Include comments

Parameter markers: Although a statement string cannot include references to host
variables, it can include parameter markers. The parameter markers are replaced
by the values of host variables when the prepared statement is executed. A
parameter marker is a question mark (?) that appears where a host variable could
appear if the statement string were a static SQL statement. For an explanation of
how parameter markers are replaced by values, see “EXECUTE” on page 722,
“OPEN” on page 788, and Part 6 of DB2 Application Programming and SQL Guide.

The two types of parameter markers are typed and untyped:

Typed parameter marker
A parameter marker that is specified with its target data type. A typed
parameter marker has the general form:

CAST(? AS data-type)

This notation is not a function call, but rather is a “promise” that the data
type of the host variable at run time will be the same as, or can be
converted to, the data type that was specified.

In the following example, the value of the argument that is provided for the
TRANSLATE function at run time must be VARCHAR(12) or a data type
that can be converted to VARCHAR(12).

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

Untyped parameter marker
A parameter marker that is specified without its target data type. An untyped
parameter marker has the form of a single question mark. The context in
which the parameter marker appears determines its data type. For example,
in the above UPDATE statement, the data type of the untyped parameter
marker in the predicate is the same as the data type of the EMPNO
column.

PREPARE

798 SQL Reference

Typed parameter markers can be used in dynamic SQL statements wherever a host
variable is supported and the data type is based on the promise made in the CAST
function.

Untyped parameters markers can be used in dynamic SQL statements in selected
locations where host variables are supported. Table 58 shows these locations and
the resulting data type of the parameter. The table groups the locations into
expressions, predicates, and functions to help show where untyped parameter
markers are allowed.

Table 58. Untyped parameter marker usage

Location of untyped parameter marker Data type (or error if not supported)

Expressions (including select list, CASE, and VALUES)

Alone in a select list. For example:

SELECT ?

Error

Both operands of a single arithmetic operator,
after considering operator precedence and
the order of operation rules. Includes cases
such as:

? + ? + 10

Error

One operand of a single operator in an
arithmetic expression (except datetime
arithmetic expressions). Includes cases such
as:

? + ? * 10

The data type of the other operand

Any operand of a datetime expression. For
example:

'timecol + ?' or '? - datecol'

Error

Labeled duration in a datetime expression Error

Both operands of a CONCAT operator Error

One operand of a CONCAT operator when
the other operand is any character data type
except CLOB

If the other operand is CHAR(n) or
VARCHAR(n), where n is less than 128, the
data type is VARCHAR(255 - n). In all other
cases, the data type is VARCHAR(255).

One operand of a CONCAT operator when
the other operand is any graphic data type
except DBCLOB

If the other operand is GRAPHIC(n) or
VARGRAPHIC(n), where n is less than 64,
the data type is VARGRAPHIC(127 - n). In all
other cases, the data type is
VARGRAPHIC(127).

One operand of a CONCAT operator when
the other operand is a LOB string

The data type of the other operand (the LOB
string)

The value on the right-hand side of a SET
clause in an UPDATE statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

The expression following the CASE keyword
in a simple CASE expression

Error

Any or all expressions following the WHEN
keyword in a simple CASE expression

The result of applying the “Rules for result
data types” on page 77 to the expression
following CASE and the expressions following
WHEN that are not untyped parameter
markers

PREPARE

Chapter 5. Statements 799

Table 58. Untyped parameter marker usage (continued)

Location of untyped parameter marker Data type (or error if not supported)

A result-expression in any CASE expression
when all the other result-expressions are
either NULL or untyped parameter markers.

Error

A result-expression in any CASE expression
when at least one other result-expression is
neither NULL nor an untyped parameter
marker.

The result of applying the “Rules for result
data types” on page 77 to all the
result-expressions that are not NULL or
untyped parameter markers

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement

Error

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement

The data type of the column or, if the column
is defined as a distinct type, the source data
type of the distinct type

Predicates

Both operands of a comparison operator Error

One operand of a comparison operator when
the other operand is not an untyped
parameter marker

The data type of the other operand. If the
operand has a datetime data type, the result
of DESCRIBE INPUT will show the data type
as CHAR(255) although DB2 uses the
datetime data type in any comparisons.

All the operands of a BETWEEN predicate Error

Two operands of a BETWEEN predicate
(either the first and second, or the first and
third)

The data type of the operand that is not a
parameter marker

Only one operand of a BETWEEN predicate The result of applying the “Rules for result
data types” on page 77 on the other operands
that are not parameter markers

All the operands of an IN predicate, for
example, ? IN (?,?,?)

Error

The first and second operands of an IN
predicate, for example, ? IN (?,A,B)

The result of applying the “Rules for result
data types” on page 77 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate and zero
or more operands of the IN list except for the
first operand of the IN list, for example, ? IN
(A,?,B,?)

The result of applying the “Rules for result
data types” on page 77 on the operands in
the IN list that are not parameter markers

The first operand of an IN predicate when the
right-hand side is a fullselect of fullselect, for
example, ? IN (fullselect)

The data type of the selected column

Any or all operands of the IN list of the IN
predicate and the first operand of the IN
predicate is not an untyped parameter
marker, for example, A IN (?,A,?)

The data type of the first operand (the
operand on the left-hand side of the IN list)

All the operands of a LIKE predicate The first and second operands
(match-expression and pattern-expression)
are VARCHAR(4000). The third operand
(escape-expression) is VARCHAR(1).

PREPARE

800 SQL Reference

Table 58. Untyped parameter marker usage (continued)

Table 58. Untyped parameter marker usage (continued)

Location of untyped parameter marker Data type (or error if not supported)

Operand of any built-in scalar function
(except those that are described above in this
table for COALESCE, NULLIF, POSSTR,
SUBSTR, TIMESTAMP,
TIMESTAMP_FORMAT, TRANSLATE,
VALUE, and VARCHAR_FORMAT)

Error

Operand of a built-in column function Error

Operand of a user-defined scalar function,
user-defined column function, or user-defined
table function

The data type of the corresponding
parameter in the function instance

Error checking: When a PREPARE statement is executed, the statement string is
parsed and checked for errors. If the statement string is invalid, a prepared
statement is not created and the error condition that prevents its creation is
reported in the SQLCA.

In local and remote processing, the DEFER(PREPARE) and REOPT(VARS) bind
options can cause some SQL statements to receive “delayed” errors. For example,
DESCRIBE, EXECUTE, and OPEN might receive an SQLCODE that normally
occurs during PREPARE processing.

Reference and execution rules: Prepared statements can be referred to in the
following kinds of statements, with the following restrictions shown:

In... The prepared statement...
DESCRIBE

has no restrictions
DECLARE CURSOR

must be SELECT when the cursor is opened
EXECUTE

must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared statement
is not executed more than once and does not contain parameter markers, it is more
efficient to use the EXECUTE IMMEDIATE statement rather than the PREPARE
and EXECUTE statements.

Prepared statement persistence: All prepared statements created by a unit of
work are destroyed when the unit of work is terminated, with the following
exceptions:

v A SELECT statement whose cursor is declared with the option WITH HOLD
persists over the execution of a commit operation if the cursor is open when the
commit operation is executed.

v SELECT, INSERT, UPDATE, and DELETE statements that are bound with
KEEPDYNAMIC(YES) are kept past the commit operation if your system is
enabled for dynamic statement caching, and none of the following are true:

– SQL RELEASE has been issued for the site

– Bind option DISCONNECT(AUTOMATIC) was used

– Bind option DISCONNECT(CONDITIONAL) was used and there are no hold
cursors for the site

PREPARE

802 SQL Reference

|
|
|
|
|
|

|

||

|
|
|

|
|

Scope of a statement name: The scope of a statement-name is the same as the
scope of a cursor-name. See “Notes” on page 668 for more information about the
scope of a cursor-name.

Preparation with PREPARE INTO and REOPTVAR: If bind option REOPT(VARS)
is in effect, PREPARE INTO is equivalent to a PREPARE and a DESCRIBE being
performed. If a statement has input variables, the DESCRIBE causes the statement
to be prepared with default values, and the statement must be prepared again when
it is opened or executed. To avoid having a statement prepared twice, avoid using
PREPARE INTO when REOPT(VARS) is in effect.

Relationship of cursor attributes on PREPARE statements and SELECT or
DECLARE CURSOR statements: Cursor attributes that are specified as part of the
select-statement are used instead of any corresponding options that specified with
the ATTRIBUTES clause on PREPARE. Attributes that are specified as part of the
ATTRIBUTES clause of PREPARE take precedence over any corresponding option
that is specified with the DECLARE CURSOR statement. The order for using cursor
attributes is as follows:

v SELECT (highest priority)

v PREPARE statement ATTRIBUTES clause

v DECLARE CURSOR (lowest priority)

For example, assume that host variable MYQ has been set to the following
SELECT statement:

SELECT WORKDEPT, EMPNO, SALARY, BONUS, COMM
FROM EMP
WHERE WORKDEPT IN ('D11', 'D21')
FOR UPDATE OF SALARY, BONUS, COMM

If the following PREPARE statement were issued, then the FOR UPDATE OF
clause specified as part of the SELECT statement would be used instead of the
FOR READ ONLY clause specified with the ATTRIBUTES clause as part of the
PREPARE statement. Thus, the cursor would be updatable.

attrstring = 'FOR READ ONLY';
EXEC SQL PREPARE stmt1 ATTRIBUTES :attrstring FROM :MYQ;

Examples
Example 1: In this PL/I example, an INSERT statement with parameter markers is
prepared and executed. Before execution, values for the parameter markers are
read into the host variables S1, S2, S3, S4, and S5.

EXEC SQL PREPARE DEPT_INSERT FROM
'INSERT INTO DSN8710.DEPT VALUES(?,?,?,?,?)';

(Check for successful execution and read values into host variables)

EXEC SQL EXECUTE DEPT_INSERT USING :S1, :S2, :S3, :S4, :S5;

Example 2: Prepare a dynamic SELECT statement specifying the attributes of the
cursor with a host variable on the PREPARE statement. Assume that the text of the
SELECT statement is in a variable named stmttxt, and that the desired attributes of
the cursor are in a variable named attrvar.

EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
EXEC SQL PREPARE mystmt ATTRIBUTES :attrvar

FROM :stmttxt;

PREPARE

Chapter 5. Statements 803

|
|
|
|
|
|
|

|

|

|

|
|
|
|

|
|
|

EXEC SQL DESCRIBE mystmt INTO :mysqlda;
EXEC SQL OPEN mycursor;
EXEC SQL FETCH FROM mycursor USING DESCRIPTOR :mysqlda ;

PREPARE

804 SQL Reference

|
|
|

|

RELEASE (connection)
The RELEASE (connection) statement places one or more connections in the
release pending state.

Invocation
This statement can only be embedded in an application program, except in REXX
programs. It is an executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
location-name or host-variable

Identifies an SQL connection or a DB2 private connection by the specified
location name or the location name contained in the host variable. If a host
variable is specified:

v It must be a character string variable with a length attribute that is not greater
than 16. (A C NUL-terminated character string can be up to 17 bytes.)

v It must not be followed by an indicator variable.

v The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

v If the length of the location name is less than the length of the host variable,
it must be padded on the right with blanks.

The specified location name or the location name contained in the host variable
must identify an existing SQL connection or DB2 private connection of the
application process.

If the RELEASE (connection) statement is successful, the identified connection
is placed in the release pending status and will therefore be ended during the
next commit operation. If the RELEASE (connection) statement is unsuccessful,
the connection state of the application process and the states of its connections
are unchanged.

CURRENT
Identifies the current SQL connection of the application process. The application
process must be in the connected state.

If the RELEASE (connection) statement is successful, the identified connection
is placed in the release pending state and will therefore be ended during the

�� RELEASE location-name
host-variable
CURRENT

SQL
ALL
ALL PRIVATE

��

RELEASE (connection)

Chapter 5. Statements 805

next commit operation. If the RELEASE (connection) statement is unsuccessful,
the connection state of the application process and the states of its connections
are unchanged.

ALL or ALL SQL
Identifies all existing connections (including local, SQL, and DB2 private
connections) of the application process and places these connections in the
release pending status. These connections are ended during the next commit
operation. An error or warning does not occur if no connections exist when the
statement is executed.

ALL PRIVATE
Identifies all existing DB2 private connections of the application process and
places these connections in the release pending status. These DB2 private
connections are ended during the next commit operation. An error or warning
does not occur if no DB2 private connections exist when the statement is
executed.

Notes
Using CONNECT (Type 1) semantics does not prevent using RELEASE
(connection).

RELEASE (connection) does not close cursors, does not release any resources,
and does not prevent further use of the connection.

ROLLBACK does not reset the state of a connection from release pending to held.

Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be in the release pending status
and one that is going to be reused should not be in the release pending status.
Remote connections can also be ended during a commit operation as a result of
the DISCONNECT(AUTOMATIC) or DISCONNECT(CONDITIONAL) bind option.

If the current SQL connection is in the release pending status when a commit
operation is performed, the connection is ended and the application process is in
the unconnected state. In this case, the next executed SQL statement should be
CONNECT or SET CONNECTION.

A database server named CURRENT or ALL can only be identified by a host
variable or a delimited identifier. A connection in the release pending state is ended
during a commit operation even though it has an open cursor defined with WITH
HOLD.

For further information, see “When a connection is ended” on page 20.

If the RELEASE statement contains host variables, the contents of the host
variables are assumed to be in the encoding scheme that was specified in the
ENCODING parameter when the package or plan that contains the statement was
bound.

Examples
Example 1: The SQL connection to TOROLAB1 is not needed in the next unit of
work. The following statement causes it to be ended during the next commit
operation:

EXEC SQL RELEASE TOROLAB1;

RELEASE (connection)

806 SQL Reference

|
|
|
|

Example 2: The current SQL connection is not needed in the next unit of work. The
following statement causes it to be ended during the next commit operation:

EXEC SQL RELEASE CURRENT;

Example 3: The first phase of an application involves explicit CONNECTs to remote
servers and the second phase involves the use of DB2 private protocol access with
the local DB2 subsystem as the server. None of the existing connections are
needed in the second phase and their existence could prevent the allocation of DB2
private connections. Accordingly, the following statement is executed before the
commit operation that separates the two phases:

EXEC SQL RELEASE ALL SQL;

Example 4: The first phase of an application involves the use of DB2 private
protocol access with the local DB2 subsystem as the server and the second phase
involves explicit CONNECTs to remote servers. The existence of the DB2 private
connections allocated during the first phase could cause a CONNECT operation to
fail. Accordingly, the following statement is executed before the commit operation
that separates the two phases:

EXEC SQL RELEASE ALL PRIVATE;

RELEASE (connection)

Chapter 5. Statements 807

RENAME
The RENAME statement renames an existing table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization
The privilege set that is defined below must include at least one of the following:
v Ownership of the table
v DBADM, DBCTRL, or DBMAINT authority for the database that contains the

table
v SYSADM or SYSCTRL authority

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is the union of
the privilege sets that are held by each authorization ID of the process.

Syntax

Description
source-table-name

Identifies the existing table that is to be renamed. The name, including the
implicit or explicit qualifier, must identify a table that exists at the current server.
The name must not identify a table that has a trigger defined on it, a declared
temporary table, a catalog table, an active RLST table, a view, or a synonym. If
you specify a three-part name or alias for the source, the source table must
exist at the current server.

There is no support for changing the name of an alias. An alias on the source
table continues to refer to the source table after the rename.

If any view definitions currently refer to the source table, an error is issued.

The specified table is renamed to the new name. All privileges and indexes on
the table are preserved.

target-identifier
Specifies the new name for the table without a qualifier. The qualifier of the
source-table-name is used to qualify the new name for the table. The qualified
name must not identify a table, view, alias, or synonym that already exists at
the current server.

Notes
Catalog Table Updates: Entries in the following catalog tables are updated to
reflect the new table name:
v SYSAUXRELS

��
TABLE

RENAME source-table-name TO target-identifier ��

RENAME

Chapter 5. Statements 809

v SYSCHECKS
v SYSCHECKS2
v SYSCHECKDEP
v SYSCOLAUTH
v SYSCOLDIST
v SYSCOLDISTSTATS
v SYSCOLSTATS
v SYSCOLUMNS
v SYSFIELDS
v SYSFOREIGNKEYS
v SYSINDEXES
v SYSPLANDEP
v SYSPACKDEP
v SYSRELS
v SYSSYNONYMS
v SYSTABAUTH
v SYSTABLES
v SYSTABSTATS

Entries in SYSSTMT and SYSPACKSTMT are not updated.

Invalidation of plans, packages, and dynamic statements: When any table
except an auxiliary table is renamed, plans and packages that refer to that table are
invalidated. If any dynamic statements in the statement cache refer to the table,
they are invalidated; DB2 must refresh those statements in the cache the next time
they are executed.

When an auxiliary table is renamed, plans and packages that refer to the auxiliary
table are not invalidated.

Transfer of authorization, referential integrity constraints, and indexes: All
authorizations associated with the source table name are transferred to the new
(target) table name. The authorization catalog tables are updated appropriately.

Referential integrity constraints involving the source table are updated to refer to the
new table. The catalog tables are updated appropriately.

Indexes defined over the source table are transferred to the new table. The index
catalog tables are updated appropriately.

Object Identifier: Renamed tables keep the same object identifier (OBID) as the
original table.

Renaming Registration Tables: If an application registration table or object
registration table is specified as the source table for RENAME, then once RENAME
completes, it is as if that table had been dropped. There is no ART (application
registration table) or ORT (object registration table) once the ART or ORT table has
been renamed.

Example
Change the name of the EMP table to EMPLOYEE:

RENAME TABLE EMP TO EMPLOYEE;

RENAME

810 SQL Reference

REVOKE
The REVOKE statement revokes privileges from authorization IDs. There is a
separate form of the statement for each of these classes of privilege:
v Collection
v Database
v Distinct type
v Function or stored procedure
v Package
v Plan
v Schema
v System
v Table or view
v Use

The applicable objects are always at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

If the authorization mechanism was not activated when the DB2 subsystem was
installed, an error condition occurs.

Authorization
If the BY clause is not specified, the authorization ID of the statement must have
granted at least one of the specified privileges to every authorization-name
specified in the FROM clause (including PUBLIC, if specified). If the BY clause is
specified, the authorization ID of the statement must have SYSADM or SYSCTRL
authority.

If the statement is embedded in an application program, the authorization ID of the
statement is the authorization ID of the owner of the plan or package. If the
statement is dynamically prepared, the authorization ID of the statement is the SQL
authorization ID of the process.

REVOKE

Chapter 5. Statements 811

Syntax

Description
authorization-specification

Names one or more privileges, in one of the formats described below. The
same privilege must not be specified more than once.

FROM
Specifies from what authorization IDs the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not use the same authorization ID
more than once.

The value of CURRENT RULES determines if you can use the ID of the
REVOKE statement itself (to revoke privileges from yourself). When
CURRENT RULES is:

DB2
You cannot use the ID of the REVOKE statement.

STD
You can use the ID of the REVOKE statement.

PUBLIC
Revokes a grant of privileges to PUBLIC.

PUBLIC AT ALL LOCATIONS
Revokes a grant of privileges to PUBLIC AT ALL LOCATIONS.

BY
Lists grantors who have granted privileges and revokes each named privilege
that was explicitly granted to some named user by one of the named grantors.
Only an authorization ID with SYSADM or SYSCTRL authority can use BY,
even if the authorization ID names only itself in the BY clause.

authorization-name,...
Lists one or more authorization IDs of users who were the grantors of the

�� REVOKE authorization-specification �

,

FROM authorization-name
PUBLIC

(1)
PUBLIC AT ALL LOCATIONS

�

�

�

,

BY authorization-name
ALL

(2)
RESTRICT

��

Notes:

1 PUBLIC AT ALL LOCATIONS may be removed in a later release of DB2.

2 The RESTRICT clause can be specified only for the forms of the REVOKE statement that require
it.

REVOKE

812 SQL Reference

privileges named. Do not use the same authorization ID more than once.
Each grantor listed must have explicitly granted some named privilege to all
named users.

ALL
Revokes each named privilege from all named users who were explicitly
granted the privilege, regardless of who granted it.

RESTRICT
Prevents the named privilege from being revoked when certain conditions apply.
RESTRICT can only be specified for the forms of the REVOKE statement that
require it. These forms are revoking the USAGE privilege on distinct types and
the EXECUTE privilege on user-defined functions and stored procedures.

Notes
For more on DB2 privileges, read Part 3 (Volume 1) of DB2 Administration Guide.
For information on access control authorization, see Appendix B (Volume 2) of DB2
Administration Guide

Revoked privileges: The privileges revoked from an authorization ID are those that
are identified in the statement and which were granted to the authorization ID by
the authorization ID of the statement. Other privileges can be revoked as the result
of a cascade revoke.

Cascade revoke: Revoking a privilege from a user can also cause that privilege to
be revoked from other users. This is called a cascade revoke. The following rules
must be true for privilege P' to be revoked from U3 when U1 revokes privilege P
from U2:

v P and P' are the same privilege.

v U2 granted privilege P' to U3.

v No one granted privilege P to U2 prior to the grant by U1.

v U2 does not have installation SYSADM authority.

The rules also apply to the implicit grants that are made as a result of a CREATE
VIEW statement.

Cascade revoke does not occur under any of the following conditions:

v The privilege was granted by a current install SYSADM.

v The privilege is the USAGE privilege on a distinct type and the user owns any of
these items:
– A user-defined function or stored procedure that uses the distinct type
– A table that has a column that uses the distinct type

v The privilege is the EXECUTE privilege on a user-defined function and the user
owns any of these items:
– A user-defined function that is sourced on the function
– A view that uses the function
– A trigger package that uses the function
– A table that uses the function in a check constraint or a user-defined default

type

v The privilege is the EXECUTE privilege on a stored procedure and the user owns
any of these items:
– A trigger package that refers to the stored procedure in a CALL statement.

Refer to the diagrams for the following example:

REVOKE

Chapter 5. Statements 813

1. Suppose BOB grants SYSADM authority to WADE. Later, CLAIRE grants the
SELECT privilege on a table with the WITH GRANT OPTION to WADE.

2. WADE grants the SELECT privilege to JOHN on the same table.

3. When CLAIRE revokes the SELECT privilege on the table from WADE, the
SELECT privilege on that table is also revoked from JOHN.

The grant from WADE to JOHN is removed because WADE had not been granted
the SELECT privilege from any other source before CLAIRE made the grant. The
SYSADM authority granted to WADE from BOB does not affect the cascade revoke.
For more on SYSADM and install SYSADM authority, see Part 3 (Volume 1) of DB2
Administration Guide . For another example of cascading revokes, see Part 3
(Volume 1) of DB2 Administration Guide .

Revoking a SELECT privilege that was exercised to create a view causes the view
to be dropped, unless the owner of the view was directly granted the SELECT
privilege from another source before the view was created. Revoking a SYSADM
privilege that was required to create a view causes the view to be dropped. For
details on when SYSADM authority is required to create a view, see Authorization in
“CREATE VIEW” on page 658.

40. Dependencies on stored procedures can be checked only if the procedure name is specified as a literal and not via a host
variable in the CALL statement.

REVOKE

814 SQL Reference

Invalidation of plans and packages: A revoke or cascaded revoke of any
privilege, excluding the EXECUTE privilege on a user-defined function, that was
exercised to create a plan or package makes the plan or package invalid when the
revokee no longer holds the privilege from any other source. Corresponding
authorization caches are cleared even if the revokee has the privilege from any
other source. 40

Inoperative plans and packages: A revoke or cascaded revoke of the EXECUTE
privilege on a user-defined function that was exercised to create a plan or package
makes the plan or package inoperative and causes the corresponding authorization
caches to be cleared when the revokee no longer holds the privilege from any other
source.40

Invalidation of dynamic statements in the cache: If a dynamic SQL statement is
cached and its authorization involved a DELETE, INSERT, SELECT, or UPDATE
table privilege, or the EXECUTE function or stored procedure privilege, revoking the
privilege makes the statement invalid. DB2 will have to prepare the statement the
next time that it is executed.

Multiple grants: If you granted the same privilege to the same user more than
once, revoking that privilege from that user nullifies all those grants. It does not
nullify any grant of that privilege made by others.

When a REVOKE statement revokes multiple grants, the grants are revoked, one at
a time, in an undefined order. If, for some reason, a revocation is in error, the
execution of the statement is stopped, and all the revoked grants are restored.
Such an error certainly occurs if a table or view is specified twice after the keyword
ON. One also occurs when a table and a view based on the table are both
specified after ON. The error would occur if revoking some grant for the table
causes the view to be dropped before all grants have been revoked for the view.

Privileges belonging to an authority: You can revoke an administrative authority,
but you cannot separately revoke the specific privileges inherent in that
administrative authority.

Let P be a privilege inherent in authority X. A user with authority X can also have
privilege P as a result of an explicit grant of P. In this case:
v If X is revoked, the user still has privilege P.
v If P is revoked, the user still has the privilege because it is inherent in X.

Ownership privileges: The privileges inherent in the ownership of an object cannot
be revoked.

PUBLIC AT ALL LOCATIONS: PUBLIC AT ALL LOCATIONS can continue to be
specified as an alternative to PUBLIC as in prior releases. However, support for
PUBLIC AT ALL LOCATIONS may be removed in a later release when support for
DB2 private protocol access is removed. PUBLIC AT ALL LOCATIONS was
introduced and was intended for use only with DB2 private protocol access.

REVOKE

Chapter 5. Statements 815

|
|
|
|
|

REVOKE (collection privileges)
This form of the REVOKE statement revokes privileges on collections.

Syntax

Description
CREATE IN

Revokes the privilege to use the BIND subcommand to create packages in the
designated collections.

The word ON can be used instead of IN.

PACKADM ON
Revokes the package administrator authority for the designated collections.

The word IN can be used instead of ON.

COLLECTION collection-id,...
Identifies the collections on which the specified privilege is revoked. For each
identified collection, you (or the indicated grantors) must have granted the
specified privilege on that collection to all identified users (including PUBLIC if
specified). The same collection must not be identified more than once.

COLLECTION *
Indicates that the specified privilege on COLLECTION * is revoked. You (or the
indicated grantors) must have granted the specified privilege on COLLECTION *
to all identified users (including PUBLIC if specified). Privileges granted on
specific collections are not affected.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Example
Revoke the privilege to create new packages in collections QAACLONE and
DSN8CC61 from CLARK.

REVOKE CREATE IN COLLECTION QAACLONE, DSN8CC61 FROM CLARK;

�� REVOKE CREATE
PACKADM

IN
ON

�

,

COLLECTION collection-id
*

�

� �

,

FROM authorization-name
PUBLIC

�

,

BY authorization-name
ALL

��

REVOKE (collection privileges)

816 SQL Reference

REVOKE (database privileges)
This form of the REVOKE statement revokes database privileges.

Syntax

Description
Each keyword listed revokes the privilege described, but only as it applies to or
within the databases named in the statement.

DBADM
Revokes the database administrator authority.

DBCTRL
Revokes the database control authority.

DBMAINT
Revokes the database maintenance authority.

CREATETAB
Revokes the privilege to create new tables. For a TEMP database, you cannot
revoke the privilege from PUBLIC. When a TEMP database is created, PUBLIC
implicitly receives the CREATETAB privilege (without GRANT authority); this
privilege is not recorded in the DB2 catalog, and it cannot be revoked.

CREATETS
Revokes the privilege to create new table spaces.

DISPLAYDB
Revokes the privilege to issue the DISPLAY DATABASE command.

DROP
Revokes the privilege to issue the DROP or ALTER statements in the specified
databases.

�� REVOKE �

,

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STATS
STOPDB

�

,

ON DATABASE database-name �

,

FROM authorization-name
PUBLIC

�

�

�

,

BY authorization-name
ALL

��

REVOKE (database privileges)

Chapter 5. Statements 817

IMAGCOPY
Revokes the privilege to run the COPY, MERGECOPY, and QUIESCE utilities
against table spaces of the specified databases, and to run the MODIFY utility.

LOAD
Revokes the privilege to use the LOAD utility to load tables.

RECOVERDB
Revokes the privilege to use the RECOVER and REPORT utilities to recover
table spaces and indexes.

REORG
Revokes the privilege to use the REORG utility to reorganize table spaces and
indexes.

REPAIR
Revokes the privilege to use the REPAIR and DIAGNOSE utilities.

STARTDB
Revokes the privilege to issue the START DATABASE command.

STATS
Revokes the privilege to use the RUNSTATS utility to update statistics, and the
CHECK utility to test whether indexes are consistent with the data they index.

STOPDB
Revokes the privilege to issue the STOP DATABASE command.

ON DATABASE database-name,...
Identifies databases on which you are revoking the privileges. For each
database you identify, you (or the indicated grantors) must have granted at least
one of the specified privileges on that database to all identified users (including
PUBLIC, if specified). The same database must not be identified more than
once.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Examples
Example 1: Revoke drop privileges on database DSN8D71A from user PEREZ.

REVOKE DROP
ON DATABASE DSN8D71A
FROM PEREZ;

Example 2: Revoke repair privileges on database DSN8D71A from all local users.
(Grants to specific users will not be affected.)

REVOKE REPAIR
ON DATABASE DSN8D71A
FROM PUBLIC;

Example 3: Revoke authority to create new tables and load tables in database
DSN8D71A from users WALKER, PIANKA, and FUJIMOTO.

REVOKE CREATETAB,LOAD
ON DATABASE DSN8D71A
FROM WALKER,PIANKA,FUJIMOTO;

REVOKE (database privileges)

818 SQL Reference

REVOKE (distinct type or JAR privileges)
This form of the REVOKE statement revokes the privilege to use distinct types
(user-defined data types) or JARs.

Syntax

Description
USAGE

Revokes the privilege to use the identified distinct types or revokes the privilege
to use the identified JARs.

DISTINCT TYPE distinct-type-name
Identifies a distinct type. The name, including the implicit or explicit schema
qualifier, must identify a unique distinct type that exists at the current server. If
you specify an unqualified name, the name is implicitly qualified with a schema
name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

JAR jar-name
Identifies the JAR. The name, including the implicit or explicit schema name,
must identify a unique JAR that exists at the current server. If you do not
explicitly qualify the JAR name, it is implicitly qualified with a schema name
according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

�� REVOKE USAGE ON �

�

,
(1)

DISTINCT TYPE distinct-type-name
,

JAR jar-name

�

� �

,

FROM authorization-name
PUBLIC

�

,

BY authorization-name
ALL

RESTRICT ��

Notes:

1 DATA can be used as a synonym for DISTINCT. DISTINCT is the keyword that is used on
CREATE.

REVOKE (distinct type or JAR privileges)

Chapter 5. Statements 819

|
|

|
|
|
|
|

|
|
|
|

|
|

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

RESTRICT
Prevents the USAGE privilege from being revoked on a distinct type or JAR if
any of the following conditions exist:
v The revokee owns a function or stored procedure that uses the distinct type

or references the JAR.
v The revokee owns a table that has a column that uses the distinct type.

Examples
Example 1: Revoke the USAGE privilege on distinct type SHOESIZE from user
JONES.

REVOKE USAGE ON DISTINCT TYPE SHOESIZE FROM JONES RESTRICT;

Example 2: Revoke the USAGE privilege on distinct type US_DOLLAR from all
users at the current server except for those who have been specifically granted
USAGE and not through PUBLIC.

REVOKE USAGE ON DISTINCT TYPE US_DOLLAR FROM PUBLIC RESTRICT;

Example 3: Revoke the USAGE privilege on distinct type CANADIAN_DOLLARS
from the administrative assistant (ADMIN_A).

REVOKE USAGE ON DISTINCT TYPE CANADIAN_DOLLARS
FROM ADMIN_A RESTRICT;

REVOKE (distinct type or JAR privileges)

820 SQL Reference

REVOKE (function or procedure privileges)
This form of the REVOKE statement revokes privileges on user-defined functions,
cast functions that were generated for distinct types, and stored procedures.

Syntax

�� REVOKE EXECUTE ON �

�

�

�

,

FUNCTION function-name
,

()
parameter-type

*
,

SPECIFIC FUNCTION specific-name
,

PROCEDURE procedure-name
*

�

� �

,

FROM authorization-name
PUBLIC

�

,

BY authorization-name
ALL

RESTRICT ��

parameter type:

�� data-type
AS LOCATOR

��

data type:

�� built-in-data-type
distinct-type-name

��

REVOKE (function or procedure privileges)

Chapter 5. Statements 821

Description
EXECUTE

Revokes the privilege to run the identified user-defined function, cast function
that was generated for a distinct type, or stored procedure.

built-in data type:

�� SMALLINT
INTEGER
INT
DECIMAL
DEC (1)
NUMERIC (integer)

, integer
FLOAT

(2)
(integer)

REAL
PRECISION

DOUBLE
CHARACTER
CHAR (1) FOR SBCS DATA CCSID EBCDIC

(integer) MIXED ASCII
(1) BIT UNICODE

CHARACTER VARYING (integer)
CHAR

VARCHAR
CHARACTER LARGE OBJECT
CHAR (1) FOR SBCS DATA CCSID EBCDIC

CLOB (integer) MIXED ASCII
K UNICODE
M
G

BINARY LARGE OBJECT
BLOB (1)

(integer)
K
M
G

GRAPHIC
(1) CCSID EBCDIC

(integer) ASCII
(1) UNICODE

VARGRAPHIC (integer)
DBCLOB

(1)
(integer)

K
M
G

DATE
TIME
TIMESTAMP

ROWID

��

Notes:

1 The values that are specified for length, precision, or scale attributes must match the values that
were specified when the function was created. Coding specific values is optional. Empty
parentheses, (), can be used instead to indicate that DB2 ignores the attributes when
determining whether data types match.

2 The value that is specified does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE). 1<=integer<= 21
indicates REAL and 22<=integer<=53 indicates DOUBLE. Coding a specific value is optional.
Empty parentheses cannot be used.

REVOKE (function or procedure privileges)

822 SQL Reference

FUNCTION or SPECIFIC FUNCTION
The function that is identified must exist at the current server, and it must be a
function that was defined with the CREATE FUNCTION statement or a cast
function that was generated by a CREATE DISTINCT TYPE statement.

If the function was defined with a table parameter (the LIKE TABLE was
specified in the CREATE FUNCTION statement to indicate that one of the input
parameters is a transition table), the function signature cannot be used to
identify the function. Instead, identify the function with its function name, if
unique, or with its specific name.

FUNCTION function-name
Identifies the function by its name. You can identify a function by its name
only if there is exactly one function with function-name in the schema. If you
do not explicitly qualify the function name with a schema name, the function
name is implicitly qualified with a schema name according to the following
rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name
is the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

An * can be specified for a qualified on unqualified function-name. An * (or
schema-name.*) indicates that the privilege is revoked for all the functions
in the schema. You (or the indicated grantors) must have granted the
privilege on FUNCTION * to all identified users (including PUBLIC if
specified). Privileges granted on specific functions are not affected.

FUNCTION function-name (parameter-type,...)
Identifies the function by is function signature, which uniquely identifies the
function.

function-name
Specifies the name of the function. If you do not explicitly qualify the
function name with a schema name, the function name is implicitly
qualified with a schema name as described in the preceding description
for FUNCTION function-name.

(parameter-type,...)
Identifies the number of input parameters of the function and their data
types.

The data type of each parameter must match the data type that was
specified in the CREATE FUNCTION statement for the parameter in the
corresponding position. The number of data types and the logical
concatenation of the data types is used to uniquely identify the function.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses:

v Empty parentheses indicate that DB2 ignores the attribute when
determining whether the data types match.

FLOAT cannot be specified with empty parentheses because its
parameter value indicates different data types (REAL or DOUBLE).

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

REVOKE (function or procedure privileges)

Chapter 5. Statements 823

The specific value for FLOAT(n) does not have exactly match the
defined value of the source function because 1<=n<= 21 indicates
REAL and 22<=n<=53 indicates DOUBLE. Matching is based on
whether the data type is REAL or DOUBLE.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default length of the data type is
implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 601.

For data types with a subtype or encoding scheme attribute, specifying
the FOR DATA clause or CCSID clause is optional. Omission of either
clause indicates that DB2 ignores the attribute when determining
whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE
FUNCTION statement.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name.

PROCEDURE procedure-name
Identifies a stored procedure that is defined at the current server. If you do not
explicitly qualify the procedure name with a schema name, the procedure name
is implicitly qualified with a schema name according to the following rules:

v If the statement is embedded in a program, the schema name is the
authorization ID in the QUALIFIER option when the plan or package was
created or last rebound. If QUALIFIER was not used, the schema name is
the owner of the plan or package.

v If the statement is dynamically prepared, the schema name is the SQL
authorization ID in the CURRENT SQLID special register.

An * can be specified for a qualified or unqualified procedure-name. An * (or
schema-name.*) indicates that the privilege is revoked for all the procedures in
the schema. You (or the indicated grantors) must have granted the privilege on
PROCEDURE * to all identified users (including PUBLIC if specified). Privileges
granted on specific procedures are not affected.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

RESTRICT
Prevents the EXECUTE privilege from being revoked on a user-defined function
or stored procedure if the revokee owns any of the following objects:

v A function that is sourced on the function

v A view that uses the function

v A trigger package that uses the function or stored procedure

REVOKE (function or procedure privileges)

824 SQL Reference

v A table that uses the function in a check constraint or user-defined default
clause

Examples
Example 1: Revoke the EXECUTE privilege on function CALC_SALARY for user
JONES. Assume that there is only one function in the schema with function
CALC_SALARY.

REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES RESTRICT;

Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from
all users at the current server.

REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC RESTRICT;

Example 3: Revoke the privilege of the administrative assistant to grant EXECUTE
privileges on function DEPT_TOTAL to other users. The administrative assistant will
still have the EXECUTE privilege on function DEPT_TOTALS.

REVOKE EXECUTE ON FUNCTION DEPT_TOTALS
FROM ADMIN_A RESTRICT;

Example 4: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES for HR
(Human Resources). The function has two input parameters with data types of
INTEGER and CHAR(10), respectively. Assume that the schema has more than one
function that is named NEW_DEPT_HIRES.

REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
FROM HR RESTRICT;

You can also code the CHAR(10) data type as CHAR().

REVOKE (function or procedure privileges)

Chapter 5. Statements 825

REVOKE (package privileges)
This form of the REVOKE statement revokes privileges on packages.

Syntax

Description
BIND

Revokes the privilege to use the BIND and REBIND subcommands for the
designated packages. In addition, if the value of field BIND NEW PACKAGE on
installation panel DSNTIPP is BIND, the additional BIND privilege of adding new
versions of packages is revoked. (For details, see “Notes” on page 763 for
“GRANT (package privileges)” on page 762.)

COPY
Revokes the privilege to use the COPY option of the BIND subcommand for the
designated packages.

EXECUTE
Revokes the privilege to run application programs that use the designated
packages and to specify the packages following PKLIST for the BIND PLAN
and REBIND PLAN commands. RUN is an alternate name for the same
privilege.

ALL
Revokes all package privileges for which you have authority for the packages
named in the ON clause.

ON PACKAGE collection-id.package-id,...
Identifies packages for which you are revoking privileges. The revoking of a
package privilege applies to all versions of that package. For each package that
you identify, you (or the indicated grantors) must have granted at least one of
the specified privileges on that package to all identified users (including
PUBLIC, if specified). An authorization ID with PACKADM authority over the
collection or all collections, SYSADM, or SYSCTRL authority can specify all
packages in the collection by using * for package-id. The same package must
not be specified more than once.

�� �

�

,

REVOKE ALL ON PACKAGE collection-id. package-id
, PROGRAM *

BIND
COPY

EXECUTE
RUN

�

� �

�

,

FROM authorization-name
PUBLIC ,

BY authorization-name
ALL

��

REVOKE (package privileges)

826 SQL Reference

The word PROGRAM can be used in place of PACKAGE.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Example
Revoke the privilege to copy all packages in collection DSN8CC61 from LEWIS.

REVOKE COPY ON PACKAGE DSN8CC61.* FROM LEWIS;

REVOKE (package privileges)

Chapter 5. Statements 827

REVOKE (plan privileges)
This form of the REVOKE statement revokes privileges on application plans.

Syntax

Description
BIND

Revokes the privilege to use the BIND, REBIND, and FREE subcommands for
the identified plans.

EXECUTE
Revokes the privilege to run application programs that use the identified plans.

ON PLAN plan-name,...
Identifies application plans for which you are revoking privileges. For each plan
that you identify, you (or the indicated grantors) must have granted at least one
of the specified privileges on that plan to all identified users (including PUBLIC,
if specified). The same plan must not be specified more than once.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Examples
Example 1: Revoke authority to bind plan DSN8IP71 from user JONES.

REVOKE BIND ON PLAN DSN8IP71 FROM JONES;

Example 2: Revoke authority previously granted to all users at the current server to
bind and execute plan DSN8CP71. (Grants to specific users will not be affected.)

REVOKE BIND,EXECUTE ON PLAN DSN8CP71 FROM PUBLIC;

Example 3: Revoke authority to execute plan DSN8CP71 from users ADAMSON
and BROWN.

REVOKE EXECUTE ON PLAN DSN8CP71 FROM ADAMSON,BROWN;

�� �

,

REVOKE BIND
EXECUTE

�

,

ON PLAN plan-name �

,

FROM authorization-name
PUBLIC

�

�

�

,

BY authorization-name
ALL

��

REVOKE (plan privileges)

828 SQL Reference

REVOKE (schema privileges)
This form of the REVOKE statement revokes privileges on schemas.

Syntax

Description
ALTERIN

Revokes the privilege to alter stored procedures and user-defined functions, or
specify a comment for distinct types, cast functions that are generated for
distinct types, stored procedures, triggers, and user-defined functions in the
designated schemas.

CREATEIN
Revokes the privilege to create distinct types, stored procedures, triggers, and
user-defined functions in the designated schemas.

DROPIN
Revokes the privilege to drop distinct types, stored procedures, triggers, and
user-defined functions in the designated schemas.

SCHEMA schema-name
Identifies the schema on which the privilege is revoked.

SCHEMA *
Indicates that the specified privilege on all schemas is revoked. You (or the
indicated grantors) must have previously granted the specified privilege on
SCHEMA * to all identified users (including PUBLIC if specified). Privileges
granted on specific schemas are not affected.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Examples
Example 1: Revoke the CREATEIN privilege on schema T_SCORES from user
JONES.

REVOKE CREATEIN ON SCHEMA T_SCORES FROM JONES;

Example 2: Revoke the CREATEIN privilege on schema VAC from all users at the
current server.

�� REVOKE �

,

ALTERIN
CREATEIN
DROPIN

ON SCHEMA �

,

schema-name
*

�

,

FROM authorization-name
PUBLIC

�

�

�

,

BY authorization-name
ALL

��

REVOKE (schema privileges)

Chapter 5. Statements 829

REVOKE CREATEIN ON SCHEMA VAC FROM PUBLIC;

Example 3: Revoke the ALTERIN privilege on schema DEPT from the administrative
assistant.

REVOKE ALTERIN ON SCHEMA DEPT FROM ADMIN_A;

Example 4: Revoke the ALTERIN and DROPIN privileges on schemas NEW_HIRE,
PROMO, and RESIGN from HR (Human Resources).

REVOKE ALTERIN, DROPIN ON SCHEMA NEW_HIRE, PROMO, RESIGN FROM HR;

REVOKE (schema privileges)

830 SQL Reference

REVOKE (system privileges)
This form of the REVOKE statement revokes system privileges.

Syntax

Description
ARCHIVE

Revokes the privilege to use the ARCHIVE LOG command.

BINDADD
Revokes the privilege to create plans and packages using the BIND
subcommand with the ADD option.

BINDAGENT
Revokes the privilege to issue the BIND, FREE PACKAGE, or REBIND
subcommands for plans and packages and the DROP PACKAGE statement on
behalf of the grantor. The privilege also allows the holder to copy and replace
plans and packages on behalf of the grantor.

A revoke of this privilege does not cascade.

BSDS
Revokes the privilege to issue the RECOVER BSDS command.

CREATEALIAS
Revokes the privilege to use the CREATE ALIAS statement.

�� �

,

REVOKE ARCHIVE
BINDADD
BINDAGENT
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG
CREATETMTAB
DISPLAY
MONITOR1
MONITOR2
RECOVER
STOPALL
STOSPACE
SYSADM
SYSCTRL
SYSOPR
TRACE

�

,

FROM authorization-name
PUBLIC

�

�

�

,

BY authorization-name
ALL

��

REVOKE (system privileges)

Chapter 5. Statements 831

CREATEDBA
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBADM authority over those databases.

CREATEDBC
Revokes the privilege to issue the CREATE DATABASE statement and acquire
DBCTRL authority over those databases.

CREATESG
Revokes the privilege to create new storage groups.

CREATETMTAB
Revokes the privilege to use the CREATE GLOBAL TEMPORARY TABLE
statement.

DISPLAY
Revokes the privilege to use the following commands:
v The DISPLAY ARCHIVE command for archive log information
v The DISPLAY BUFFERPOOL command for the status of buffer pools
v The DISPLAY DATABASE command for the status of all databases
v The DISPLAY FUNCTION SPECIFIC command for statistics about accessed

external user-defined functions
v The DISPLAY LOCATION command for statistics about threads with a

distributed relationship
v The DISPLAY PROCEDURE command for statistics about accessed stored

procedures
v The DISPLAY THREAD command for information on active threads with in

DB2
v The DISPLAY TRACE command for a list of active traces

MONITOR1
Revokes the privilege to obtain IFC data classified as serviceability data,
statistics, accounting, and other performance data that does not contain
potentially secure data.

MONITOR2
Revokes the privilege to obtain IFC data classified as containing potentially
sensitive data such as SQL statement text and audit data. (Having the
MONITOR2 privilege also implies having MONITOR1 privileges, however,
revoking the MONITOR2 privilege does not cause the revoke of an explicitly
granted MONITOR1 privilege.)

RECOVER
Revokes the privilege to issue the RECOVER INDOUBT command.

STOPALL
Revokes the privilege to use the STOP DB2 command.

STOSPACE
Revokes the privilege to use the STOSPACE utility.

SYSADM
Revokes the system administrator authority.

SYSCTRL
Revokes the system control authority.

SYSOPR
Revokes the system operator authority.

REVOKE (system privileges)

832 SQL Reference

TRACE
Revokes the privilege to use the MODIFY TRACE, START TRACE, and STOP
TRACE commands.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

Examples
Example 1: Revoke DISPLAY privileges from user LUTZ.

REVOKE DISPLAY
FROM LUTZ;

Example 2: Revoke BSDS and RECOVER privileges from users PARKER and
SETRIGHT.

REVOKE BSDS,RECOVER
FROM PARKER,SETRIGHT;

Example 3: Revoke TRACE privileges previously granted to all local users. (Grants
to specific users will not be affected.)

REVOKE TRACE
FROM PUBLIC;

REVOKE (system privileges)

Chapter 5. Statements 833

REVOKE (table or view privileges)
This form of the REVOKE statement revokes privileges on one or more tables or
views.

Syntax

Description
ALL or ALL PRIVILEGES

If you specify ALL, the authorization ID of the statement must have granted a
least one privilege on each identified table or view to each authorization-name.
The privilege revoked from an authorization ID are those privileges on the table
or view that the authorization ID of the statement granted to the authorization
ID.

If you do not use ALL, you must use one or more of the keywords listed below.
Each keyword revokes the privilege described, but only as it applies to the
tables or views named in the ON clause.

ALTER
Revokes the privilege to use the ALTER statement.

DELETE
Revokes the privilege to use the DELETE statement.

INDEX
Revokes the privilege to use the CREATE INDEX statement.

INSERT
Revokes the privilege to use the INSERT statement.

REFERENCES
Revokes the privilege to define and drop referential constraints. Although you

��

�

PRIVILEGES
REVOKE ALL

,

ALTER
DELETE
INDEX
INSERT
REFERENCES
SELECT
TRIGGER
UPDATE

�

,
TABLE

ON table-name
view-name

�

� �

,

FROM authorization-name
PUBLIC

(1)
PUBLIC AT ALL LOCATIONS �

,

BY authorization-name
ALL

��

Notes:

1 PUBLIC AT ALL LOCATIONS may be removed in a later release of DB2.

REVOKE (table or view privileges)

834 SQL Reference

can use a list of column names with the GRANT statement, you cannot use a
list of column names with REVOKE; the privilege is revoked for all columns.

SELECT
Revokes the privilege to use the SELECT statement. A view is dropped when
the SELECT privilege that was used to create it is revoked, unless the owner of
the view was directly granted the SELECT privilege from another source before
the view was created.

TRIGGER
Revokes the privilege to use the CREATE TRIGGER statement.

UPDATE
Revokes the privilege to use the UPDATE statement. A list of column names
can be used only with GRANT, not with REVOKE.

ON or ON TABLE
Names one or more tables or views on which you are revoking the privileges.
The list can consist of table names, view names, or a combination of the two. A
table or view must not be identified more than once, and a declared temporary
table must not be identified.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
If you omit BY, you must have granted each named privilege to each of the
named users. More precisely, each privilege must have been granted to each
user by a GRANT statement whose authorization ID is also the authorization ID
of your REVOKE statement. Each of these grants is then revoked. (No single
privilege need be granted on all tables and views.)

If BY is specified, each named grantor must satisfy the above requirement. In
that case, the authorization ID of the statement need not satisfy the requirement
unless it is one of the named grantors.

Refer to “REVOKE” on page 811 for a description of the BY clause.

Notes
For a created temporary table or a view of a created temporary table, only ALL or
ALL PRIVILEGES can be revoked. Specific table or view privileges cannot be
revoked.

For a declared temporary table, no privileges can be revoked because none can be
granted. When a declared temporary table is defined, PUBLIC implicitly receives all
table privileges (without GRANT authority) for the table. These privileges are not
recorded in the DB2 catalog.

PUBLIC AT ALL LOCATIONS: PUBLIC AT ALL LOCATIONS can continue to be
specified as an alternative to PUBLIC as in prior releases. However, support for
PUBLIC AT ALL LOCATIONS may be removed in a later release when support for
DB2 private protocol access is removed. PUBLIC AT ALL LOCATIONS was
introduced and was intended for use only with DB2 private protocol access.

Examples
Example 1: Revoke SELECT privileges on table DSN8710.EMP from user
PULASKI.

REVOKE SELECT ON TABLE DSN8710.EMP FROM PULASKI;

REVOKE (table or view privileges)

Chapter 5. Statements 835

|
|
|
|
|

Example 2: Revoke update privileges on table DSN8710.EMP previously granted to
all local DB2 users. (Grants to specific users are not affected.)

REVOKE UPDATE ON TABLE DSN8710.EMP FROM PUBLIC;

Example 3: Revoke all privileges on table DSN8710.EMP from users KWAN and
THOMPSON.

REVOKE ALL ON TABLE DSN8710.EMP FROM KWAN,THOMPSON;

Example 4: Revoke the grant of SELECT and UPDATE privileges on the table
DSN8710.DEPT to every user in the network. Doing so does not affect users who
obtained these privileges from some other grant.

REVOKE SELECT, UPDATE ON TABLE DSN8710.DEPT
FROM PUBLIC AT ALL LOCATIONS;

REVOKE (table or view privileges)

836 SQL Reference

REVOKE (use privileges)
This form of the REVOKE statement revokes authority to use particular buffer pools,
storage groups, or table spaces.

Syntax

Description
BUFFERPOOL bpname,...

Revokes the privilege to refer to any of the identified buffer pools in a CREATE
INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER TABLESPACE
statement. See “Naming conventions” on page 34 for more details about
bpname.

ALL BUFFERPOOLS
Revokes the privilege to refer to any buffer pool in a CREATE INDEX, CREATE
TABLESPACE, ALTER INDEX, or ALTER TABLESPACE statement.

STOGROUP stogroup-name,...
Revokes the privilege to refer to any of the identified storage groups in a
CREATE INDEX, CREATE TABLESPACE, ALTER INDEX, or ALTER
TABLESPACE statement.

TABLESPACE database-name.table-space-name,...
Revokes the privilege to refer to any of the specified table spaces in a CREATE
TABLE statement. The default database-name is DSNDB04.

For table spaces in a TEMP database, which are for declared temporary tables,
you cannot revoke the privilege from PUBLIC. When a table space is created in
the TEMP database, PUBLIC implicitly receives the TABLESPACE privilege
(without GRANT authority); this privilege is not recorded in the DB2 catalog,
and it cannot be revoked.

FROM
Refer to “REVOKE” on page 811 for a description of the FROM clause.

BY
Refer to “REVOKE” on page 811 for a description of the BY clause.

�� REVOKE USE OF �

Notes
You can revoke privileges for only one type of object with each statement. Thus you
can revoke the use of several table spaces with one statement, but not the use of a
table space and a storage group.

For each object you name, you (or the indicated grantors) must have granted the
USE privilege on that object to all identified users (including PUBLIC, if specified).
The same object must not be identified more than once.

Revoking the privilege USE OF ALL BUFFERPOOLS does not cascade to all other
privileges that can be granted under that privilege. A user with the privilege USE OF
ALL BUFFERPOOLS WITH GRANT OPTION can make two types of grants:

v GRANT USE OF ALL BUFFERPOOLS TO userid. This privilege is revoked when
the original user’s privilege is revoked.

v GRANT USE OF BUFFERPOOL BPn TO userid. This privilege is not revoked
when the original user’s privilege is revoked.

Examples
Example 1: Revoke authority to use buffer pool BP2 from user MARINO.

REVOKE USE OF BUFFERPOOL BP2
FROM MARINO;

Example 2: Revoke a grant of the USE privilege on the table space DSN8S71D in
the database DSN8D71A. The grant is to PUBLIC, that is, to everyone at the local
DB2 subsystem. (Grants to specific users are not affected.)

REVOKE USE OF TABLESPACE DSN8D71A.DSN8S71D
FROM PUBLIC;

REVOKE (use privileges)

838 SQL Reference

ROLLBACK
The ROLLBACK statement can be used to either:

v End a unit of recovery and back out all the relational database changes that were
made by that unit of recovery. If relational databases are the only recoverable
resources used by the application process, ROLLBACK also ends the unit of
work.

v Back out only the changes made after a savepoint was set within the unit of
recovery without ending the unit of recovery. Rolling back to a savepoint enables
selected changes to be undone.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It can be used in
the IMS or CICS environment only if the TO SAVEPOINT clause is specified. This
statement cannot be issued from a global transaction.

Authorization
None required.

Syntax

Description
When ROLLBACK is used without the SAVEPOINT clause, the unit of recovery in
which the ROLLBACK statement is executed is ended and a new unit of recovery is
effectively started. All changes made by ALTER, COMMENT ON, CREATE,
DELETE, DROP, EXPLAIN, GRANT, INSERT, LABEL ON, RENAME, REVOKE, and
UPDATE statements executed during the unit of recovery are backed out.

ROLLBACK without the TO SAVEPOINT clause also causes the following to occur:

v All locks implicitly acquired during the unit of recovery are released. See “LOCK
TABLE” on page 786 for an explanation of the duration of explicitly acquired
locks.

v All cursors are closed, all prepared statements are destroyed, and any cursors
associated with the prepared statements are invalidated.

v All rows and all logical work files of every created temporary table of the
application process are deleted. (All the rows of a declared temporary table are
not implicitly deleted. As with base tables, any changes made to a declared
temporary table during the unit of recovery are undone to restore the table to its
state at the last commit.)

v All LOB locators, including those that are held, are freed.

TO SAVEPOINT
Specifies that the unit of recovery is not to be ended and that only a partial
rollback (to a savepoint) is to be performed. If a savepoint name is not
specified, rollback is to the last active savepoint. For example, if in a unit of

�� ROLLBACK
WORK

TO SAVEPOINT
svpt-name

��

ROLLBACK

Chapter 5. Statements 839

recovery, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B.

svpt-name
A savepoint-identifier that identifies the savepoint to which to roll back. If the
named savepoint does not exist, an error occurs.

All database changes (including changes made to a declared temporary tables
but excluding changes made to created temporary tables) that were made after
the savepoint was set are backed out. Changes that are made to created
temporary tables are not logged and are not backed out; a warning is issued
instead. (A warning is also issued when a created temporary table is changed
and there is an active savepoint.)

In addition, none of the following items are backed out:
v The opening or closing of cursors
v Changes in cursor positioning
v The acquisition and release of locks
v The caching of the rolled back statements

Any savepoints that are set after the one to which rollback is performed are
released. The savepoint to which rollback is performed is not released.

ROLLBACK with or without the TO SAVEPOINT clause has no effect on
connections.

Notes
The following information applies only to rolling back all changes in the unit of
recovery (the ROLLBACK statement without the TO SAVEPOINT clause):

v Stored procedures. The ROLLBACK statement cannot be used if the procedure
is in the calling chain of a user-defined function or a trigger or if DB2 is not the
commit coordinator.

v IMS or CICS. This form of the ROLLBACK statement cannot be used in the IMS
or CICS environment. To do a rollback operation in these environments, SQL
programs must use the call prescribed by their transaction manager. The effect of
these rollback operations on DB2 data is the same as that of the SQL
ROLLBACK statement.

A rollback operation in an IMS or CICS environment might handle the closing of
cursors that were declared with the WITH hold option differently than the SQL
ROLLBACK statement does. If an application requests a rollback operation from
CICS or IMS, but no work has been performed in DB2 since the last commit
point, the rollback request will not be broadcast to DB2. If the application had
opened cursors using the WITH HOLD option in a previous unit of work, the
cursors will not be closed, and any prepared statements associated with those
cursors will not be destroyed.

v Implicit rollback operations: In all DB2 environments, the abend of a process is
an implicit rollback operation.

Examples
Example 1: Roll back all DB2 database changes made since the unit of recovery
was started.

ROLLBACK WORK;

ROLLBACK

840 SQL Reference

|
|
|

SAVEPOINT
The SAVEPOINT statement sets a savepoint within a unit of recovery to identify a
point in time within the unit of recovery to which relational database changes can be
rolled back.

Invocation
This statement can be imbedded in an application program or issued interactively. It
is an executable statement that can be dynamically prepared. This statement
cannot be issued from a global transaction.

Authorization
None required.

Syntax

Description
svpt-name

A savepoint identifier that names the savepoint. (A savepoint identifier is like an
SQL identifier except that it has maximum length of 128 bytes.)

UNIQUE
Specifies that the application program cannot reuse the savepoint name within
the unit of recovery. An error occurs if a savepoint with the same name as
svpt-name already exists within the unit of recovery.

Omitting UNIQUE indicates that the application can reuse the savepoint name
within the unit of recovery. If svpt-name identifies a savepoint that already exists
within the unit of recovery and the savepoint was not created with the UNIQUE
option, the existing savepoint is destroyed and a new savepoint is created.
Destroying a savepoint to reuse its name for another savepoint is not the same
as releasing the savepoint. Reusing a savepoint name destroys only one
savepoint. Releasing a savepoint with the RELEASE SAVEPOINT statement
releases the savepoint and all savepoints that have been subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that any cursors that are opened after the savepoint is set are not
tracked, and thus, are not closed upon rollback to the savepoint. Although these
cursors remain open after rollback to the savepoint, they might not be usable.
For example, if rolling back to the savepoint causes the insertion of a row on
which the cursor is positioned to be rolled back, using the cursor to update or
delete the row results in an error.

�� SAVEPOINT svpt-name
UNIQUE

(1)
ON ROLLBACK RETAIN CURSORS �

�

(1)
ON ROLLBACK RETAIN LOCKS

��

Notes:

1 These clauses can be specified in either order.

SAVEPOINT

842 SQL Reference

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not
tracked, and thus, are not released on rollback to the savepoint.

Example
Assume that you want to set three savepoints at various points in a unit of recovery.
Name the first savepoint A and allow the savepoint name to be reused. Name the
second savepoint B and do not allow the name to be reused. Because you no
longer need savepoint A when you are ready to set the third savepoint, reuse A as
the name of the savepoint.

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

...

SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;

...

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

SAVEPOINT

Chapter 5. Statements 843

SELECT
For a description of the SELECT statement, see “select-statement” on page 321.

SELECT

844 SQL Reference

SELECT INTO
The SELECT INTO statement produces a result table that contains at most one
row, and assigns the values in that row to host variables. If the table is empty, the
statement assigns +100 to SQLCODE, '02000' to SQLSTATE, and does not assign
values to the host variables. The tables or views identified in the statement can
exist at the current server or at any DB2 subsystem with which the current server
can establish a connection.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
The privileges that are held by the authorization ID of the owner of the plan or
package must include at least one of the following for every table and view
identified in the statement:
v The SELECT privilege on the table or view
v The EXECUTE privilege on any user-defined function
v Ownership of the table or view
v DBADM authority for the database (tables only)
v SYSADM authority
v SYSCTRL authority (catalog tables only)

Syntax

Description
The table is derived by evaluating the from-clause, where-clause, group-by-clause,
having-clause, and select-clause, in this order. See “Chapter 4. Queries” on
page 299 for a description of these clauses.

INTO host-variable,...
Each host-variable must identify a structure or variable that is described in the
program in accordance with the rules for declaring host structures and
variables. In the operational form of the INTO clause, a reference to a structure
is replaced by a reference to each of its host variables.

�� select-clause �

,

INTO host-variable from-clause
where-clause group-by-clause

�

�
having-clause WITH RR

RS
CS
UR

QUERYNO integer
�

�
1

FETCH FIRST ROW ONLY
ROWS

��

SELECT INTO

Chapter 5. Statements 845

The first value in the result row is assigned to the first variable in the list, the
second value to the second variable, and so on. If the number of host variables
is less than the number of column values, the value W is assigned to the
SQLWARN3 field of the SQLCA. (See “SQL communication area (SQLCA)” on
page 923.)

The data type of a variable must be compatible with the value assigned to it. If
the value is numeric, the variable must have the capacity to represent the
integral part of the value. For a date or time value, the variable must be a
character string variable of a minimum length as defined in “Chapter 2.
Language elements” on page 27. If the value is null, an indicator variable must
be specified.

Each assignment to a variable is made according to the rules described in
“Chapter 2. Language elements” on page 27. Assignments are made in
sequence through the list.

If an error occurs as the result of an arithmetic expression in the SELECT list of
a SELECT INTO statement (division by zero or overflow) or a numeric
conversion error occurs, the result is the null value. As in any other case of a
null value, an indicator variable must be provided and the main variable is
unchanged. In this case, however, the indicator variable is set to -2. Processing
of the statement continues as if the error had not occurred. (However, this error
causes a positive SQLCODE.) If you do not provide an indicator variable, a
negative value is returned in the SQLCODE field of the SQLCA. Processing of
the statement terminates when the error is encountered.

If an error occurs, no value is assigned to the host variable or to later variables,
though any values that have already been assigned to variables remain
assigned.

If an error occurs because the result table has more than one row, values may
or may not be assigned to the host variables. If values are assigned to the host
variables, the row that is the source of the values is undefined and not
predictable.

WITH
Specifies the isolation level at which the statement is executed. (Isolation level
does not apply to declared temporary tables because no locks are acquired.)
RR Repeatable read
RS Read stability
CS Cursor stability
UR Uncommitted read

WITH UR can be specified only if the result table is read-only.

The default isolation level of the statement depends on:
v The isolation of the package or plan that the statement is bound in
v Whether the result table is read-only

If package isolation
is:

And plan isolation
is:

And the result table
is:

Then the default
isolation is:

RR Any Any RR

RS Any Any RS

CS Any Any CS

UR Any Read-only UR

Not read-only CS

SELECT INTO

846 SQL Reference

If package isolation
is:

And plan isolation
is:

And the result table
is:

Then the default
isolation is:

Not specified Not specified Any RR

RR Any RR

RS Any RS

CS Any CS

UR Read-only UR

Not read-only CS

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and
trace records. The number is used for the QUERYNO columns of the plan
tables for the rows that contain information about this SQL statement. This
number is also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on accessing
the plan table, see Part 5 (Volume 2) of DB2 Administration Guide.

FETCH FIRST ROW ONLY integer
The FETCH FIRST ROW ONLY clause can be used in the SELECT INTO
statement when the query can result in more than a single row. The clause
indicates that only one row should be retrieved regardless of how many rows
might be in the result table. When a number is explicitly specified, it must be 1.

Using the FETCH FIRST ROW ONLY clause to explicitly limit the result table to
a single row provides a way for the SELECT INTO statement to be used with a
query that returns more than a single row. Using the clause helps you to avoid
using a cursor when you know that you want to retrieve only one row. If the
FETCH FIRST ROW ONLY clause is not specified and the result table contains
more than a single row, an error occurs.

Examples
Example 1: Put the maximum salary in DSN8710.EMP into the host variable
MAXSALRY.

EXEC SQL SELECT MAX(SALARY)
INTO :MAXSALRY
FROM DSN8710.EMP;

Example 2:

SET CONNECTION
The SET CONNECTION statement establishes the database server of the process
by identifying one of its existing connections.

Invocation
This statement can only be embedded in an application program, except in REXX
programs. It is an executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
location-name or host-variable

Identifies the SQL connection by the specified location name or the location
name contained in the host variable. If a host variable is specified:

v It must be a character string variable with a length attribute that is not greater
than 16. (A C NUL-terminated character string can be up to 17 bytes.)

v It must not be followed by an indicator variable.

v The location name must be left-justified within the host variable and must
conform to the rules for forming an ordinary location identifier.

v If the length of the location name is less than the length of the host variable,
it must be padded on the right with blanks.

Let S denote the specified location name or the location name contained in the
host variable. S must identify an existing SQL connection of the application
process. If S identifies the current SQL connection, the state of S and all other
connections of the application process are unchanged. The following rules apply
when S identifies a dormant SQL connection.

If the SET CONNECTION statement is successful:

v SQL connection S is placed in the current state.

v S is placed in the CURRENT SERVER special register.

v Information about server S is placed in the SQLERRP field of the SQLCA. If the
server is an IBM product, the information has the form pppvvrrm, where:

– ppp is:
ARI for DB2 Server for VSE & VM
DSN for DB2 for OS/390 and z/OS
QSQ for OS/400
SQL for all other DB2 products

– vv is a two-digit version identifier such as '07'.

– rr is a two-digit release identifier such as '01'.

– m is a one-digit modification level such as '0'.

�� SET CONNECTION location-name
host-variable

��

SET CONNECTION

848 SQL Reference

For example, if the server is Version 7 of DB2 for OS/390 and z/OS with the
latest maintenance, the value of SQLERRP is 'DSN07011'.

v Any previously current SQL connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the
application process and the states of its SQL connections are unchanged.

Notes
The use of CONNECT (Type 1) statements does not prevent the use of SET
CONNECTION, but the statement either fails or does nothing because dormant
SQL connections do not exist. The SQLRULES(DB2) bind option does not prevent
the use of SET CONNECTION, but the statement is unnecessary because
CONNECT (Type 2) statements can be used instead. Use the SET CONNECTION
statement to conform to the SQL standard.

When an SQL connection is used, made dormant, and then restored to the current
state in the same unit of work, the status of locks, cursors, and prepared
statements for that SQL connection reflects its last use by the application process.

If the SET CONNECTION statement contains host variables, the contents of the
host variables are assumed to be in the encoding scheme that was specified in the
ENCODING parameter when the package or plan that contains the statement was
bound.

Example
Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2,
and then execute more SQL statements at TOROLAB1.

EXEC SQL CONNECT TO TOROLAB1;

(execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(execute statements referencing objects at TOROLAB2)

EXEC SQL SET CONNECTION TOROLAB1;

(execute statements referencing objects at TOROLAB1)

The first CONNECT statement creates the TOROLAB1 connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION
statement returns it to the current state.

SET CONNECTION

Chapter 5. Statements 849

|
|
|
|

SET CURRENT APPLICATION ENCODING SCHEME
The SET CURRENT APPLICATION ENCODING SCHEME statement assigns a
value to the CURRENT APPLICATION ENCODING SCHEME special register. This
special register allows users to control which encoding scheme will be used for
dynamic SQL statements after the SET statement has been executed.

Invocation
This statement can only be embedded in an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
string-constant

A character string constant that represents a valid encoding scheme (ASCII,
EBCDIC, UNICODE, or a character representation of a number between 1 and
65533).

host variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable
must not be null and must represent a valid encoding scheme or a character
representation of a number between 1 and 65533). An associated indicator
variable must not be provided.

The value must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

Example
Examples: The following examples set the CURRENT APPLICATION ENCODING
SCHEME special register to ’EBCDIC’ (in the second example, Host variable HV1 =
’EBCDIC’).

EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME = 'EBCDIC';
EXEC SQL SET CURRENT ENCODING SCHEME = :HV1;

�� SET CURRENT
APPLICATION

ENCODING SCHEME
=

string-constant
host-variable

��

SET CURRENT APPLICATION ENCODING SCHEME

850 SQL Reference

|
|

|
|
|
|

|

|
|

|

|

|

||

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|

|

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT
DEGREE special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
The value of CURRENT DEGREE is replaced by the value of the string constant or
host variable. The value must be a character string that is not longer than 3 bytes
and the value must be 'ANY', '1', or '1 '.

Notes
If the value of CURRENT DEGREE is '1' when a query is dynamically prepared, the
execution of that query will not use parallel operations. If the value of CURRENT
DEGREE is 'ANY' when a query is dynamically prepared, the execution of that
query can involve parallel operations.

The initial value of CURRENT DEGREE is determined by the value of field
CURRENT DEGREE on installation panel DSNTIP4. The default for the initial value
is 1 unless your installation has changed it to be ANY by modifying the value in that
field.

For distributed applications, the default value at the server is used unless the
requesting application issues the SQL statement SET CURRENT DEGREE. For
requests using DRDA, the SET CURRENT DEGREE statement must be within the
scope of the CONNECT statement.

The value specified in the SET CURRENT DEGREE statement remains in effect
until it is changed by the execution of another SET CURRENT DEGREE statement
or until deallocation of the application process. For applications that connect to DB2
using the call attachment facility, the value of register CURRENT DEGREE can be
requested to remain in effect for a longer duration. For more information, see the
description of the call attachment facility CONNECT statement in Part 6 of DB2
Application Programming and SQL Guide.

Examples
Example 1: The following statement inhibits parallel operations:

SET CURRENT DEGREE = '1';

�� SET CURRENT DEGREE = string-constant
host-variable

��

SET CURRENT DEGREE

Chapter 5. Statements 851

Example 2: The following statement allows parallel operations:
SET CURRENT DEGREE = 'ANY';

SET CURRENT DEGREE

852 SQL Reference

SET CURRENT LOCALE LC_CTYPE
The SET CURRENT LOCALE LC_CTYPE statement assigns a value to the
CURRENT LOCALE LC_CTYPE special register. The special register allows control
over the LC_CTYPE locale for statements that use a built-in function that refers to a
locale, such as LCASE, UCASE, and TRANSLATE (with a single argument).

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
The value of CURRENT LOCALE LC_CTYPE is replaced by the string constant or
host variable specified. The value must be a CHAR or VARCHAR character string
that is no longer than 50 bytes.

If a host variable is specified, its value must not be null. If it has an associated
indicator, the value of the indicator value must not indicate a null value. The locale
must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

The value of CURRENT LOCALE LC_CTYPE is replaced by the value specified.
The value must not be longer than 50 bytes and must be a valid locale.

string-constant
A character string constant that must not be longer than 50 bytes and must
represent a valid locale.

host-variable
A variable with a data type of CHAR or VARCHAR and a length that is not
longer than 50 bytes. The value of host-variable must not be null and must
represent a valid locale. If the host variable has an associated indicator
variable, the value of the indicator variable must not indicate a null value.

The locale must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

�� SET LC_CTYPE
CURRENT

LOCALE
CURRENT_LC_CTYPE

=
string-constant
host-variable

��

SET CURRENT LOCALE LC_CTYPE

Chapter 5. Statements 853

A locale can be specified in uppercase characters, lowercase characters, or a
combination of the two. For information on locales and their naming conventions,
see OS/390 C/C++ Programming Guide. Some examples of locales include:

Fr_BE
Fr_FR@EURO
En_US
Ja_JP

Examples
Example 1: Set the CURRENT LOCALE LC_CTYPE special register to the locale
’En_US’.

EXEC SQL SET CURRENT LOCALE LC_CTYPE = 'En_US';

Example 2: Set the CURRENT LOCALE LC_CTYPE special register to the value of
host variable HV1, which contains ’Fr_FR@EURO’.

EXEC SQL SET CURRENT LOCALE LC_CTYPE = :HV1;

SET CURRENT LOCALE LC_CTYPE

854 SQL Reference

SET CURRENT OPTIMIZATION HINT
The SET CURRENT OPTIMIZATION HINT statement assigns a value to the
CURRENT OPTIMIZATION HINT special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
The value of special register CURRENT OPTIMIZATION HINT is replaced by the
value of the string constant or host variable. The value must be a character string
that is not longer than 8 bytes.

Notes
The initial value of the CURRENT OPTIMIZATION HINT special register is set to
the value that was used for the OPTHINT bind option. The OPTHINT bind option
specifies whether optimization hints are used in determining the access path of
static statements and identifies which user-defined hint (rows in the
authid.PLAN_TABLE) is used. Therefore, if the SET CURRENT OPTIMIZATION
HINT statement is not executed to change the value of the special register, DB2
uses the same optimization hint for dynamic statements that it uses for static
statements. The default of OPTHINT for BIND PLAN and BIND PACKAGE is all
blanks. All blanks indicate that DB2 uses normal optimization techniques and
ignores optimization hints.

Example
Assume that delimited identifier 'NOHYB' identifies a user-defined optimization hint
in authid.PLAN_TABLE. Set the CURRENT OPTIMIZATION HINT special register
so that DB2 uses this optimization hint to generate the access path for dynamic
statements.

SET CURRENT OPTIMIZATION HINT = 'NOHYB'

�� SET CURRENT OPTIMIZATION HINT = string-constant
host-variable

��

SET CURRENT OPTIMIZATION HINT

Chapter 5. Statements 855

SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement assigns a value to the CURRENT
PACKAGESET special register.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required.

Syntax

Description
The value of CURRENT PACKAGESET is replaced by the value of the USER
special register, string-constant, or host-variable. The value specified by
string-constant or host-variable must be a character string that is not longer than 18
bytes. If the length of the replacement is less than 18 bytes, it is padded on the
right with blanks so that its length is 18 bytes.

Notes
Selection of plan elements: A plan element is a DBRM that has been bound into
the plan or a package that is implicitly or explicitly identified in the package list of
the plan. Plan elements contain the control structures used to execute certain SQL
statements.

Since a plan can have many elements, one of the first steps involved in the
execution of an SQL statement that requires a control structure is the selection of
the plan element that contains its control structure. The information used by DB2 to
select plan elements includes the value of CURRENT PACKAGESET.

SET CURRENT PACKAGESET is used to specify the collection ID of a package
that exists at the current server. SET CURRENT PACKAGESET is optional and
should not be used without an understanding of the following rules for selecting a
plan element.

If the CURRENT PACKAGESET special register is blank, DB2 searches for a
DBRM or a package in one of these sequences:

At the local location (if CURRENT SERVER is blank or explicitly names that
location), the order is:

1. All DBRMs bound directly to the plan

2. All packages that have already been allocated for the application process

�� SET CURRENT PACKAGESET = USER
string-constant
host-variable

��

SET CURRENT PACKAGESET

856 SQL Reference

3. All unallocated packages explicitly named in, and all collections completely
included in, the package list of the plan. The order of search is the order those
packages are named in the package list.

At a remote location, the order is:

1. All packages that have already been allocated for the application process at that
location

2. All unallocated packages explicitly named in, and all collections completely
included in, the package list of the plan, whose locations match the value of
CURRENT SERVER. The order of search is the order those packages are
named in the package list.

If the special register CURRENT PACKAGESET is set, DB2 skips the check for
programs that are part of the plan and uses the value of CURRENT PACKAGESET
as the collection. For example, if CURRENT PACKAGESET contains COL5, then
DB2 uses COL5.PROG1.timestamp for the search. For additional information, see
Part 4 of DB2 Application Programming and SQL Guide .

SET CURRENT PACKAGESET is executed by the requester and is therefore
classified as a local SET statement in DRDA.

CURRENT PACKAGESET special register with stored procedures and
user-defined functions: The initial value of the CURRENT PACKAGESET special
register in a stored procedure or user-defined function is the value of the COLLID
parameter with which the stored procedure or user-defined function was defined. If
the routine was defined without a value for the COLLID parameter, the value of the
special register is inherited from the calling program. A stored procedure or
user-defined function can use the SET CURRENT PACKAGESET statement to
change the value of the special register. This allows the routine to select the version
of the DB2 package that is used to process the SQL statements in a called routine
that is not defined with a COLLID value.

When control returns from the stored procedure to the calling program, the special
register CURRENT PACKAGESET is restored to the value it contained before the
stored procedure was called.

Examples
Example 1: Limit the plan element selection to packages in the PERSONNEL
collection at the current server.

EXEC SQL SET CURRENT PACKAGESET = 'PERSONNEL';

Example 2: Eliminate collections as a factor in plan element selection.
EXEC SQL SET CURRENT PACKAGESET = '';

SET CURRENT PACKAGESET

Chapter 5. Statements 857

SET CURRENT PRECISION
The SET CURRENT PRECISION statement assigns a value to the CURRENT
PRECISION special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
This statement replaces the value of the CURRENT PRECISION special register
with the value of the string constant or host variable. The value must be a character
string 5 bytes in length, and the value must be 'DEC15' or 'DEC31'. An error occurs
if any other values are specified.

Example
Set the CURRENT PRECISION special register so that subsequent statements that
are prepared use DEC15 rules for decimal arithmetic.

EXEC SQL SET CURRENT PRECISION = 'DEC15';

�� SET CURRENT PRECISION = string-constant
host-variable

��

SET CURRENT PRECISION

858 SQL Reference

SET CURRENT RULES
The SET CURRENT RULES statement assigns a value to the CURRENT RULES
special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
This statement replaces the value of the CURRENT RULES special register with
the value of the string constant or host variable. The value must be a character
string that is 3 bytes in length, and the value must be 'DB2' or 'STD'. An error
occurs if any other values are specified.

Notes
For the effect of the values 'DB2' and 'STD' on the execution of certain SQL
statements, see “CURRENT RULES” on page 89.

Example
Set the SQL rules to be followed to DB2.

EXEC SQL SET CURRENT RULES = 'DB2';

�� SET CURRENT RULES = string-constant
host-variable

��

SET CURRENT RULES

Chapter 5. Statements 859

SET CURRENT SQLID
The SET CURRENT SQLID statement assigns a value to the CURRENT SQLID
special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. The value to which
special register CURRENT SQLID is set is used as the SQL authorization ID and
the implicit qualifier for dynamic SQL statements only if DYNAMICRULES run
behavior is in effect. The CURRENT SQLID value is ignored for the other
DYNAMICRULES behaviors.

Authorization
If any of the authorization IDs of the process has SYSADM authority, CURRENT
SQLID can be set to any value. Otherwise, the specified value must be equal to
one of the authorization IDs of the application process. This rule always applies,
even when SET CURRENT SQLID is a static statement.

Syntax

Description
The value of CURRENT SQLID is replaced by the value of USER, string-constant,
or host-variable. The value specified by a string-constant or host-variable must be a
character string that is not longer than 8 bytes. If the length of the value is less than
8, it is padded on the right with blanks so that it is a string of 8 bytes. Unless some
authorization ID of the process has SYSADM authority, the value must be equal to
one of the authorization IDs of the process.

Notes
The value of CURRENT SQLID is called the SQL authorization ID. The SQL
authorization ID is:

v The authorization ID used for authorization checking on dynamically prepared
CREATE, GRANT, and REVOKE SQL statements

v The owner of a table space, database, storage group, or synonym created by a
dynamically issued CREATE statement

v The implicit qualifier of all table, view, alias, and index names specified in
dynamic SQL statements

SET CURRENT SQLID does not change the primary authorization ID of the
process.

If the SET CURRENT SQLID statement is executed in a stored procedure or
user-defined function package that has a dynamic SQL behavior other than run
behavior, the SET CURRENT SQLID statement does not affect the authorization ID
that is used for dynamic SQL statements in the package. The dynamic SQL

�� SET CURRENT SQLID = USER
string-constant
host-variable

��

SET CURRENT SQLID

860 SQL Reference

behavior determines the authorization ID. For more information, see the discussion
of DYNAMICRULES in Chapter 2 of DB2 Command Reference.

The initial value of the SQL authorization ID is established during connection or
sign-on processing. The value specified in the SET CURRENT SQLID is the SQL
authorization ID until one of the following events occurs:

v The SQL authorization ID is changed by the execution of a new SET CURRENT
SQLID statement.

v A SIGNON or re-SIGNON request is received from a CICS transaction subtask or
an IMS independent region.

v The DB2 connection is ended.

SET CURRENT SQLID is executed by the database server and is therefore
classified as a non-local SET statement in DRDA.

Example
Set the CURRENT SQLID to the primary authorization ID.

SET CURRENT SQLID=USER;

SET CURRENT SQLID

Chapter 5. Statements 861

SET host-variable assignment
The SET host-variable assignment statement assigns values, either of expressions
or NULL values, to host variables.

Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot by dynamically prepared.

Authorization
The privileges that are held by the current authorization ID must include those
required to execute any of the expressions.

Syntax

Description
host-variable

Identifies one or more host variables or transition variables that are used to
receive the corresponding expression or NULL value on the right side of the
statement.

If the SET host-variable assignment statement is used in the triggered action of
a CREATE TRIGGER statement, each host-variable must identify a transition
variable. If the statement is used in any other context, each host-variable must
identify a host variable.

The value to be assigned to each host-variable can be specified immediately
following the item reference, for example, host-variable = expression,
host-variable=expression. Or, sets of parentheses can be used to specify all the
host-variables and then all the values, for example, (host-variable, host-variable)
= (expression, expression).

�� SET

�

� �

�

host-variable= CURRENT SERVER
CURRENT PACKAGESET

,

host-variable= expression
NULL

, ,
(1)

(host-variable)=(expression)
NULL

VALUES expression
NULL

,

(expression)
NULL

��

Notes:

1 The number of expressions and NULL keywords must match the number of host-variables.

SET host-variable assignment

862 SQL Reference

|
|

|
|

|

|
|

|

|
|

|

||

|

|
|
|
|

|
|
|
|

|
|
|
|
|

Each host variable must be defined in the program as described under the rules
for declaring host variables. A parameter marker must not be specified in place
of host-variable.

expression
Specifies the value to be assigned to the corresponding host-variable. The
expression is any expression of the type described in “Expressions” on
page 110, except it cannot contain a reference to local special registers
(CURRENT SERVER or CURRENT PACKAGESET).

All expressions are evaluated before any result is assigned to a host variable. If
an expression refers to a host variable that is used in the host variable list, the
value of the variable in the expression is the value of the variable prior to any
assignments.

Each assignment to a host variable is made according to the assignment rules
described in “Assignment and comparison” on page 64. Assignments are made
in sequence through the list. When the host-variables are enclosed within
parentheses, for example, (host-variable, host-variable, ...) = (expression,
expression, ...), the first value is assigned to the first host variable in the list, the
second value to the second host variable in the list, and so on.

NULL
Specifies the null value and can only be specified for host variables that have
an associated indicator variable.

VALUES
Specifies the value to be assigned to the corresponding host variable. When
more than one value is specified, the values must be enclosed in parentheses.
Each value can be an expression or NULL, as described above. The following
syntax is equivalent:
v (host-variable, host-variable) = (VALUES(expression, NULL))
v (host-variable, host-variable) = (expression, NULL)

Local special registers can be referenced only in a VALUES host-variable
statement that results in the assignment of a single host variable and not those
that result in setting more than one value.

Notes
The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding.

Normally a locator can be used with a LOB and CLOBs are compatible with CHAR
types, but it is not necessarily true that a locator can be used with a CHAR. For
more information on using locators, see Part 2 of DB2 Application Programming and
SQL Guide.

Examples
Example 1: Set the host variable HVL to the value of the CURRENT PATH special
register.

SET :HVL = CURRENT PATH;

Example 2: Set the host variable PATH to the contents of the SQL PATH special
register, the host variable XTIME to the local time at the current server, and the
host variable MEM to the current member of the data sharing environment.

SET host-variable assignment

Chapter 5. Statements 863

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|

|
|

|

|
|
|

SET :SERVER = CURRENT PATH,
:XTIME = CURRENT TIME,
:MEM = CURRENT MEMBER;

Example 3: Set the host variable DETAILS to a portion of a LOB value, using a
LOB expression with a LOB locator to refer the extracted portion of the value.

SET :DETAILS = SUBSTR(:LOCATOR,1,35);

Example 4: Set host variable HV1 to the results of external function CALC_SALARY
and host variable HV2 to the value of special register CURRENT PATH. Use an
indicator value with HV1 in case CALC_SALARY returns a null value.

SET (:HV1:IND1, :HV2) =
(CALC_SALARY(:HV3, :HF4), CURRENT PATH);

SET host-variable assignment

864 SQL Reference

|
|
|

|
|

|

|
|
|

|
|

|

SET PATH
The SET PATH statement assigns a value to the CURRENT PATH special register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

Description
The value of PATH is replaced by the values specified.

schema-name
Identifies a schema. DB2 does not verify that the schema exists. For example,
a schema name that is misspelled is not detected, which could affect the way
subsequent SQL operates.

SYSTEM PATH
Specifies the schema names "SYSIBM", "SYSFUN"41, "SYSPROC". SYSTEM
PATH can be specified only once.

41. SYSFUN is a schema used for additional functions shipped on other servers in the DB2 product family. Although DB2 for OS/390
and z/OS does not use the SYSFUN schema, it can be useful to have SYSFUN in the path when doing distributed processing
that involves a server that uses the SYSFUN schema.

�� SET
CURRENT PATH

FUNCTION
CURRENT_PATH

=
�

� �

,
(1)

schema-name
SYSTEM PATH
USER

PATH
CURRENT

FUNCTION
(2)

CURRENT_PATH
host-variable
string-constant

��

Notes:

1 SYSTEM PATH, USER and CURRENT PATH can be specified only once each.

2 This form is consistent with SQL standard name of the special register.

SET PATH

Chapter 5. Statements 865

USER
Specifies the value of the USER special register. USER can be specified only
once.

PATH
Specifies the value of the CURRENT PATH special register before the
execution of this statement. PATH can be specified only once.

host-variable
A variable with a data type of CHAR or VARCHAR. The value of host-variable
must not be null and must represent a valid schema name.

The schema name must:
v Be left justified within the host variable
v Be padded on the right with blanks if its length is less than that of the host

variable

string-constant
A character string constant that represents a valid schema name.

If the schema name specified in string-constant will also be specified in other
SQL statements and the schema name does not conform to the rules for
ordinary identifiers, the schema name must be specified as a delimited identifier
in the other SQL statements.

Notes
Restrictions on SET PATH: These restrictions apply to the SET PATH statement:

v If the same schema name appears more than once in the path, the first
occurrence of the name is used and a warning is issued.

v The length of the CURRENT PATH special register limits the number of schema
names that can be specified. DB2 builds the string for the special register by
taking each schema name specified and removing any trailing blanks from it,
adding two delimiters around it, and adding one comma after each schema name
except the last one. The length of the resulting string cannot exceed 254 bytes.

Specifying SYSIBM and SYSPROC: Schemas SYSIBM and SYSPROC do not
need to be specified in the special register. If either of these schemas is not
explicitly specified in the CURRENT PATH special register, the schema is implicitly
assumed at the front of the SQL path; if both are not specified, they are assumed in
the order of SYSIBM, SYSPROC (see “Schemas and the SQL path” on page 40 for
an example). Only the schemas that are explicitly specified in the CURRENT PATH
register are included in the 254 byte limit.

To avoid having SYSIBM or SYSPROC implicitly added to the front of the SQL path,
explicitly specify them in the path when setting the value of the register. If you
specify them at the end of the path, DB2 will check all the other schemas in the
path first.

Specifying USER versus ″USER″: There is a difference between specifying USER
with and without escape characters. To indicate that the value of the USER special
register should be used in the SQL path, specify the keyword USER. If you specify
USER as a delimited identifier instead (for example, ″USER″), it is interpreted as a
schema name of ″USER’″ For example, assuming that the current value of the
USER special register is SMITH, SET PATH = SYSIBM, SYSPROC, USER, "USER"
results in SYSIBM, SYSPROC, SMITH, USER being used in the SQL path.

SET PATH

866 SQL Reference

Specifying a schema name in an SQL procedure: Because a host variable (SQL
variable) in an SQL procedure does not begin with a colon, DB2 uses the following
rules to determine whether a value that is specified in a SET PATH=name
statement is a variable or a string constant:

v If name is the same as a parameter or SQL variable in the SQL procedure, DB2
uses name as a parameter or SQL variable and assigns the value in name to
PATH.

v If name is not the same as a parameter or SQL variable in the SQL procedure,
DB2 uses name as a string constant and assigns the value name to PATH.

The use of the path to resolve object names: For information on when the SQL
path is used to resolve unqualified data type, function, and procedure names and
when the PATH provides the SQL path, see “Schemas and the SQL path” on
page 40.

DRDA classification: The SET PATH statement is executed by the database
server and, therefore, is classified as a non-local SET statement in DRDA.

Examples
Example 1: Set the CURRENT PATH special register to the list of schemas:
″SCHEMA1″, ″SCHEMA#2″, ″SYSIBM″.

SET PATH = SCHEMA1,"SCHEMA#2", SYSIBM;

If the special register provides the SQL path, then SYSPROC, which was not
explicitly specified in the special register, is implicitly assumed at the front of the
SQL path, making the effective value of the path:

SYSPROC, SCHEMA1, SCHEMA#2, SYSIBM

Example 2: Add schema SMITH and SYSPROC to the value of the CURRENT
PATH special register that was set in Example 1.

SET PATH = CURRENT PATH, SMITH, SYSPROC;

The value of the special register becomes:
"SCHEMA1", "SCHEMA#2", "SYSIBM", "SMITH", "SYSPROC"

SET PATH

Chapter 5. Statements 867

#
#

#

#

#

#

SET transition-variable assignment
The SET transition-variable assignment statement assigns values, either of
expressions or NULL values, to transition variables.

Invocation
This statement can be used as a triggered SQL statement in the triggered action of
a before trigger whose granularity is FOR EACH ROW.

Authorization
The privileges that are held by the current authorization ID must include those
required to execute any of the expressions or assignments to transition variables.

Syntax

Description
transition-variable

Identifies a column in the set of affected rows for the trigger that is used to
used to receive the corresponding expression or NULL value on the right side
of the statement.

The value to be assigned to each transition-variable can be specified
immediately following the transition variable, for example, transition-variable =
expression, transition-variable=expression. Or, sets of parentheses can be used
to specify all the transition-variables and then all the values, for example,
(transition-variable, transition-variable) = (expression, expression).

�� SET �

� �

�

,

transition-variable= expression
NULL

, ,
(1)

(transition-variable)=(expression)
NULL

VALUES expression
NULL

,

(expression)
NULL

��

Notes:

1 The number of expressions and NULL keywords must match the number of transition-variables.

transition-variable:

�� column-name
correlation-name.

��

SET transition-variable assignment

868 SQL Reference

|
|

|
|

|

|
|

|

|
|

|

|||

|

|
|
|
|

|
|
|
|
|

correlation-name
Identifies the correlation name given for referencing the NEW transition
variables. The name must match the correlation name specified following
NEW in the REFERENCING clause of the CREATE TRIGGER statement.

If OLD is not specified in the REFERENCING clause, correlation-name
defaults to the correlation name following NEW.

column-name
Identifies the column to be updated. The name must identify a column of
the subject table. The name can identify an identity column that is defined
as GENERATED BY DEFAULT but not one defined as GENERATED
ALWAYS. You must not specify the same column more than once.

The effect of a SET transition-variable statement is equivalent to the effect of an
SQL UPDATE statement.

expression
Specifies the value to be assigned to the corresponding transition-variable. The
expression is any expression of the type described in “Expressions” on
page 110. A reference to a local special register is the value of that special
register at the server when the trigger body is activated.

An expression can contain references to OLD and NEW transition variables that
are qualified with a correlation name.

All expressions are evaluated before any result is assigned to a transition
variable. If an expression refers to a transition variable that is used in the list of
transition variables, the value of the variable in the expression is the value of
the variable prior to any assignments.

Each assignment to a transition variable column is made according to the
assignment rules described in “Assignment and comparison” on page 64.
Assignments are made in sequence through the list. When the
transition-variables are enclosed within parentheses, for example,
(transition-variable, transition-variable, ...) = (expression, expression, ...), the
first value is assigned to the first transition variable in the list, the second value
to the second transition variable in the list, and so on.

NULL
Specifies the null value and can only be specified for nullable transition
variables.

VALUES
Specifies the value to be assigned to the corresponding transition variable.
When more than one value is specified, the values must be enclosed in
parentheses. Each value can be an expression or NULL, as described above.
The following syntax is equivalent:
v (transition-variable, transition-variable) = (VALUES(expression, NULL))
v (transition-variable, transition-variable) = (expression, NULL)

Notes
Normally a locator can be used with a LOB and CLOBs are compatible with CHAR
types, but it is not necessarily true that a locator can be used with a CHAR. For
more information on using locators, see Part 2 of DB2 Application Programming and
SQL Guide

SET transition-variable assignment

Chapter 5. Statements 869

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

Examples
Example 1: Assume that you want to create a before trigger that sets the salary and
commission columns to default values for newly inserted rows in the EMPLOYEE
table and that you will define the trigger only with NEW in the REFERENCING
clause. Write the SET transition-variable statement that assigns the default values
to the SALARY and COMMISSION columns.

SET (SALARY, COMMISSION) = (50000, 8000);

Example 2: Assume that you want to create a before trigger that detects any
commission increases greater than 10% for updated rows in the EMPLOYEE table
and limits the commission increase to 10%. You will define the trigger with both
OLD and NEW in the REFERENCING clause. Write the SET transition-variable
statement that limits an increase to the COMMISSION column to 10% .

SET NEWROW.COMMISSION = 1.1 * OLDROW.COMMISSION;

SET transition-variable assignment

870 SQL Reference

|

|
|
|
|
|

|

|
|
|
|
|

|

|

SIGNAL SQLSTATE
The SIGNAL SQLSTATE statement is used to signal an error. It causes an error to
be returned with the specified SQLSTATE and error description.

Invocation
This statement can only be used in the triggered action of a trigger.

Authorization
None required.

Syntax

Description
sqlstate-string-constant

Represents an SQLSTATE. It must be a character string constant with exactly 5
characters that follow these rules for application-defined SQLSTATEs:

v Each character must be from the set of digits ('0' through '9') or non-accented
uppercase letters ('A' through 'Z').

v The SQLSTATE class (first two characters) cannot be '00', '01' or '02'
because these are not error classes.

v If the SQLSTATE class (first two characters) starts with the character '0'
through '6' or 'A' through 'H', the subclass (last three characters) must start
with a character in the range 'I' through 'Z'.

v If the SQLSTATE class (first two characters) starts with the character '7', '8',
'9', or 'I' through 'Z', the subclass (last three characters) can be any of '0'
through '9' or 'A' through 'Z'.

diagnostic-string-constant
A character string of up to 70 bytes that describes the error condition. If the
string is longer than 70 bytes, it is truncated.

Example
Consider a trigger for an order system that allows orders to be recorded in an
ORDERS table (ORDERNO, CUSTNO, PARTNO, QUANTITY) only if there is
sufficient stock in the PARTS tables. When there is insufficient stock for an order,
SQLSTATE ’75001’ is returned along with an appropriate error description.

CREATE TRIGGER CK_AVAIL
NO CASCADE BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW MODE DB2SQL
WHEN (NEW_ORDER.QUANTITY > (SELECT ON_HAND FROM PARTS

WHERE NEW_ORDER.PARTNO = PARTS.PARTNO))
BEGIN ATOMIC

SIGNAL SQLSTATE '75001' ('Insufficient stock for order');
END

�� SIGNAL SQLSTATE sqlstate-string-constant (diagnostic-string-constant) ��

SIGNAL SQLSTATE

Chapter 5. Statements 871

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table
or view. Updating a row of a view updates a row of the table on which the view is
based. The table or view can exist at the current server or at any DB2 subsystem
with which the current server can establish a connection.

There are two forms of this statement:

v The searched UPDATE form is used to update one or more rows optionally
determined by a search condition.

v The positioned UPDATE form is used to update exactly one row, as determined
by the current position of a cursor.

Invocation
This statement can be embedded in an application program or issued interactively.
A positioned UPDATE can be embedded in an application program. Both forms are
executable statements that can be dynamically prepared.

Authorization
Authority requirements depend on whether the object identified in the statement is a
user-defined table, a catalog table for which updates are allowed, or a view, and
whether SQL standard rules are in effect:

When a user-defined table is identified: The privilege set must include at least
one of the following:
v The UPDATE privilege on the table
v The UPDATE privilege on each column to be updated
v Ownership of the table
v DBADM authority on the database that contains the table
v SYSADM authority

When a catalog table is identified: The privilege set must include at least one of
the following:
v The UPDATE privilege on each column to be updated
v DBADM authority on the catalog database
v SYSCTRL authority
v SYSADM authority

When a view is identified: The privilege set must include at least one of the
following:
v The UPDATE privilege on the view
v The UPDATE privilege on each column to be updated
v SYSADM authority

When SQL standard rules are in effect: If SQL standard rules are in effect and an
expression in the SET clause contains a reference to a column of the table or view,
or if the search-condition in a searched UPDATE contains a reference to a column
of the table or view, the privilege set must include at least one of the following:
v The SELECT privilege on the table or view
v SYSADM authority

SQL standard rules are in effect as follows:

v For static SQL statements, if the SQLRULES(STD) bind option was specified

v For dynamic SQL statements, if the CURRENT RULES special register is set to
'STD'

UPDATE

872 SQL Reference

|
|
|

The owner of a view, unlike the owner of a table, might not have UPDATE authority
on the view (or might have UPDATE authority without being able to grant it to
others). The nature of the view itself can preclude its use for UPDATE. For more
information, see the discussion of authority in “CREATE VIEW” on page 658.

If an expression that refers to a function is specified, the privilege set must include
any authority that is necessary to execute the function.

If a subselect is specified, the privilege set must include authority to execute the
subselect. For more information about the subselect authorization rules, see
“Authorization” on page 300.

Privilege set: If the statement is embedded in an application program, the privilege
set is the privileges that are held by the authorization ID of the owner of the plan or
package. If the statement is dynamically prepared, the privilege set is determined
by the DYNAMICRULES behavior in effect (run, bind, define, or invoke) and is
summarized in Table 34 on page 334. (For more information on these behaviors,
including a list of the DYNAMICRULES bind option values that determine them, see
“Authorization IDs and dynamic SQL” on page 43).

UPDATE

Chapter 5. Statements 873

Syntax

Description
table-name or view-name

Identifies the object of the UPDATE statement. The name must identify a table
or view that exists at the DB2 subsystem identified by the implicitly or explicitly
specified location name. The name must not identify:

v An auxiliary table

v A created temporary table or a view of a created temporary table

v A catalog table with no updatable columns or a view of a catalog table with
no updatable columns

v A read-only view. (For a description of a read-only view, see “CREATE VIEW”
on page 658.)

searched update:

�� UPDATE table-name
view-name correlation-name

SET assignment-clause �

�
WHERE search-condition WITH RR

RS
CS

QUERYNO integer
��

positioned update:

�� UPDATE table-name
view-name correlation-name

SET assignment-clause �

� WHERE CURRENT OF cursor-name ��

assignment clause:

�� �

� �

,

column-name= expression
NULL
(scalar-fullselect)

, ,
(1)

(column-name) = (expression)
NULL

(2)
row-fullselect

��

Notes:

1 The number of expressions and NULL keywords must match the number of column-names.

2 The number of columns in the select list must match the number of column-names.

UPDATE

874 SQL Reference

In the IMS or CICS environments, the DB2 subsystem that contains the
identified table or view must not be a remote Version 2 Release 3 subsystem.

A catalog table or a view of a catalog table can be identified if every column
identified in the SET clause is an updatable column. If a column of a catalog
table is updatable, then its description in “Appendix D. DB2 catalog tables” on
page 949 indicates that the column can be updated. If the object table is
SYSIBM.SYSSTRINGS, any column other than IBMREQD can be updated, but
the rows selected for update must be rows provided by the user (the value of
the IBMREQD column is N) and only certain values can be specified as
explained in Appendix B (Volume 2) of DB2 Administration Guide .

correlation-name
Can be used within search-condition or positioned UPDATE to designate the
table or view. (For an explanation of correlation-name, see “Correlation names”
on page 95.)

SET
Introduces a list of one or more column names and the values to be assigned
to the columns.

column-name
Identifies a column to be updated. column-name must identify a column of
the specified table or view, but must not identify a ROWID column, an
identity column that is defined as GENERATED ALWAYS, or a view column
that is derived from a scalar function, constant, or expression. The column
names cannot be qualified, and the same column must not be specified
more than once.

For a positioned update, allowable column names can be further restricted
to those in a certain list. This list appears in the FOR UPDATE OF clause of
the SELECT statement for the associated cursor. The clause can be
omitted using the conditions described in “Positioned updates of columns”
on page 152.

A view column derived from the same column as another column of the
view can be updated, but both columns cannot be updated in the same
UPDATE statement.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 110. It must not include a
column function.

A column-name in an expression must identify a column of the table or
view. For each row that is updated, the value of the column in the
expression is the value of the column in the row before the row is updated.

NULL
Specifies the null value as the new value of the column. Specify NULL only
for nullable columns.

scalar-fullselect
Specifies a fullselect that returns a single row with a single column. The
column value is assigned to the corresponding column-name. If the
fullselect returns no rows, the null value is assigned; an error occurs if the
column to be updated is not nullable. An error also occurs if there is more
than one row in the result.

UPDATE

Chapter 5. Statements 875

#
#
#

|
|
|
|
|
|

For a positioned update, if the table or view that is the object of the
UPDATE statement is used in the fullselect, the column from the instance of
the table or view in the fullselect cannot be the same as column-name, the
column being updated.

The fullselect must not contain a GROUP BY or HAVING clause. If the
fullselect refers to columns to be updated, the value of such a column in the
fullselect is the value of the column in the row before the row is updated.

row-fullselect
Specifies a fullselect that returns a single row. The column values are
assigned to each of the corresponding column-names. If the fullselect
returns no rows, the null value is assigned to each column; an error occurs
if any column to be updated is not nullable. An error also occurs if there is
more than one row in the result.

For a positioned update, if the table or view that is the object of the
UPDATE statement is used in the fullselect, a column from the instance of
the table or view in the fullselect cannot be the same as column-name, a
column being updated.

The fullselect must not contain a GROUP BY or HAVING clause. If the
fullselect refers to columns to be updated, the value of such a column in the
fullselect is the value of the column in the row before the row is updated.

WHERE
Specifies the rows to be updated. You can omit the clause, give a search
condition, or name a cursor. If you omit the clause, all rows of the table or view
are updated.

search-condition
Is any search condition described in “Chapter 2. Language elements” on
page 27. Each column-name in the search condition, other than in a
subquery, must identify a column of the table or view.

The search condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.
If the unique key or primary key is a parent key, the constraints are
effectively checked at the end of the operation.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed just once, whereas it is possible
that a subquery with a correlated reference must be executed once for each
row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor name
must identify a declared cursor as explained in “DECLARE CURSOR” on
page 665.

If the UPDATE statement is embedded in a program, the DECLARE
CURSOR statement must include a select-statement rather than a
statement-name.

The object of the UPDATE statement must also be identified in the FROM
clause of the SELECT statement of the cursor. The columns to be updated
can be identified in the FOR UPDATE OF clause of that SELECT statement
though they do not have to be identified. If the columns are not specified,

UPDATE

876 SQL Reference

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

the columns that can be updated include all the updatable columns of the
table or view that is identified in the first FROM clause of the fullselect.

The result table of the cursor must not be read-only. For an explanation of
read-only result tables, see “Read-only cursors” on page 668. Note that the
object of the UPDATE statement must not be identified as the object of the
subquery in the WHERE clause of the SELECT statement of the cursor.

When the UPDATE statement is executed, the cursor must be positioned
on the row to be updated.

If the application process has another cursor positioned on the updated row,
the position of that cursor is changed to be before the next row.

The successful or unsuccessful execution of a positioned update operation
does not change the position of the cursor. However, it is possible for an
error to make the position of the error invalid, in which case, the cursor is
closed. It is also possible for an update operation to cause a rollback, in
which case, the cursor is closed.

WITH
Specifies the isolation level used when locating the rows to be updated by the
statement.
RR Repeatable read
RS Read stability
CS Cursor stability

The default isolation level of the statement is the isolation level of the package
or plan in which the statement is bound, with the package isolation taking
precedence over the plan isolation. When a package isolation is not specified,
the plan isolation is the default.

QUERYNO integer
Specifies the number to be used for this SQL statement in EXPLAIN output and
trace records. The number is used for the QUERYNO column of the plan table
for the rows that contain information about this SQL statement. This number is
also used in the QUERYNO column of the SYSIBM.SYSSTMT and
SYSIBM.SYSPACKSTMT catalog tables.

If the clause is omitted, the number associated with the SQL statement is the
statement number assigned during precompilation. Thus, if the application
program is changed and then precompiled, that statement number might
change.

Using the QUERYNO clause to assign unique numbers to the SQL statements
in a program is helpful:
v For simplifying the use of optimization hints for access path selection
v For correlating SQL statement text with EXPLAIN output in the plan table

For information on using optimization hints, such as enabling the system for
optimization hints and setting valid hint values, and for information on accessing
the plan table, see Part 5 (Volume 2) of DB2 Administration Guide.

Notes
Update rules: Update values must satisfy the following rules. If they do not, or if
other errors occur during the execution of the UPDATE statement, no rows are
updated and the position of the cursors are not changed.

v Assignment. Update values are assigned to columns using the assignment rules
described in “Chapter 2. Language elements” on page 27.

UPDATE

Chapter 5. Statements 877

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

v Uniqueness constraints. The updated row must conform to any constraints
imposed on the table (or on the base table of the view) by any unique index on
an updated column. For a multiple-row update of a unique key, the uniqueness
constraint is effectively checked at the end of the operation.

v Referential constraints. A nonnull update value of a foreign key must be equal to
some value of the parent key of the parent table of the relationship.

v Check constraints. The table (or base table of the view) might have one or more
check constraints. Each row updated must conform to the conditions imposed by
those check constraints. Thus, each check condition must be true or unknown.

v Field and validation procedures. The updated row must conform to any
constraints imposed by any field or validation procedures on the table (or on the
base table of the view).

v Views and the WITH CHECK OPTION. For views defined with WITH CHECK
OPTION, an updated row must conform to the definition of the view. If the view
you name is dependent on other views whose definitions include WITH CHECK
OPTION, the updated rows must also conform to the definitions of those views.
For an explanation of the rules governing this situation, see “CREATE VIEW” on
page 658.

For views that are not defined with WITH CHECK OPTION, you can change the
rows so that they no longer conform to the definition of the view. Such rows are
updated in the base table of the view and no longer appear in the view.

v Triggers. An UPDATE statement might cause triggers to be activated. A trigger
might cause other statements to be executed or raise error conditions based on
the update values.

Number of rows updated: Normally, after an UPDATE statement completes
execution, the value of SQLERRD(3) in the SQLCA is the number of rows updated.
(For a complete description of the SQLCA, including exceptions to the preceding
sentence, see “SQL communication area (SQLCA)” on page 923.)

Nesting user-defined functions or stored procedures: An UPDATE statement
can implicitly or explicitly refer to user-defined functions or stored procedures. This
is known as nesting of SQL statements. A user-defined function or stored procedure
that is nested within the UPDATE must not access the table being updated.

Locking: Unless appropriate locks already exist, one or more exclusive locks are
acquired by the execution of a successful UPDATE statement. Until a commit or
rollback operation releases the locks, only the application process that performed
the insert can access the updated row. If LOBs are not updated, application
processes that are running with uncommitted read can also access the updated
row. The locks can also prevent other application processes from performing
operations on the table. However, application processes that are running with
uncommitted read can access locked pages and rows.

Locks are not acquired on declared temporary tables.

Updating keys of partitioning indexes: If an updated column is a partitioning key
or part of a partitioning key and the update causes a row to move to a different
partition, DB2 tries to take exclusive control of the following objects to perform the
update:

v The partition of the table space in which the row resides, the partition to which
the row is moving, and all the partitions in between the two partitions

v The partition of the partitioning index in which the key resides, the partition to
which the key is moving, and all the partitions in between the two partitions

UPDATE

878 SQL Reference

v The nonpartitioning indexes defined on the table space

If DB2 cannot take control of these objects, the update fails.

Datetime representation when using datetime registers: As explained under
“Datetime special registers” on page 84, when two or more datetime registers are
implicitly or explicitly specified in a single SQL statement, they represent the same
point in time. This is also true when multiple rows are updated.

Rules for positioned UPDATE with a SENSITIVE STATIC scrollable cursor:
When a SENSITIVE STATIC scrollable cursor has been declared, the following
rules apply:

v Update attempt of delete holes. If, with a positioned update against a SENSITIVE
STATIC scrollable cursor, an attempt is made to update a row that has been
identified as a delete hole, an error occurs.

v Update operations. Positioned update operations with SENSITIVE STATIC
scrollable cursors perform as follows:

1. The SELECT list items in the target row of the base table of the cursor are
compared with the values in the corresponding row of the result table (that is,
the result table must still agree with the base table). If the values are not
identical, then the update operation is rejected, and an error occurs. The
operation may be attempted again after a successful FETCH SENSITIVE has
occurred for the target row.

2. The WHERE clause of the SELECT statement is re-evaluated to determine
whether the current values in the base table still satisfy the search criteria.
The values in the SELECT list are compared to determine that these values
have not changed. If the WHERE clause evaluates as true, and the values in
the SELECT have not changed, the update operation is allowed to proceed.
Otherwise, the update operation is rejected, an error occurs, and an update
hole appears in the cursor.

v Update of update holes. Update holes are not permanent. It is possible for
another process, or a searched update in the same process, to update an update
hole row so that it is no longer an update hole. Update holes become visible with
a FETCH SENSITIVE for positioned updates and positioned deletes.

v Result table. After the base table is updated, the row is re-evaluated and updated
in the temporary result table. At this time, it is possible that the positioned update
changed the data such that the row does not qualify the search condition, in
which case the row is marked as an update hole for subsequent FETCH
operations.

Examples
The following examples refer to the sample table DSN8710.EMP.

Example 1: Change employee 000190’s telephone number to 3565 in
DSN8710.EMP.

UPDATE DSN8710.EMP
SET PHONENO='3565'
WHERE EMPNO='000190';

Example 2: Give each member of department D11 a 100-dollar raise.
UPDATE DSN8710.EMP

SET SALARY = SALARY + 100
WHERE WORKDEPT = 'D11';

UPDATE

Chapter 5. Statements 879

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

Example 3: Employee 000250 is going on a leave of absence. Set the employee’s
pay values (SALARY, BONUS, and COMMISSION) to null.

UPDATE DSN8710.EMP
SET SALARY = NULL, BONUS = NULL, COMM = NULL
WHERE EMPNO='000250';

Alternatively, the statement could also be written as follows:
UPDATE DSN8710.EMP

SET (SALARY, BONUS, COMM) = (NULL, NULL, NULL)
WHERE EMPNO='000250';

Example 4: Assume that a column named PROJSIZE has been added to
DSN8710.EMP. The column records the number of projects for which the
employee’s department has responsibility. For each employee in department E21,
update PROJSIZE with the number of projects for which the department is
responsible.

UPDATE DSN8710.EMP
SET PROJSIZE = (SELECT COUNT(*)

FROM DSN8710.PROJ
WHERE DEPTNO = 'E21')

WHERE WORKDEPT = 'E21';

Example 5: Double the salary of the employee represented by the row on which the
cursor C1 is positioned.

EXEC SQL UPDATE DSN8710.EMP
SET SALARY = 2 * SALARY
WHERE CURRENT OF C1;

Example 6: Assume that employee table EMP1 was created with the following
statement:

CREATE TABLE EMP1
(EMP_ROWID ROWID GENERATED ALWAYS,
EMPNO CHAR(6),
NAME CHAR(30),
SALARY DECIMAL(9,2),
PICTURE BLOB(250K),
RESUME CLOB(32K));

Assume that host variable HV_EMP_ROWID contains the value of the ROWID
column for employee with employee number ’350000’. Using that ROWID value to
identify the employee and user-defined function UPDATE_RESUME, increase the
employee’s salary by $1000 and update that employee’s resume.

EXEC SQL UPDATE EMP1
SET SALARY = SALARY + 1000,

RESUME = UPDATE_RESUME(:HV_RESUME)
WHERE EMP_ROWID = :HV_EMP_ROWID;

Example 7: In employee table X, give each employee whose salary is below
average a salary increase of 10%.

EXEC SQL UPDATE EMP X
SET SALARY = 1.10 * SALARY
WHERE SALARY < (SELECT AVG(SALARY) FROM EMP Y
WHERE X.JOBCODE = Y.JOBCODE);

Example 8: Raise the salary of the employees in department ’E11’ whose salary is
below average to the average salary.

UPDATE

880 SQL Reference

|
|

|
|
|
|

|
|

EXEC SQL UPDATE EMP T1
SET SALARY = (SELECT AVG(T2.SALARY) FROM EMP T2)
WHERE WORKDEPT = 'E11' AND

SALARY < (SELECT AVG(T3.SALARY) FROM EMP T3);

Example 9: Give the employees in department ’E11’ a bonus equal to 10% of their
salary.

EXEC SQL
DECLARE C1 CURSOR FOR

SELECT BONUS
FROM DSN8710.EMP
WHERE WORKDEPT = 'E12'
FOR UPDATE OF BONUS;

EXEC SQL
UPDATE DSN8710.EMP

SET BONUS = (SELECT .10 * SALARY FROM DSN8710.EMP Y
WHERE EMPNO = Y.EMPNO)

WHERE CURRENT OF C1;

UPDATE

Chapter 5. Statements 881

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

VALUES
The VALUES statement provides a method for invoking a user-defined function from
a trigger. Transition variables and transition tables can be passed to the
user-defined function.

Invocation
This statement can only be used in the triggered action of a trigger.

Authorization
EXECUTE authority is needed on any user-defined function that is referenced in the
VALUES clause.

Syntax

Description
VALUES

Specifies one or more expressions. If more than one expression is specified,
the expressions must be enclosed within parentheses.

expression
Any expression of the type described in “Expressions” on page 110. The
expression must not contain a host variable.

The expressions are evaluated, but the resulting values are discarded and are
not assigned to any output variables.

If a user-defined function is specified as part of an expression, the user-defined
function is invoked. If a negative SQLCODE is returned when the function is
invoked, DB2 stops executing the trigger and rolls back any triggered actions
that were performed.

Example
Example: Create an after trigger EMPISRT1 that invokes user-defined function
NEWEMP when the trigger is activated. An insert operation on table EMP activates
the trigger. Pass transition variables for the new employee number, last name, and
first name to the user-defined function.

CREATE TRIGGER EMPISRT1
AFTER INSERT ON EMP
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC

VALUES(NEWEMP(N.EMPNO, N.LASTNAME, N.FIRSTNAME));
END

�� VALUES

�

expression
,

(expression)

��

VALUES

882 SQL Reference

VALUES INTO
The VALUES INTO statement assigns one or more values to host variables.

Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
EXECUTE authority is needed on any user-defined function that is referenced in the
VALUES statement.

Syntax

Description
VALUES

Introduces one or more values. If more than one value is specified, the list of
values must be enclosed within parentheses.

expression
Any expression of the type described in “Expressions” on page 110. The
expression must not include a column name.

NULL
The null value. NULL can only be specified for host variables that have an
associated indicator variable.

INTO
Introduces one or more host variables. The values that are specified in the
VALUES clause are assigned to these host variables. The first value specified
is assigned to the first host variable, the second value to the second host
variable, and so on. Each assignment is made according to the rules described
in “Assignment and comparison” on page 64. Assignments are made in
sequence through the list. If there are fewer host variables than values, the
value 'W' is assigned to the SQLWARN3 field of the SQLCA. (See “SQL
communication area (SQLCA)” on page 923.)

host-variable
Identifies a variable that is described in the program according to the rules
for declaring host variables.

Notes
The default encoding scheme for the data is the value in the bind option
ENCODING, which is the option for application encoding.

�� VALUES

�

expression
NULL

,

(expression)
NULL

INTO �

,

host-variable ��

VALUES INTO

Chapter 5. Statements 883

|
|

If an error occurs, no value is assigned to any host variable. However, if LOB
values are involved, there is a possibility that the corresponding host variable was
modified, but the variable’s contents are unpredictable.

Local special registers can be referenced only in a VALUES INTO statement that
results in the assignment of a single host variable and not those that result in
setting more than one value.

Normally a locator can be used with a LOB and CLOBs are compatible with CHAR
types, but it is not necessarily true that a locator can be used with a CHAR. For
more information on using locators, see Part 2 of DB2 Application Programming and
SQL Guide.

Examples
Example 1: Assign the value of the CURRENT PATH special register to host
variable HV1.

EXEC SQL VALUES(CURRENT PATH)
INTO :HV1;

Example 2: Assign the value of the CURRENT MEMBER special register to host
variable MEM.

EXEC SQL VALUES(CURRENT MEMBER)
INTO :MEM;

Example 3: Assume that LOB locator LOB1 is associated with a CLOB value.
Assign a portion of the CLOB value to host variable DETAILS using the LOB
locator.

EXEC SQL VALUES (SUBSTR(:LOB1,1,35))
INTO :DETAILS;

VALUES INTO

884 SQL Reference

|
|
|

|
|

|
|

|

WHENEVER
The WHENEVER statement specifies the host language statement to be executed
when a specified exception condition occurs.

Invocation
This statement can only be embedded in an application program, except in REXX
programs. It is not an executable statement.

Authorization
None required.

Syntax

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 (equivalently, an
SQLSTATE code of '02000').

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is W),
or that results in a positive SQLCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed
when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, optionally preceded by a colon. The form of the token depends on
the host language. In COBOL, for example, it can be section-name or an
unqualified paragraph-name.

Notes
There are three types of WHENEVER statements:
v WHENEVER NOT FOUND
v WHENEVER SQLERROR
v WHENEVER SQLWARNING

Every executable SQL statement in an application program is within the scope of
one implicit or explicit WHENEVER statement of each type. The scope of a

�� WHENEVER NOT FOUND CONTINUE
SQLERROR GOTO host-label
SQLWARNING GO TO :

��

WHENEVER

Chapter 5. Statements 885

WHENEVER statement is related to the listing sequence of the statements in the
application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that type
in which CONTINUE is specified. If a WHENEVER statement is specified in a
Fortran subprogram, its scope is that subprogram, not the source program.

Examples
The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.
EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

WHENEVER

886 SQL Reference

Chapter 6. SQL procedure statements

An SQL procedure consists of a CREATE PROCEDURE statement with a
procedure body. The procedure body contains the source statements for the stored
procedure, which are called SQL procedure statements.

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the statements that constitute the procedure body.

© Copyright IBM Corp. 1982, 2001 887

SQL-procedure-statement
If an SQL control statement is specified as the procedure body, multiple statements
can be specified within the control statement. These statements are defined as SQL
procedure statements.

Syntax

Description
SQL-control-statement

Specifies an SQL statement that provides the capability to control logic flow,
declare and set variables, and handle warnings and exceptions, as defined in
this chapter. Control statements are supported in SQL procedures.

SQL-statement
Specifies an SQL statement as listed in Table 67 on page 919. These
statements are described in “Chapter 5. Statements” on page 329.

Notes
Comments: Comments can be included within the body of an SQL procedure. A
comment begins with /* and ends with */. The following rules apply:
v The beginning characters /* must be on the same line.
v The ending characters */ must be on the same line.
v Comments can be started wherever a space is valid.
v Comments can be continued to the next line.

Resolving names: The name of an SQL parameter or SQL variable in an SQL
procedure can be the same as the name of an identifier used in certain SQL
statements. If the name is not qualified, the following rules describe whether the
name refers to the identifier or to the SQL parameter or SQL variable:

v In the SET PATH statement, the name is checked as an SQL parameter or SQL
variable name. If not found as an SQL variable or SQL parameter name, it will
then be used as an identifier.

v In the CONNECT statement, the name is used as an identifier.

�� SQL-control-statement
SQL-statement

��

SQL-control-statement:

�� assignment-statement
CALL statement
CASE statement
compound-statement
GET DIAGNOSTICS statement
GOTO statement
IF statement
LEAVE statement
LOOP statement
REPEAT statement
WHILE statement

��

SQL-procedure-statement

888 SQL Reference

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

assignment-statement
The assignment statement assigns a value to an output parameter or to an SQL
variable.

Syntax

Description
label

Specifies the label for the assignment statement. A label is an SQL ordinary
identifier that is 1 to 64 bytes in length. The label must be unique within the
SQL procedure.

SQL-parameter-name
Identifies the parameter that is the assignment target. The parameter must be
specified in parameter-declaration in the CREATE PROCEDURE statement and
must be defined as OUT or INOUT.

SQL-variable-name
Identifies the SQL variable that is the assignment target. An SQL variable must
be declared before it is used. For information on declaring SQL variables, see
“compound-statement” on page 895..

expression or NULL
Specifies the expression or value that is the assignment source. See
“Expressions” on page 110 for information on expressions.

Notes
Assignment statements in SQL procedures must conform to the SQL assignment
rules. For example, the data type of the target and source must be compatible. See
“Assignment and comparison” on page 64 for assignment rules.

If an assignment statement is the only statement in the procedure body, the
statement cannot end with a semicolon. Otherwise, the statement must end with a
semicolon.

Assigning string values: When a string is assigned to a fixed-length variable and
the length of the string is less than the length attribute of the target, the string is
padded on the right with the necessary number of single-byte or double-byte
blanks. When a string is assigned to a variable and the string is longer than the
length attribute of the variable, a negative SQLCODE is set.

Assigning numeric values: If truncation of the whole part of a number occurs on
assignment to a numeric variable, a negative SQLCODE is set.

Assigning expressions with user-defined functions: expression cannot include a
user-defined function that is defined with MODIFIES SQL DATA.

Assignment rules for procedure parameters: An IN parameter can appear on the
left or right side of an assignment statement. When control returns to the caller, the

��
label:

SET SQL-parameter-name = expression
SQL-variable-name NULL

��

assignment-statement (SQL procedure)

Chapter 6. SQL procedure statements 889

|
|

original value of an IN parameter is passed to the caller. An OUT parameter can
also appear on the left or right side of an assignment statement. When control
returns to the caller, the last value that is assigned to an OUT parameter is returned
to the caller. For an INOUT parameter, the first value of the parameter is
determined by the caller, and the last value that is assigned to the parameter is
returned to the caller.

Examples
Increase the SQL variable p_salary by 10 percent.
SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value.
SET p_salary = NULL

Set SQL variable midinit to the first character of SQL variable midname.
SET midinit = SUBSTR(midname,1,1)

assignment-statement (SQL procedure)

890 SQL Reference

|
|
|
|
|
|

CALL statement
The CALL statement invokes a stored procedure.

Syntax

Description
procedure-name

Identifies the stored procedure to call. The procedure name must identify a
stored procedure that exists at the current server.

Parameters (SQL-variable-name, SQL-parameter-name, expression, NULL)
Identifies a list of values to be passed as parameters to the stored procedure.
The number of parameters must be the same as the number of parameters
defined for the stored procedure. See “CALL” on page 434 for more information.

Control is passed to the stored procedure according to the calling conventions
for SQL procedures. When execution of the stored procedure is complete, the
value of each parameter of the stored procedure is assigned to the
corresponding parameter of the CALL statement defined as OUT or INOUT.

SQL-variable-name or SQL-parameter-name
Identifies a parameter to pass to or from the stored procedure. The data
type must be compatible with the data type of the corresponding parameter
in the stored procedure.

expression
The parameter is the result of the specified expression, which is evaluated
before the stored procedure is invoked. If expression is a single
SQL-parameter-name or SQL-variable-name, the corresponding parameter
of the procedure can be defined as IN, INOUT, or OUT. Otherwise, the
corresponding parameter of the procedure must be defined as IN. If the
result of the expression can be the null value, either the description of the
procedure must allow for null parameters or the corresponding parameter of
the stored procedure must be defined as OUT.

The following additional rules apply depending on how the corresponding
parameter was defined in the CREATE PROCEDURE statement for the
procedure:

v IN expression can contain references to multiple SQL parameters or
variables. In addition to the rules stated in “Expressions” on page 110 for
expression, expression cannot include a column name or column function
or a user-defined function that is sourced on a column function.

v INOUT or OUT expression can only be a single SQL parameter or
variable.

�� CALL procedure-name

�

()
,

SQL-variable-name
SQL-parameter-name
expression
NULL

��

CALL (SQL procedure)

Chapter 6. SQL procedure statements 891

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

NULL
The parameter is a null value. The corresponding parameter of the
procedure must be defined as IN and the description of the procedure must
allow for null parameters.

Notes
If a CALL statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

See “CALL” on page 434 for more information on the SQL CALL statement.

Examples
Call stored procedure proc1 and pass SQL variables as parameters.
CALL proc1(v_empno, v_salary)

CALL (SQL procedure)

892 SQL Reference

|
|
|
|

|

CASE statement
The CASE statement selects an execution path based on the evaluation of one or
more conditions. A CASE statement operates in the same way as a CASE
expression, which is discussed in “CASE expressions” on page 123.

Syntax

Description
CASE

Begins a case-expression.

simple-case-statement-when-clause
Specifies the expression prior to the first WHEN keyword that is tested for
equality with the value of each expression that follows the WHEN keyword, and
the result to be executed when those expressions are equal. If the comparison
is true, the THEN statement is executed. If the result is unknown or false,
processing continues to the next expression or the ELSE statement.

The data type of the expression prior to the first WHEN keyword must be
comparable to the data types of each expression that follows the WHEN
keywords.

searched-case-statement-when-clause
Specifies the search-condition that is applied to each row or group of table data
presented for evaluation, and the result when that condition is true. If the search
condition is true, the THEN statement is executed. If the condition is unknown
or false, processing continues to the next search condition or the ELSE
statement.

SQL-procedure-statement
Specifies a statement that follows the THEN and ELSE keyword. The statement

�� CASE simple-case-statement-when-clause
searched-case-statement-when-clause

�ELSE SQL-procedure-statement ;

�

� END CASE ��

simple-case-statement-when-clause:

�� expression � �WHEN expression THEN SQL-procedure-statement ; ��

searched-case-statement-when-clause:

�� � �WHEN search-condition THEN SQL-procedure-statement ; ��

CASE (SQL procedure)

Chapter 6. SQL procedure statements 893

|
|
|
|
|

|
|
|
|
|

specifies the result of a searched-case-statement-when-clause or a
simple-case-statement-when-clause that is true, or the result if no case is true.
The statement must be one of the statements listed under
“SQL-procedure-statement” on page 888.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of
table data. The search condition cannot contain a subselect.

END CASE
Ends a case-statement.

Notes
If none of the conditions specified in the WHEN are true, and an ELSE is not
specified, an error is issued when the statement executes and the execution of the
CASE statement is terminated.

CASE statements that use a simple case statement WHEN clause can be nested
up to three levels. CASE statements that use a searched statement WHEN clause
have no limit to the number of nesting levels.

If a CASE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Ensure that your CASE statement covers all possible execution conditions.

Examples
Use a simple case statement WHEN clause to update column DEPTNAME in table
DEPT, depending on the value of SQL variable v_workdept.
CASE v_workdept
WHEN 'A00'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 1';

WHEN 'B01'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 2';

ELSE UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 3';

END CASE

Use a searched case statement WHEN clause to update column DEPTNAME in
table DEPT, depending on the value of SQL variable v_workdept.
CASE
WHEN v_workdept < 'B01'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 1';

WHEN v_workdept < 'C01'
THEN UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 2';

ELSE UPDATE DEPT SET
DEPTNAME = 'DATA ACCESS 3';

END CASE

CASE (SQL procedure)

894 SQL Reference

|

|
|
|
|
|
|
|
|
|
|

compound-statement
A compound statement contains a group of statements and declarations for SQL
variables, cursors, and condition handlers.

Syntax

��
label:

BEGIN
NOT ATOMIC

� SQL-variable-declaration ;
condition-declaration
return-codes-declaration

�

�

� DECLARE-CURSOR-statement ; � handler-declaration ;

�

� � SQL-procedure-statement ; END
label

��

SQL-variable-declaration:

�� DECLARE �

,
DEFAULT NULL

SQL-variable-name data-type
DEFAULT constant

RESULT_SET_LOCATOR VARYING
TABLE LIKE table-name AS LOCATOR

��

condition-declaration:

�� DECLARE condition-name CONDITION FOR
SQLSTATE VALUE

SQLSTATE
VALUE

string-constant ��

compound-statement (SQL procedure)

Chapter 6. SQL procedure statements 895

Description
label

Defines the label for the code block. If the beginning label is specified, it can be
used to qualify SQL variables declared in the compound statement and can
also be specified on a LEAVE statement. If the ending label is specified, it must
be the same as the beginning label.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

NOT ATOMIC
NOT ATOMIC indicates that an error within the compound statement does not
cause the compound statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

return-codes-declaration:

��
DEFAULT '00000'

DECLARE SQLSTATE CHAR(5)
DEFAULT constant

DEFAULT 0
SQLCODE INTEGER

DEFAULT constant

��

handler-declaration:

�� DECLARE CONTINUE
EXIT

HANDLER FOR specific-condition-value
general-condition-value

SQL-procedure-statement ��

specific-condition-value:

�� �

,
VALUE

SQLSTATE string
condition-name

��

general-condition-value:

�� SQLEXCEPTION
SQLWARNING
NOT FOUND

��

compound-statement (SQL procedure)

896 SQL Reference

|

|||

|
|
|

|

|

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL
procedure body. The unqualified form of an SQL variable name is an SQL
identifier of 1 to 18 bytes. If the SQL variable is a delimited identifier, the
contents of the delimited identifier must conform to the rules for ordinary
identifiers. The qualified form is an SQL procedure statement label followed
by a period (.) and an SQL identifier.

DB2 folds all SQL variable names to uppercase. If an SQL reserved word is
used as an SQL variable, the SQL variable must be delimited. SQL variable
names should not be the same as column names. If an SQL statement
contains an SQL variable or parameter and a column reference with the
same name, DB2 interprets the name as an SQL variable or parameter
name. To refer to the column, qualify the column name with the table name.
Further, to avoid ambiguous variable references and to ensure compatibility
with other DB2 platforms, qualify the SQL variable or parameter name with
the label of the SQL procedure statement.

data-type
Specifies the data type and length of the variable. SQL variables follow the
same rules for default lengths and maximum lengths as SQL procedure
parameters. See “CREATE PROCEDURE (SQL)” on page 584 for a
description of SQL data types and lengths. An SQL variable cannot have a
BLOB, CLOB, DBCLOB data type.

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable is initialized when the
SQL procedure is called. If a default value is not specified, the variable is
initialized to NULL.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

TABLE LIKE table-name AS LOCATOR
Specifies the data type for a table locator. table-name identifies the table
that the locator is defined for.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name is a long SQL
identifier that must be unique within the procedure body and can be
referenced only within the compound statement in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string
must be specified as five characters enclosed in single quotes, and cannot
be '00000'.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set
automatically to the value returned after processing an SQL statement. Both the
SQLSTATE and SQLCODE variables can be declared only in the outermost
compound statement of the SQL procedure. Assignment to these variables is
not prohibited; however, assignment is ignored by exception handlers, and
processing the next SQL statement replaces the assigned value.

DECLARE-CURSOR-statement
Declares a cursor. Each cursor in the procedure body must have a unique
name. An OPEN statement must be specified to open the cursor, and a FETCH

compound-statement (SQL procedure)

Chapter 6. SQL procedure statements 897

|
|
|

#
#

|
|

|
|
|

|
|
|
|
|
|
|

|
|

statement can be specified to read rows. The cursor can be referenced only
from within the compound statement. For more information on declaring a
cursor, see “DECLARE CURSOR” on page 665.

handler-declaration
Specifies a set of statements to execute when an exception or completion
condition occurs in the compound statement. SQL-procedure-statement is the
set of statements that execute when the handler receives control. See
“SQL-procedure-statement” on page 888 for information on
SQL-procedure-statement.

A handler is active only within the compound statement in which it is declared.

The actions that a handler can perform are:

CONTINUE
After the handler is invoked successfully, control is returned to the SQL
statement that follows the statement that raised the exception. If the error
that raised the exception is an IF, CASE, WHILE, or REPEAT statement,
control returns to the statement that follows END IF, END CASE, END
WHILE, or END REPEAT.

EXIT
After the handler is invoked successfully, control is returned to the end of
the compound statement.

The conditions that can cause the handler to gain control are:

SQLSTATE string
Specifies an SQLSTATE for which the handler is invoked. The SQLSTATE
cannot be '00000'.

condition-name
Specifies a condition name for which the handler is invoked. The condition
name must be previously defined in a condition declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs. An
SQLEXCEPTION is an SQLSTATE in which the class code is a value other
than "00", "01", or "02". For more information on SQLSTATE values, see
Appendix C of DB2 Messages and Codes.

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs. An
SQLWARNING is an SQLSTATE value with a class code of "01".

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs.
NOT FOUND corresponds to an SQLSTATE value with a class code of
"02".

Notes
The order of statements in a compound statement must be:
1. SQL variable, condition declarations, and return codes declarations
2. Cursor declarations
3. Handler declarations
4. SQL procedure statements

Compound statements cannot be nested.

compound-statement (SQL procedure)

898 SQL Reference

|
|
|

|

Unlike host variables, SQL variables are not preceded by colons when they are
used in SQL statements.

The following rules apply to handlers:

v A handler declaration that contains SQLEXCEPTION, SQLWARNING, or NOT
FOUND cannot contain additional SQLSTATE or condition names.

v Handler declarations within the same compound statement cannot contain
duplicate conditions.

v A handler declaration cannot contain the same condition code or SQLSTATE
value more than once, and cannot contain an SQLSTATE value and a condition
name that represent the same SQLSTATE value.

v A handler is activated when it is the most appropriate handler for an exception or
completion condition.

v If an error occurs for which there is no handler, execution of the compound
statement is terminated.

v A handler cannot be activated by an assignment statement that assigns a value
to SQLSTATE.

The following rules and recommendations apply to the SQLCODE and SQLSTATE
special variables:

v A null value cannot be assigned to SQLSTATE or SQLCODE.

v The SQLSTATE and SQLCODE variable values should be saved immediately to
temporary variables if there is any intention to use the values. If a handler exists
for SQLSTATE, this assignment must be done as the first statement to be
processed in the handler to avoid having the value replaced by the next SQL
procedure statement. If the condition raised by the SQL statement is handled, the
value is changed by the first SQL statement contained in the handler.

If a compound statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Create a procedure body with a compound statement that performs the following
actions:

v Declares SQL variables, a condition for SQLSTATE '02000', a handler for the
condition, and a cursor

v Opens the cursor, fetches a row, and closes the cursor
CREATE PROCEDURE PROC1(OUT NOROWS INT) LANGUAGE SQL
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE v_edlevel SMALLINT;
DECLARE v_salary DECIMAL(9,2);
DECLARE at_end INT DEFAULT 0;
DECLARE not_found
CONDITION FOR '02000';
DECLARE c1 CURSOR FOR
SELECT FIRSTNME, MIDINIT, LASTNAME,
EDLEVEL, SALARY
FROM EMP;
DECLARE CONTINUE HANDLER FOR not_found SET NOROWS=1;
OPEN c1;

compound-statement (SQL procedure)

Chapter 6. SQL procedure statements 899

|
|

|
|
|
|
|
|

FETCH c1 INTO v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
CLOSE c1;
END

compound-statement (SQL procedure)

900 SQL Reference

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL
statement that was executed.

Syntax

Description
SQL-variable-name

Identifies the SQL variable that is the assignment target. The SQL variable must
be declared as an integer variable. For information on declaring SQL variables,
see “compound-statement” on page 895.

ROW_COUNT
Identifies the number of rows that are associated with the previous SQL
statement that was executed. If the previous SQL statement is a DELETE,
INSERT, or UPDATE statement, ROW_COUNT identifies the number of rows
that were deleted, inserted, or updated by the SQL statement. That number
does not include rows that were deleted, inserted, or updated because of
referential constraints or triggered actions. If the previous statement is another
SQL statement, the value that is returned has no meaning.

Notes
The GET DIAGNOSTICS statement does not change the contents of the SQLCA. If
SQLCODE and SQLSTATE variables are declared in the SQL procedure, those
variables contain the SQLCODE and SQLSTATE from the previous SQL statement.

Examples
Use a GET DIAGNOSTICS statement to determine how many rows were updated
by the previous SQL statement.
BEGIN
DECLARE rcount INTEGER;
UPDATE PROJ
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = deptnbr;
GET DIAGNOSTICS rcount = ROW_COUNT;
END

�� GET DIAGNOSTICS SQL-variable-name = ROW_COUNT ��

GET DIAGNOSTICS (SQL procedure)

Chapter 6. SQL procedure statements 901

GOTO statement
The GOTO statement is used to branch to a user-defined label within an SQL
procedure.

Syntax

Description
label

Specifies a labelled statement at which processing is to continue.

The labelled statement and the GOTO statement must be in the same scope.
The following rules apply to the scope:

v If the GOTO statement is defined in a compound statement, label must be
defined inside the same compound statement. label cannot be in a nested
compound statement.

v If the GOTO statement is defined in a handler, label must be defined in the
same handler and follow the other scope rules.

v If the GOTO statement is defined outside of a handler, label must not be
defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an
error is returned.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

Notes
Use the GOTO statement sparingly. Because the GOTO statement interferes with
the normal sequence of processing, it makes an SQL procedure more difficult to
read and maintain. Before using a GOTO statement, determine whether some other
statement, such as an IF statement or LEAVE statement, can be used instead.

Examples
Use a GOTO statement to transfer control to the end of a compound statement if
the value of an SQL variable is less than 600.
BEGIN
DECLARE new_salary DECIMAL(9,2);
DECLARE service DECIMAL(8,2);
SELECT SALARY, CURRENT_DATE - HIREDATE
INTO new_salary, service
FROM EMP
WHERE EMPNO = v_empno;
IF service < 600
THEN GOTO EXIT1;
END IF;
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);

ELSEIF rating = 2
THEN SET new_salary =

�� GOTO label ��

GOTO (SQL procedure)

902 SQL Reference

|
|

new_salary + (new_salary * .05);
END IF;
UPDATE EMP
SET SALARY = new_salary
WHERE EMPNO = v_empno;
EXIT1: SET return_parm = service;
END

GOTO (SQL procedure)

Chapter 6. SQL procedure statements 903

IF statement
The IF statement selects an execution path based on the evaluation of a condition.

Syntax

Description
search-condition

Specifies the condition for which an SQL statement should be invoked. If the
condition is unknown or false, processing continues to the next search condition
until either a condition is true or processing reaches the ELSE clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is true.
If no search-condition evaluates to true, then the SQL-procedure-statement
following the ELSE keyword is invoked. The statement must be one of the
statements listed under “SQL-procedure-statement” on page 888.

Examples
Assign a value to the SQL variable new_salary based on the value of SQL variable
rating.
IF rating = 1
THEN SET new_salary =
new_salary + (new_salary * .10);
ELSEIF rating = 2
THEN SET new_salary =
new_salary + (new_salary * .05);

ELSE SET new_salary =
new_salary + (new_salary * .02);

END IF

�� IF search-condition THEN � SQL-procedure-statement ; �

� �

�ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

�ELSE SQL-procedure-statement ;

END IF ��

IF (SQL procedure)

904 SQL Reference

|
|
|

|
|
|

LEAVE statement
The LEAVE statement transfers program control out of a loop or a compound
statement.

Syntax

Description
label

Specifies the label of the compound statement or loop to exit.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

Notes
When a LEAVE statement transfers control out of a compound statement, all open
cursors in the compound statement, except cursors that are used to return result
sets, are closed.

If a LEAVE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a LEAVE statement to transfer control out of a LOOP statement when a
negative SQLCODE occurs.
ftch_loop: LOOP
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE=100 THEN LEAVE ftch_loop;
END IF;
END LOOP

�� LEAVE label ��

LEAVE (SQL procedure)

Chapter 6. SQL procedure statements 905

|
|

|

|
|

LOOP statement
The LOOP statement executes a statement or group of statements multiple times.

Syntax

Description
label

Specifies the label for the LOOP statement. If the ending label is specified, the
beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be
one of the statements listed under “SQL-procedure-statement” on page 888.

Notes
If a LOOP statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a LOOP statement to fetch rows from a table.
ftch_loop: LOOP
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE<>0 THEN SET badsql=1;
END IF;
END LOOP

��
label:

LOOP � SQL-procedure-statement ; END LOOP
label

��

LOOP (SQL procedure)

906 SQL Reference

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

Description
label

Specifies the label for the REPEAT statement. If the ending label is specified,
the beginning label must be specified, and the two must match.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

SQL-procedure-statement
Specifies the statements to be executed. The statement must be one of the
statements listed under “SQL-procedure-statement” on page 888.

search-condition
Specifies a condition that is evaluated after each execution of the SQL
procedure statement. If the condition is true, the SQL procedure statement is
not executed again.

Notes
If a REPEAT statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a REPEAT statement to fetch rows from a table.
fetch_loop:
REPEAT
FETCH c1 INTO
v_firstnme, v_midinit, v_lastname;

UNTIL
SQLCODE <> 0

END REPEAT fetch_loop

��
label:

REPEAT � SQL-procedure-statement ; UNTIL search-condition END REPEAT �

�
label

��

REPEAT (SQL procedure)

Chapter 6. SQL procedure statements 907

WHILE statement
The WHILE statement repeats the execution of a statement or group of statements
while a specified condition is true.

Syntax

Description
label

Specifies the label for the WHILE statement. If the ending label is specified, it
must be the same as the beginning label.

A label name cannot be the same as the name of the SQL procedure in which
the label is used.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the
condition is true, the SQL procedure statement in the loop is executed.

SQL-procedure-statement
Specifies the statements to be executed in the loop. The statement must be
one of the statements listed under “SQL-procedure-statement” on page 888.

Notes
If a WHILE statement is the only statement in the procedure body, the statement
cannot end with a semicolon. Otherwise, the statement must end with a semicolon.

Examples
Use a WHILE statement to fetch rows from a table while SQL variable at_end,
which indicates whether the end of the table has been reached, is 0.
WHILE at_end = 0 DO
FETCH c1 INTO
v_firstnme, v_midinit,
v_lastname, v_edlevel, v_salary;
IF SQLCODE=100 THEN SET at_end=1;
END IF;
END WHILE

��
label:

WHILE search-condition DO � SQL-procedure-statement ; END WHILE
label

��

WHILE (SQL procedure)

908 SQL Reference

Appendix A. Limits in DB2 for OS/390 and z/OS

System storage limits might preclude the limits specified here. The limit for items
not specified below is system storage.

Table 59. Identifier length limits

Item Limit

Longest collection ID, correlation name, statement name,
or name of an alias, column, cursor, index, table, table
check constraint, stored procedure, synonym, user-defined
function, view name

18 bytes

Longest authorization name, or name of a database,
package, plan, referential constraint, schema, storage
group, tablespace name, or trigger

8 bytes

Longest host identifier 64 bytes

Longest server name or location identifier 16 bytes

Table 60. Numeric limits

Item Limit

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest REAL value About -7.2×1075

Largest REAL value About 7.2×1075

Smallest positive REAL value About 5.4×10-79

Largest negative REAL value About -5.4×10-79

Smallest FLOAT value About -7.2×1075

Largest FLOAT value About 7.2×1075

Smallest positive FLOAT value About 5.4×10-79

Largest negative FLOAT value About -5.4×10-79

Smallest DECIMAL value 1 − 1031

Largest DECIMAL value 1031 − 1

Largest decimal precision 31

Table 61. String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 DBCS characters

Maximum length42 of VARCHAR 4046 bytes for 4-KB pages
8128 bytes for 8-KB pages
16320 bytes for 16-KB pages
32704 bytes for 32-KB pages

© Copyright IBM Corp. 1982, 2001 909

||

||

||

||

||
|
|
|

Table 61. String length limits (continued)

Item Limit

Maximum length42 of VARGRAPHIC 4046 bytes (2023 DBCS characters) for 4-KB pages
8128 bytes (4064 DBCS characters) for 8-KB pages
16320 bytes (8160 DBCS characters for 16-KB pages
32704 bytes (16352 DBCS characters) for 32-KB pages

Maximum length of CLOB 2 147 483 647 bytes (2 gigabytes - 1 byte)

Maximum length of DBCLOB 1 073 741 824 DBCS characters

Maximum length of BLOB 2 147 483 647 bytes (2 gigabytes - 1 byte)

Maximum length of a character constant 255 bytes

Maximum length of a hexadecimal constant 254 digits

Maximum length of a graphic string constant 124 DBCS characters

Maximum length of a concatenated character string 2 147 483 647 bytes (2 gigabytes - 1 byte)

Maximum length of a concatenated graphic string 1 073 741 824 DBCS characters

Maximum length of a concatenated binary string 2 147 483 647 bytes (2 gigabytes - 1 byte)

Table 62. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 63. DB2 limits on SQL statements

Item Limit

Maximum number of columns in a table or view (the value
depends on the complexity of the CREATE VIEW
statement) or columns returned by a table function.

750 or fewer
749 if the table is a dependent

Maximum number of base tables in a view, SELECT,
UPDATE, INSERT, or DELETE

225

Maximum row and record sizes for a table See “Maximum record size” on page 624 under CREATE
TABLE

Maximum number of volume IDs in a storage group 133

Maximum number of partitions in a partitioned table space
or partitioned index

64 for table spaces that are not defined
with LARGE or a DSSIZE greater than 2G
254 for table spaces that are defined
with LARGE or a DSSIZE greater than 2G

42. The maximum length can be achieved only if the column is the only column in the table. Otherwise, the maximum length depends
on the amount of space remaining on a page.

Limits in DB2 for OS/390 and z/OS

910 SQL Reference

|

||

||
|
|
|

||

||

||

||

||

||

||

||

||
|

Table 63. DB2 limits on SQL statements (continued)

Item Limit

Maximum size of a partition (table space or index) For table spaces that are not defined with LARGE or a
DSSIZE greater than 2G:

4 gigabytes, for 1 to 16 partitions
2 gigabytes, for 17 to 32 partitions
1 gigabyte, for 33 to 64 partitions

For table spaces that are defined with LARGE:
4 gigabytes, for 1 to 254 partitions

For table spaces that are defined with a DSSIZE greater
than 2G:

64 gigabytes, for 1 to 254 partitions

Maximum size of a DBRM entry 131072 bytes

Longest index key 255 bytes less the number of key columns that allow nulls.

Maximum number of bytes used in the partitioning of a
partitioned index43

255

Maximum number of columns in an index key 64

Maximum number of tables in a FROM clause 15

Maximum number of subqueries in a statement 14

Maximum total length of host and indicator variables
pointed to in an SQLDA

32767 bytes

2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
subject to the limitations imposed by the application
environment and host language

Longest host variable used for insert or update 32704 bytes for a non-LOB

2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
subject to the limitations imposed by the application
environment and host language

Longest SQL statement 32765 bytes

Maximum number of elements in a select list 750

Maximum number of predicates in a WHERE or HAVING
clause

750

Maximum total length of columns of a query operation
requiring a sort key (SELECT DISTINCT, ORDER BY,
GROUP BY, UNION without the ALL keyword, and the
DISTINCT column function)

4000 bytes

Maximum length of a table check constraint 3800 bytes

Maximum number of bytes that can be passed in a single
parameter of an SQL CALL statement

32765 bytes for a non-LOB

2 147 483 647 bytes (2 gigabytes - 1 byte) for a LOB,
subject to the limitations imposed by the application
environment and host language

Maximum number of stored procedures, triggers, and
user-defined functions that an SQL statement can
implicitly or explicitly reference

16 nesting levels

Maximum length of the SQL path 254 bytes

43. The maximum length of the key for a partitioning index is 255 bytes; all 255 bytes can be used to determine the partition.

Limits in DB2 for OS/390 and z/OS

Appendix A. Limits in DB2 for OS/390 and z/OS 911

Table 64. DB2 system limits

Item Limit

Maximum number of concurrent DB2 or application agents Limited by the EDM pool size, buffer pool size, and the
amount of storage used by each DB2 or application agent

Largest table or table space 16 terabytes

Largest log space 248

Largest active log data set 4 gigabytes -1

Largest archive log data set 4 gigabytes -1

Maximum number of active log copies 2

Maximum number of archive log copies 2

Maximum number of active log data sets (each copy) 31

Maximum number of archive log volumes (each copy) 1000

Maximum number of databases accessible to an
application or end user

Limited by system storage and EDM pool size

Largest EDM pool The installation parameter maximum depends on available
space

Maximum number of databases 65279

Maximum number of rows per page 255 for all table spaces except catalog and directory
tables spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 gigabytes

Maximum partitioned data set size See item “maximum size of a partition” in Table 63 on
page 910

Maximum LOB data set size 64 gigabytes

Limits in DB2 for OS/390 and z/OS

912 SQL Reference

Appendix B. Characteristics of SQL statements in DB2 for
OS/390 and z/OS

This appendix provides a summary of the actions that are allowed on SQL
statements in DB2 for OS/390 and z/OS. It also contains a list of the SQL
statements that can be executed in external user-defined functions and stored
procedures and in SQL procedures.

Actions allowed on SQL statements
Table 65 shows whether a specific DB2 statement can be executed, prepared
interactively or dynamically, or processed by the requester, the server, or the
precompiler. The letter Y means yes.

Table 65. Actions allowed on SQL statements in DB2 for OS/390 and z/OS

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

ALLOCATE CURSOR Y Y1 Y

ALTER Y Y2 Y

ASSOCIATE LOCATORS Y Y1 Y

BEGIN DECLARE SECTION Y

CALL Y Y3 Y

CLOSE Y Y

COMMENT ON Y Y Y

COMMIT Y Y Y

CONNECT (Type 1 and Type 2) Y Y

CREATE Y Y2 Y

DECLARE CURSOR Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE STATEMENT Y

DECLARE TABLE Y

DELETE Y Y Y

DESCRIBE prepared statement
or table

Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP Y Y2 Y

END DECLARE SECTION Y

EXECUTE Y Y

EXECUTE IMMEDIATE Y Y

EXPLAIN Y Y Y

FETCH Y Y

© Copyright IBM Corp. 1982, 2001 913

|
|
|||||

Table 65. Actions allowed on SQL statements in DB2 for OS/390 and z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

FREE LOCATOR Y Y1 Y

GRANT Y Y2 Y

HOLD LOCATOR Y Y1 Y

INCLUDE Y

INSERT Y Y Y

LABEL ON Y Y Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y4

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y Y

RENAME Y Y2 Y

REVOKE Y Y2 Y

ROLLBACK Y Y Y

SAVEPOINT Y Y Y

SELECT INTO Y Y

SET CONNECTION Y Y

SET CURRENT APPLICATION
ENCODING SCHEME

Y Y

SET CURRENT DEGREE Y Y Y

SET CURRENT LC_CTYPE Y Y Y

SET CURRENT OPTIMIZATION
HINT

Y Y Y

SET CURRENT PACKAGESET Y Y

SET CURRENT PATH Y Y Y

SET CURRENT PRECISION Y Y Y

SET CURRENT RULES Y Y Y

SET CURRENT SQLID5 Y Y Y

SET host-variable = CURRENT
APPLICATION ENCODING
SCHEME

Y Y Y

SET host-variable = CURRENT
DATE

Y Y

SET host-variable = CURRENT
DEGREE

Y Y

SET host-variable = CURRENT
MEMBER

Y Y

SET host-variable = CURRENT
PACKAGESET

Y Y

SET host-variable = CURRENT
QUERY OPTIMIZATION LEVEL

Y Y

Characteristics of SQL statements in DB2 for OS/390 and z/OS

914 SQL Reference

||||||

|
|
|||||

|
|
|

|||||

|
|
|||||

Table 65. Actions allowed on SQL statements in DB2 for OS/390 and z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

SET host-variable = CURRENT
SERVER

Y Y

SET host-variable = CURRENT
SQLID

Y Y

SET host-variable = CURRENT
TIME

Y Y

SET host-variable = CURRENT
TIMESTAMP

Y Y

SET host-variable = CURRENT
TIMEZONE

Y Y

SET host-variable = PATH Y Y

SET transition-variable =
CURRENT DATE

Y Y

SET transition-variable =
CURRENT DEGREE

Y Y

SET transition-variable =
CURRENT QUERY
OPTIMIZATION LEVEL

Y Y

SET transition-variable =
CURRENT SQLID

Y Y

SET transition-variable =
CURRENT TIME

Y Y

SET transition-variable =
CURRENT TIMESTAMP

Y Y

SET transition-variable =
CURRENT TIMEZONE

Y Y

SET transition-variable = PATH Y Y

SIGNAL SQLSTATE6 Y Y

UPDATE Y Y Y

VALUES6 Y Y

VALUES INTO7 Y Y

WHENEVER Y

Characteristics of SQL statements in DB2 for OS/390 and z/OS

Appendix B. Characteristics of SQL statements in DB2 for OS/390 and z/OS 915

|
|
|||||

|
|
|||||

|
|
|

|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|||||

||||||

||||||

Table 65. Actions allowed on SQL statements in DB2 for OS/390 and z/OS (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

Notes:

1. The statement can be dynamically prepared. It cannot be prepared interactively.

2. The statement can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

3. The statement can be dynamically prepared, but only from an ODBC or CLI driver that supports dynamic CALL
statements.

4. The requesting system processes the PREPARE statement when the statement being prepared is ALLOCATE
CURSOR or ASSOCIATE LOCATORS.

5. The value to which special register CURRENT SQLID is set is used as the SQL authorization ID and the implicit
qualifier for dynamic SQL statements only when DYNAMICRULES run behavior is in effect. The CURRENT SQLID
value is ignored for the other DYNAMICRULES behaviors.

6. This statement can only be used in the triggered action of a trigger.

7. Local special registers can be referenced in a VALUES INTO statement if it results in the assignment of a single
host-variable, not if it results in setting more than one value.

SQL statements allowed in external functions and stored procedures
Table 66 shows which SQL statements in an external stored procedure or in an
external user-defined function can execute. Whether the statements can be
executed depends on the level of SQL data access with which the stored procedure
or external function is defined (NO SQL, CONTAINS SQL, READS SQL DATA, or
MODIFIES SQL DATA). The letter Y means yes.

In general, if an executable SQL statement is encountered in a stored procedure or
function defined as NO SQL, SQLSTATE 38001 is returned. If the routine is defined
to allow some level of SQL access, SQL statements that are not supported in any
context return SQLSTATE 38003. SQL statements not allowed for routines defined
as CONTAINS SQL return SQLSTATE 38004, and SQL statements not allowed for
READS SQL DATA return SQL STATE 38002.

Table 66. SQL statements in external user-defined functions and stored procedures

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

ALLOCATE CURSOR Y Y

ALTER Y

ASSOCIATE LOCATORS Y Y

BEGIN DECLARE SECTION Y1 Y Y Y

CALL Y2 Y2 Y2

CLOSE Y Y

COMMENT ON Y

COMMIT3 Y Y Y

CONNECT (Type 1 and Type
2)

Y Y Y

CREATE Y

Characteristics of SQL statements in DB2 for OS/390 and z/OS

916 SQL Reference

|
|

|
|
|
|
|

|||||

|
|
||||

Table 66. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

DECLARE CURSOR Y1 Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

Y

DECLARE STATEMENT Y1 Y Y Y

DECLARE TABLE Y1 Y Y Y

DELETE Y

DESCRIBE Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP Y

END DECLARE SECTION Y1 Y Y Y

EXECUTE Y4 Y4 Y

EXECUTE IMMEDIATE Y4 Y4 Y

EXPLAIN Y

FETCH Y Y

FREE LOCATOR Y Y Y

GRANT Y

HOLD LOCATOR Y Y Y

INCLUDE Y1 Y Y Y

INSERT Y

LABEL ON Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y Y

RELEASE connection Y Y Y

RELEASE SAVEPOINT6 Y

REVOKE Y

ROLLBACK6, 7, 8 Y Y Y

ROLLBACK TO SAVEPOINT6,

7, 8

Y

SAVEPOINT6 Y

SELECT Y Y

SELECT INTO Y Y

SET CONNECTION Y Y Y

SET host-variable Assignment Y5 Y Y

SET special register Y Y Y

Characteristics of SQL statements in DB2 for OS/390 and z/OS

Appendix B. Characteristics of SQL statements in DB2 for OS/390 and z/OS 917

|
|
||||

|||||

|||||

|
|
||||

|||||

|||||

Table 66. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

SET transition-variable
Assignment

Y5 Y Y

SIGNAL SQLSTATE Y Y Y

UPDATE Y

VALUES Y Y

VALUES INTO Y5 Y Y

WHENEVER Y1 Y Y Y

Notes:

1. Although the SQL option implies that no SQL statements can be specified,
non-executable statements are not restricted.

2. The stored procedure that is called must have the same or more restrictive level of SQL
data access than the current level in effect. For example, a routine defined as MODIFIES
SQL DATA can call a stored procedure defined as MODIFIES SQL DATA, READS SQL
DATA, or CONTAINS SQL. A routine defined as CONTAINS SQL can only call a
procedure defined as CONTAINS SQL.

3. The COMMIT statement cannot be executed in a user-defined function. The COMMIT
statement cannot be executed in a stored procedure if the procedure is in the calling
chain of a user-defined function or trigger.

4. The statement specified for the EXECUTE statment must be a statement that is allowed
for the particular level of SQL data access in effect. For example, if the level in effect is
READS SQL DATA, the statement must not be an INSERT, UPDATE, or DELETE.

5. The statement is supported only if it does not contain a subquery or query-expression.

6. RELEASE SAVEPOINT, SAVEPOINT, and ROLLBACK (with the TO SAVEPOINT clause)
cannot be executed from a user-defined function.

7. If the ROLLBACK statement (without the TO SAVEPOINT clause) is executed in a
user-defined function, an error is returned to the calling program, and the application is
placed in a must rollback state.

8. The ROLLBACK statement (without the TO SAVEPOINT clause) cannot be executed in a
stored procedure if the procedure is in the calling chain of a user-defined function or
trigger.

SQL statements allowed in SQL procedures
Table 67 on page 919 lists the statements that are valid in an SQL procedure body,
in addition to SQL procedure statements. The table lists the statements that can be
used as the only statement in the SQL procedure and as the statements that can
be nested in a compound statement. An SQL statement can be executed in an SQL
procedure depending on whether MODIFIES SQL DATA, CONTAINS SQL, or
READS SQL DATA is specified in the stored procedure definition. See Table 66 on
page 916 for a list of SQL statements that can be executed for each of these
parameter values.

Characteristics of SQL statements in DB2 for OS/390 and z/OS

918 SQL Reference

|
|
||||

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

Table 67. Valid SQL statements in an SQL procedure body

SQL statement

SQL statement is...

The only
statement in the

procedure
Nested in a

compound statement

ALLOCATE CURSOR Y

ALTER DATABASE Y Y

ALTER FUNCTION Y Y

ALTER INDEX Y Y

ALTER PROCEDURE Y Y

ALTER STOGROUP Y Y

ALTER TABLE Y Y

ALTER TABLESPACE Y Y

ASSOCIATE LOCATORS Y

BEGIN DECLARE SECTION

CALL Y

CLOSE Y

COMMENT ON Y Y

COMMIT1 Y Y

CONNECT (Type 1 and Type 2) Y Y

CREATE ALIAS Y Y

CREATE DATABASE Y Y

CREATE DISTINCT TYPE Y Y

CREATE FUNCTION2 Y Y

CREATE GLOBAL TEMPORARY TABLE Y Y

CREATE INDEX Y Y

CREATE PROCEDURE2 Y Y

CREATE STOGROUP Y Y

CREATE SYNONYM Y Y

CREATE TABLE Y Y

CREATE TABLESPACE Y Y

CREATE TRIGGER

CREATE VIEW Y Y

DECLARE CURSOR Y

DECLARE GLOBAL TEMPORARY TABLE Y Y

DECLARE STATEMENT

DECLARE TABLE

DELETE Y Y

DESCRIBE prepared statement or table

DESCRIBE CURSOR

DESCRIBE INPUT

DESCRIBE PROCEDURE

Characteristics of SQL statements in DB2 for OS/390 and z/OS

Appendix B. Characteristics of SQL statements in DB2 for OS/390 and z/OS 919

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 67. Valid SQL statements in an SQL procedure body (continued)

SQL statement

SQL statement is...

The only
statement in the

procedure
Nested in a

compound statement

DROP Y Y

END DECLARE SECTION

EXECUTE Y

EXECUTE IMMEDIATE Y Y

EXPLAIN

FETCH Y

FREE LOCATOR

GRANT Y Y

HOLD LOCATOR

INCLUDE

INSERT Y Y

LABEL ON Y Y

LOCK TABLE Y Y

OPEN Y

PREPARE FROM Y

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y

RENAME Y Y

REVOKE Y Y

ROLLBACK1 Y Y

ROLLBACK TO SAVEPOINT1 Y Y

SAVEPOINT Y Y

SELECT

SELECT INTO Y Y

SET CONNECTION Y Y

SET host-variable Assignment3

SET special register3 Y Y

SET transition-variable Assignment3

SIGNAL SQLSTATE

UPDATE Y Y

VALUES

VALUES INTO Y Y

WHENEVER

Characteristics of SQL statements in DB2 for OS/390 and z/OS

920 SQL Reference

|||

|||

|||

|||

Table 67. Valid SQL statements in an SQL procedure body (continued)

SQL statement

SQL statement is...

The only
statement in the

procedure
Nested in a

compound statement

Notes:

1. The COMMIT statement and the ROLLBACK statement (without the TO SAVEPOINT
clause) cannot be executed in a stored procedure if the procedure is in the calling chain
of a user-defined function or trigger

2. CREATE FUNCTION with LANGUAGE SQL (specified either implicitly or explicitly) and
CREATE PROCEDURE with LANGUAGE SQL are not allowed within the body of an SQL
procedure.

3. SET host-variable assignment, SET transition-variable assignment, and SET special
register are the SQL SET statements that are described in “Chapter 5. Statements” on
page 329, not the SQL procedure assignment statement that is described in
“assignment-statement” on page 889.

Characteristics of SQL statements in DB2 for OS/390 and z/OS

Appendix B. Characteristics of SQL statements in DB2 for OS/390 and z/OS 921

|
|
|

|
|
|

|
|
|
|

Characteristics of SQL statements in DB2 for OS/390 and z/OS

922 SQL Reference

Appendix C. SQLCA and SQLDA

SQL communication area (SQLCA)
An SQLCA is a structure or collection of variables that is updated after each SQL
statement executes. An application program that contains executable SQL
statements must provide exactly one SQLCA. There are two exceptions:

v A program that is precompiled with the STDSQL(YES) option must not provide
an SQLCA

v In some cases (as discussed below in In Fortran), a Fortran program must
provide more than one SQLCA.

In all host languages except REXX, the SQL INCLUDE statement can be used to
provide the declaration of the SQLCA.

In COBOL and assembler: The name of the storage area must be SQLCA.

In PL/I, and C: The name of the structure must be SQLCA. Every executable SQL
statement must be within the scope of its declaration.

Unless noted otherwise, C is used to represent C/370™ and C/C⁺⁺ for MVS/ESA
programming languages.

In Fortran: The name of the COMMON area for the INTEGER variables of the
SQLCA must be SQLCA1; the name of the COMMON area for the CHARACTER
variables must be SQLCA2. An SQLCA definition is required for every subprogram
that contains SQL statements. One is also needed for the main program if it
contains SQL statements.

In REXX: DB2 generates the SQLCA automatically. A REXX procedure cannot use

Table 68. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLERRD(4) sqlerrd[3] SQLERR(4) INTEGER Generally, contains timerons, a short
floating-point value that indicates a rough
relative estimate of resources required (See
note 4). It does not reflect an estimate of the
time required. When preparing a dynamically
defined SQL statement, you can use this field
as an indicator of the relative cost of the
prepared SQL statement. For a particular
statement, this number can vary with changes
to the statistics in the catalog. It is also subject
to change between releases of DB2 for OS/390
and z/OS.

SQLERRD(5) sqlerrd[4] SQLERR(5) INTEGER Contains the position or column of a syntax
error for a PREPARE or EXECUTE IMMEDIATE
statement.

SQLERRD(6) sqlerrd[5] SQLERR(6) INTEGER Contains an internal error code.

SQLWARN0 SQLWARN0 SQLWRN(0) CHAR(1) Contains a blank if no other indicator is set to a
warning condition (that is, no other indicator
contains a W or Z). Contains a W if at least one
other indicator contains a W or Z.

SQLWARN1 SQLWARN1 SQLWRN(1) CHAR(1) Contains a W if the value of a string column
was truncated when assigned to a host
variable. Contains an N for non-scrollable
cursors and S for scrollable cursors after the
OPEN CURSOR or ALLOCATE CURSOR
statement.

SQLWARN2 SQLWARN2 SQLWRN(2) CHAR(1) Contains a W if null values were eliminated
from the argument of a column function; not
necessarily set to W for the MIN function
because its results are not dependent on the
elimination of null values.

SQLWARN3 SQLWARN3 SQLWRN(3) CHAR(1) Contains a W if the number of result columns is
larger than the number of host variables.
Contains a Z if fewer locators were provided in
the ASSOCIATE LOCATORS statement than
the stored procedure returned.

SQLWARN4 SQLWARN4 SQLWRN(4) CHAR(1) Contains a W if a prepared UPDATE or
DELETE statement does not include a WHERE
clause. For a scrollable cursor, contains an I for
insensitive cursors and S for sensitive static
cursors after the OPEN CURSOR or
ALLOCATE CURSOR statement; blank if cursor
is not scrollable.

SQLWARN5 SQLWARN5 SQLWRN(5) CHAR(1) Contains a W if the SQL statement was not
executed because it is not a valid SQL
statement in DB2 for OS/390 and z/OS.
Contains a character value of 1 (read only), 2
(read and delete), or 4 (read, delete, and
update) to reflect capability of the cursor after
the OPEN CURSOR or ALLOCATE CURSOR
statement.

SQLCA

Appendix C. SQLCA and SQLDA 925

|||||
|
|
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|
|

|||||
|
|
|
|
|
|
|

Table 68. Fields of SQLCA (continued)

assembler,
COBOL, or
PL/I Name

C
Name

Fortran
Name

Data
type Purpose

SQLWARN6 SQLWARN6 SQLWRN(6) CHAR(1) Contains a W if the addition of a month or year
duration to a DATE or TIMESTAMP value
results in an invalid day (for example, June 31).
Indicates that the value of the day was changed
to the last day of the month to make the result
valid.

SQLWARN7 SQLWARN7 SQLWRN(7) CHAR(1) Contains a W if one or more nonzero digits
were eliminated from the fractional part of a
number used as the operand of a decimal
multiply or divide operation.

SQLWARN8 SQLWARN8 SQLWRX(1) CHAR(1) Contains a W if a character that could not be
converted was replaced with a substitute
character.

SQLWARN9 SQLWARN9 SQLWRX(2) CHAR(1) Contains a W if arithmetic exceptions were
ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored
procedure returned multiple result sets.

SQLWARNA SQLWARNA SQLWRX(3) CHAR(1) Contains a W if at least one character field of
the SQLCA or the SQLDA names or labels is
invalid due to a character conversion error.

SQLSTATE sqlstate SQLSTT CHAR(5) Contains a return code for the outcome of the
most recent execution of an SQL statement
(See note 5).

Note:

1. With the precompiler option STDSQL(YES) in effect, SQLCODE is replaced by SQLCADE in SQLCA.

2. For the specific meanings of SQL return codes, see Part 1 of DB2 Messages and Codes

3. In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I and C, the varying-length string SQLERRM
is equivalent to SQLERRML prefixed to SQLERRMC. In assembler, the storage area SQLERRM is equivalent to
SQLERRML and SQLERRMC. See the examples for the various host languages in “The included SQLCA”.

4. The use of timerons may require special handling because they are floating-point values in an INTEGER array. In
PL/I, for example, you could first copy the value into a BIN FIXED(31) based variable that coincides with a BIN
FLOAT(24) variable.

5. For a description of SQLSTATE values, see Appendix C of DB2 Messages and Codes

The included SQLCA
The description of the SQLCA that is given by INCLUDE SQLCA is shown for each
of the host languages.

SQLCA

926 SQL Reference

assembler:
SQLCA DS 0F
SQLCAID DS CL8 ID
SQLCABC DS F BYTE COUNT
SQLCODE DS F RETURN CODE
SQLERRM DS H,CL70 ERR MSG PARMS
SQLERRP DS CL8 IMPL-DEPENDENT
SQLERRD DS 6F
SQLWARN DS 0C WARNING FLAGS
SQLWARN0 DS C'W' IF ANY
SQLWARN1 DS C'W' = WARNING
SQLWARN2 DS C'W' = WARNING
SQLWARN3 DS C'W' = WARNING
SQLWARN4 DS C'W' = WARNING
SQLWARN5 DS C'W' = WARNING
SQLWARN6 DS C'W' = WARNING
SQLWARN7 DS C'W' = WARNING
SQLEXT DS 0CL8
SQLWARN8 DS C
SQLWARN9 DS C
SQLWARNA DS C
SQLSTATE DS CL5

C
#ifndef SQLCODE
struct sqlca
{

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[11];
unsigned char sqlstate[5];

};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

SQLCA

Appendix C. SQLCA and SQLDA 927

COBOL:
01 SQLCA.

05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) COMP-4.
05 SQLCODE PIC S9(9) COMP-4.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMP-4.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMP-4.
05 SQLWARN.

10 SQLWARN0 PIC X.
10 SQLWARN1 PIC X.
10 SQLWARN2 PIC X.
10 SQLWARN3 PIC X.
10 SQLWARN4 PIC X.
10 SQLWARN5 PIC X.
10 SQLWARN6 PIC X.
10 SQLWARN7 PIC X.

05 SQLEXT.
10 SQLWARN8 PIC X.
10 SQLWARN9 PIC X.
10 SQLWARNA PIC X.
10 SQLSTATE PIC X(5).

Fortran:
*
* THE SQL COMMUNICATIONS AREA
*

INTEGER SQLCOD,
C SQLERR(6),
C SQLTXL*2
COMMON /SQLCA1/SQLCOD, SQLERR,SQLTXL
CHARACTER SQLERP*8,
C SQLWRN(0:7)*1,
C SQLTXT*70,
C SQLEXT*8,
C SQLWRX(1:3)*1,
C SQLSTT*5
COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLWRX,
C SQLSTT
EQUIVALENCE (SQLWRX,SQLEXT)

*

SQLCA

928 SQL Reference

The REXX SQLCA
The REXX SQLCA consists of a set of variables, rather than a structure. DB2
makes the SQLCA available to your application automatically. Table 69 lists the
variables in a REXX SQLCA.

Table 69. Variables in a REXX SQLCA

Variable Contents

SQLCODE Contains the SQL return code.

SQLERRMC Contains one or more tokens, separated by X'FF', that are substituted for variables in
the descriptions of error conditions.

SQLERRP Provides a product signature and, in the case of an error, diagnostic information such
as the name of the module that detected the error. For DB2 for OS/390 and z/OS, the
product signature is 'DSN'.

SQLERRD.1 Contains the number of rows in a result table when the cursor position is after the last
row (that is, when SQLCODE is equal to +100).

SQLERRD(1) can also contain an internal error code.

SQLERRD.2 Contains the number of rows in a result table when the cursor position is after the last
row (that is, when SQLCODE is equal to +100).

SQLERRD(2) can also contain an internal error code.

SQLERRD.3 Contains the number of rows affected after INSERT, UPDATE, and DELETE (but not
rows deleted as a result of CASCADE delete). Set to 0 if the SQL statement fails,
indicating that all changes made in executing the statement were canceled. Set to -1 for
a mass delete from a table in a segmented table space.

For SQLCODE -911 or -913, SQLERRD.3 can also contain the reason code for a
timeout or deadlock.

PL/I:
DECLARE

1 SQLCA,
2 SQLCAID CHAR(8),
2 SQLCABC FIXED(31) BINARY,
2 SQLCODE FIXED(31) BINARY,
2 SQLERRM CHAR(70) VAR,
2 SQLERRP CHAR(8),
2 SQLERRD(6) FIXED(31) BINARY,
2 SQLWARN,

3 SQLWARN0 CHAR(1),
3 SQLWARN1 CHAR(1),
3 SQLWARN2 CHAR(1),
3 SQLWARN3 CHAR(1),
3 SQLWARN4 CHAR(1),
3 SQLWARN5 CHAR(1),
3 SQLWARN6 CHAR(1),
3 SQLWARN7 CHAR(1),

2 SQLEXT,
3 SQLWARN8 CHAR(1),
3 SQLWARN9 CHAR(1),
3 SQLWARNA CHAR(1),
3 SQLSTATE CHAR(5);

SQLCA

Appendix C. SQLCA and SQLDA 929

||
|

|

||
|

|

Table 69. Variables in a REXX SQLCA (continued)

Variable Contents

SQLERRD.4 Generally, contains timerons, a short floating-point value that indicates a rough relative
estimate of resources required. This value does not reflect an estimate of the time
required to execute the SQL statement. After you prepare an SQL statement, you can
use this field as an indicator of the relative cost of the prepared SQL statement. For a
particular statement, this number can vary with changes to the statistics in the catalog.
This value is subject to change between releases of DB2 for OS/390 and z/OS.

SQLERRD.5 Contains the position or column of a syntax error for a PREPARE or EXECUTE
IMMEDIATE statement.

SQLERRD.6 Contains an internal error code.

SQLWARN.0 Contains a blank if no other indicator is set to a warning condition (that is, no other
indicator contains a W or Z). Contains a W if at least one other indicator contains a W
or Z.

SQLWARN.1 Contains a W if the value of a string column was truncated when assigned to a host
variable.Contains an N for non-scrollable cursors and S for scrollable cursors after the
OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.2 Contains a W if null values were eliminated from the argument of a column function; not
necessarily set to W for the MIN function because its results are not dependent on the
elimination of null values.

SQLWARN.3 Contains a W if the number of result columns is larger than the number of host
variables. Contains Z if the ASSOCIATE LOCATORS statement contains fewer locators
than the stored procedure returned.

SQLWARN.4 Contains a W if a prepared UPDATE or DELETE statement does not include a WHERE
clause. For a scrollable cursor, contains an I for insensitive cursors and S for sensitive
static cursors after the OPEN CURSOR or ALLOCATE CURSOR statement; otherwise,
blank if cursor is not scrollable.

SQLWARN.5 Contains a W if the SQL statement was not executed because it is not a valid SQL
statement in DB2 for OS/390 and z/OS. Contains a character value of 1 (read only), 2
(read and delete), or 4 (read, delete, and update) to reflect capability of the cursor after
the OPEN CURSOR or ALLOCATE CURSOR statement.

SQLWARN.6 Contains a W if the addition of a month or year duration to a DATE or TIMESTAMP
value results in an invalid day (for example, June 31). Indicates that the value of the
day was changed to the last day of the month to make the result valid.

SQLWARN.7 Contains a W if one or more nonzero digits were eliminated from the fractional part of a
number that was used as the operand of a decimal multiply or divide operation.

SQLWARN.8 Contains a W if a character that could not be converted was replaced with a substitute
character.

SQLWARN.9 Contains a W if arithmetic exceptions were ignored during COUNT or COUNT_BIG
processing. Contains a Z if the stored procedure returned multiple result sets.

SQLWARN.10 Contains a W if at least one character field of the SQLCA is invalid due to a character
conversion error.

SQLSTATE Contains a return code for the outcome of the most recent execution of an SQL
statement.

SQL descriptor area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement, and can be optionally used by the PREPARE, OPEN,
FETCH, EXECUTE, and CALL statements. An SQLDA can be used in a DESCRIBE
or PREPARE INTO statement, modified with the addresses of host variables, and
then reused in a FETCH statement.

SQLCA

930 SQL Reference

||
|
|

||
|
|

||
|
|
|

||
|
|
|

The meaning of the information in an SQLDA depends on the context in which it is
used. For DESCRIBE and PREPARE INTO, DB2 sets the fields in the SQLDA to
provide information to the application program. For OPEN, EXECUTE, FETCH, and
CALL, the application program sets the fields in the SQLDA to provide DB2 with
information:

DESCRIBE statement-name or PREPARE INTO
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about a prepared statement. Each
SQLVAR occurrence describes a column of the result table.

DESCRIBE TABLE
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the columns of a table or view.
Each SQLVAR occurrence describes a column of the specified table or
view.

DESCRIBE CURSOR
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the result set that is associated
with the specified cursor. Each SQLVAR occurrence describes a column of
the result set.

DESCRIBE INPUT
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the input parameter markers of
a prepared statement. Each SQLVAR occurrence describes an input
parameter marker.

DESCRIBE PROCEDURE
With the exception of SQLN, DB2 sets fields of the SQLDA to provide
information to an application program about the result sets returned by the
specified stored procedure. Each SQLVAR occurrence describes a returned
result set.

OPEN, EXECUTE, FETCH, and CALL
The application program sets fields of the SQLDA to provide information
about host variables or output buffers in the application program to DB2.
Each SQLVAR occurrence describes a host variable or output buffer.

v For OPEN and EXECUTE, each SQLVAR occurrence describes an input
value that is substituted for a parameter marker in the associated SQL
statement that was previously prepared.

v For FETCH, each SQLVAR occurrence describes a host variable or
buffer in the application program that is to be used to contain an output
value from a row of the result.

v For CALL, each SQLVAR occurrence describes a host variable that
corresponds to a parameter in the parameter list for the stored
procedure.

For information on the way to use the SQLDA, see DB2 Application Programming
and SQL Guide.

The following sections discuss the fields of the SQLDA and the format of the
SQLDA for each language. Because the fields and format of the SQLDA for REXX
is somewhat different from the SQLDAs for other languages, the REXX SQLDA is
discussed separately.

SQLDA

Appendix C. SQLCA and SQLDA 931

Field descriptions
An SQLDA consists of four variables, a header, and an arbitrary number of
occurrences of a sequence of variables collectively named SQLVAR. In DESCRIBE
and PREPARE INTO, each occurrence of the SQLVAR describes the column of a
table. In FETCH, OPEN, EXECUTE, and CALL, each occurrence describes a host
variable.

The next section describes the SQLDA header, and “SQLVAR entries” on page 933
describes the SQLVAR and how to determine how many SQLVAR entries to
allocate in an SQLDA.

The SQLDA Header
Table 70 describes the fields in the SQLDA header.

Table 70. Fields of the SQLDA header

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldaid
SQLDAID

CHAR(8) An “eye catcher” for storage dumps,
containing the text 'SQLDA '.

The 7th byte of the field is a flag that
can be used to determine if more
than one SQLVAR entry is needed
for each column. For details , see
“Determining how many SQLVAR
occurrences are needed” on
page 935.

For DESCRIBE CURSOR, the field is
set to 'SQLRS'. If the cursor is
declared WITH HOLD in a stored
procedure, the high-order bit of the
8th byte is set to 1.

For DESCRIBE PROCEDURE, it is
set to 'SQLPR'.

A plus sign (+) in the 6th byte
indicates that SQLNAME contains an
overriding CCSID.

A '2' in the 7th byte indicates the two
SQLVAR entries were allocated for
each column or parameter.

A '3' in the 7th byte indicates that
three SQLVAR entries were allocated
for each column or parameter.
Although three entries are never
needed on input to DB2, an SQLDA
with three entries might be used
when the SQLDA was initialized by a
DESCRIBE or PREPARE INTO with
a USING BOTH clause.

Otherwise, SQLDAID is not used.

sqldabc
SQLDABC

INTEGER Length of the SQLDA, equal to
SQLN×44+16.

Length of the SQLDA, greater than
or equal to SQLN×44+16.

SQLDA

932 SQL Reference

Table 70. Fields of the SQLDA header (continued)

C name
assembler,
COBOL or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqln
SQLN

SMALLINT Unchanged by DB2. The field must
be set to a value greater than or
equal to zero before the statement is
executed. The field indicates the total
number of occurrences of SQLVAR.
At the very least, the number should
be:

v For DESCRIBE INPUT, the
number of parameter markers to
be described.

v For other DESCRIBEs or
PREPARE INTO: the number of
columns of the result, or a multiple
of the columns of the result when
there are multiple sets of SQLVAR
entries because column labels are
returned in addition to column
names.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

sqld
SQLD

SMALLINT The number of columns described by
occurrences of SQLVAR. Double that
number if USING BOTH appears in
the DESCRIBE or PREPARE INTO
statement. Contains a 0 if the
statement string is not a query.

For DESCRIBE PROCEDURE, the
number of result sets returned by the
stored procedure. Contains a 0 if no
result sets are returned.

The number of host variables
described by occurrences of
SQLVAR.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement:
v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
v For DESCRIBE INPUT, the column pertains to parameter markers.
v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLVAR entries
For each column or host variable described by the SQLDA, there are two types of
SQLVAR entries:

Base SQLVAR entry
The base SQLVAR entry is always present. The fields of this entry contain
the base information about the column or host variable such as data type
code, length attribute (except for LOBs), column name (or label), host
variable address, and indicator variable address.

Extended SQLVAR entry
The extended SQLVAR entry is needed (for each column) if the result
includes any LOB or distinct type44 columns. For distinct types, the

44. DESCRIBE INPUT does not return information about distinct types.

SQLDA

Appendix C. SQLCA and SQLDA 933

extended SQLVAR contains the distinct type name. For LOBs, the extended
SQLVAR contains the length attribute of the host variable and a pointer to
the buffer that contains the actual length. If locators are used to represent
LOBs, an extended SQLVAR is not necessary.

The extended SQLVAR entry is also needed for each column when the
USING BOTH clause was specified, which indicates that both columns
names and labels are returned. (DESCRIBE output is the only statement
with the USING BOTH clause).

The fields in the extended SQLVAR that return LOB and distinct type
information do not overlap, and the fields that return LOB and label
information do not overlap. Depending on the combination of labels, LOBs
and distinct types, more than one extended SQLVAR entry per column may
be required to return the information. See “Determining how many SQLVAR
occurrences are needed” on page 935.

Table 71 shows how to map the base and extended SQLVAR entries. For an
SQLDA that contains both base and extended SQLVAR entries, the base SQLVAR
entries are in the first block, followed by a block of extended SQLVAR entries, which
if necessary, are followed by a second block of extended SQLVAR entries. In each
block, the number of occurrences of the SQLVAR entry is equal to the value in
SQLD45 even though many of the extended SQLVAR entries might be unused.

Table 71. Contents of SQLVAR arrays

LOBs
Distinct
types1

7th byte of
SQLDAID SQLD

Minimum
for SQLN2

Set of SQLVAR entries

First set
(Base)

Second set
(Extended)

Third set
(Extended)

USING BOTH clause not specified:

No No Space n n Column names or
labels

Not Used Not Used

Yes3 Yes3 2 n 2n Column names or
labels

LOBs,
distinct types, or
both

Not used

USING BOTH clause was specified:

No No Space 2n 2n Column names Labels Not used

Yes No 2 n 2n Column names LOBs and labels Not used

No Yes 3 n 3n Column names Distinct types Labels

Yes Yes 3 n 3n Column names LOBs and
distinct types

Labels

Notes:

1. DESCRIBE INPUT does not return information about distinct types.

2. The number of columns or host variables that the SQLDA describes.

3. Either LOBs, distinct types, or both are present.

4. Here, the 7th byte is set to a space and SQLD is set to two times the number of columns in the result. For all
other values of the 7th byte for USING BOTH, SQLD is set to the number of columns in the result, and the 7th
byte can be used to determine how many SQLVAR entries are needed for each column of the result.

45. When an extended SQLVAR entry is present for each column for labels (and there are no LOB or distinct type columns in the
result),

SQLDA

934 SQL Reference

Determining how many SQLVAR occurrences are needed: The number of
SQLVAR occurrences needed depends on the statement that the SQLDA was
provided for and the data types of the columns or parameters being described. See
the “Minimum Number of SQLVARs Needed” column in Table 71 on page 934.

If the USING BOTH clause was not specified for the statement and neither LOBs
nor distinct types are present in the result, only one SQLVAR entry (a base entry) is
needed for each column. The 7th byte of SQLDAID is set to a space. The SQLD is
set to the number of columns in the result and represents the number of SQLVAR
occurrences needed. If an insufficient number of SQLVAR occurrences were
provided, DB2 returns a +236 warning in SQLCODE if the standards option was
set. Otherwise, SQLCODE is zero.

If USING BOTH is specified and neither LOBs nor distinct types are present in the
result, an extended SQLVAR entry per column is needed for the labels in addition to
the base SQLVAR entry. The 7th byte of the SQLDAID is set to space. SQLD is set
to the twice the number of columns in the result and represents the combined
number of base and extended SQLVAR occurrences needed.

If LOBs, distinct types, or both are present in the results, one extended SQLVAR
entry is needed per column in addition to the base SQLVAR entry with one
exception. The exception is that when the USING BOTH clause is specified and
distinct types are present in the results, two extended SQLVAR entries per column
are needed. When a sufficient number of SQLVAR entries are provided in the
SQLDA for both the base and extended SQLVARs, information for the LOBs and
distinct types is returned. The 7th byte of SQLDAID is set to the number of
SQLVAR entries that were used for each column:
2 Two SQLVAR entries per column (a base and an extended)
3 Three SQLVAR entries per column (a base and two extended)

SQLD is set to the number of columns in the result. Therefore, the value of the 7th
byte of SQLDAID multiplied by the value of SQLD is the total number SQLVAR
entries that were provided.

Otherwise, when an insufficient number of SQLVAR entries have been provided
when LOBs or distinct types are present, DB2 indicates that by returning one of the
following warnings in SQLCODE. DB2 also sets the 7th byte of SQLDAID to
indicate how many SQLVAR entries are needed for each column of the result.

+237 There are insufficient SQLVAR entries to describe the data, and the data
includes distinct types. In this case, there were enough base SQLVAR
entries to describe the data, so the base SQLVAR entries are set. However,
sufficient extended SQLVAR entries were not provided so the distinct type
names are not returned.

+238 There are insufficient SQLVAR entries to describe the data, and the data
includes LOBs. In this case no information is returned in the SQLVAR
entries.

+239 There are insufficient SQLVAR entries to describe the data, and the data
includes distinct types. There weren’t even enough base SQLVAR entries.
In this case no information is returned in the SQLVAR entries.

Field descriptions of an occurrence of a base SQLVAR: Table 72 on page 936
describes the contents of the fields of a base SQLVAR.

SQLDA

Appendix C. SQLCA and SQLDA 935

Table 72. Fields in an occurrence of a base SQLVAR

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqltype
SQLTYPE

SMALLINT Indicates the data type of the column
or parameter and whether it can
contain null values. For a description
of the type codes, see Table 74 on
page 940.

For a distinct type, the data type on
which the distinct type was based is
placed in this field. The base
SQLVAR provides no indication that
this is part of the description of a
distinct type.

Indicates the data type of the host
variable and whether an indicator
variable is provided. Host variables
for datetime values must be
character string variables. For
FETCH, a datetime type code means
a fixed-length character string. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on
page 939.

sqllen
SQLLEN

SMALLINT The length attribute of the column or
parameter. For datetime data, the
length of the string representation of
the value. See “SQLTYPE and
SQLLEN” on page 939 for a
description of allowable values.

For LOBs, the value is 0 regardless
of the length attribute of the LOB.
Field SQLLONGLEN in the extended
SQLVAR contains the length
attribute.

The length attribute of the host
variable. See “SQLTYPE and
SQLLEN” on page 939 for a
description of allowable values.

For LOBs, the value is 0 regardless
of the length attribute of the LOB.
Field SQLLONGLEN in the extended
SQLVAR contains the length
attribute.

sqldata
SQLDATA

pointer For string columns or parameters,
SQLDATA contains X'0000zzzz',
where zzzz is the associated CCSID.
For character strings, SQLDATA can
alternatively contain X'FFFF', which
indicates bit data. Not used for other
types of data.

For DESCRIBE PROCEDURE, the
result set locator value associated
with the result set.

Contains the address of the host
variable.

sqlind
SQLIND

pointer Reserved

For DESCRIBE PROCEDURE, it is
set to -1.

Contains the address of an
associated indicator variable, if
SQLTYPE is odd. Otherwise, the field
is not used.

SQLDA

936 SQL Reference

Table 72. Fields in an occurrence of a base SQLVAR (continued)

C name
assembler
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqlname
SQLNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label does
not exist. If the prepared statement
includes a UNION or UNION ALL
clause, SQLNAME contains the
name or label, if any, of the
corresponding column of the first
operand of the UNION.

For DESCRIBE PROCEDURE,
SQLNAME contains the cursor name
used by the stored procedure to
return the result set. The values for
SQLNAME appear in the order the
cursors were opened by the stored
procedure.

For DESCRIBE INPUT, SQLNAME is
not used.

Can contain a CCSID. DB2 interprets
the third and fourth byte of
SQLNAME as the CCSID of the host
variable if all of the following are true:
v The 6th byte of SQLDAID is ’+’
v SQLTYPE indicates the host

variable is a string variable
v The length of SQLNAME is 8
v The first two bytes of SQLNAME

are X'0000'.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement.
v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
v For DESCRIBE INPUT, the column pertains to parameter markers.
v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

Field descriptions of an occurrence of an extended SQLVAR: Table 73
describes the contents of the fields of an extended SQLVAR entry.

Table 73. Fields in an occurrence of an extended SQLVAR

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

len.sqllonglen
SQLLONGL
SQLLONGLEN

INTEGER The length attribute of a LOB (BLOB,
CLOB, or DBCLOB) column.

The length attribute of a LOB (BLOB,
CLOB, or DBCLOB) host variable.
DB2 ignores the SQLLEN field in the
base SQLVAR for these data types.
The length attribute indicates the
number of bytes for a BLOB or
CLOB, and the number of characters
for a DBCLOB.

* INTEGER Reserved. Reserved.

SQLDA

Appendix C. SQLCA and SQLDA 937

Table 73. Fields in an occurrence of an extended SQLVAR (continued)

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldatalen
SQLDATAL
SQLDATALEN

pointer Not used. Used only for LOB (BLOB, CLOB,
and DBCLOB) host variables.

If the value of the field is null, the
actual length of the LOB is stored in
the 4 bytes immediately before the
start of the data, and SQLDATA
points to the first byte of the field
length. The actual length indicates
the number of bytes for a BLOB or
CLOB, and the number of characters
for a DBCLOB.

If the value of the field is not null, the
field contains a pointer to a 4-byte
long buffer that contains the actual
length in bytes (even for DBCLOBs)
of the data in the buffer pointed to
from the SQLDATA field in the
matching base SQLVAR.

Regardless of whether this field is
used, field SQLLONGLEN must be
set.

SQLDA

938 SQL Reference

Table 73. Fields in an occurrence of an extended SQLVAR (continued)

C name
assembler,
COBOL, or
PL/I name

Data
type

Usage in DESCRIBE1

and PREPARE INTO
Usage in FETCH, OPEN,
EXECUTE, and CALL

sqldatatype_name
SQLTNAME
SQLDATATYPE-NAME

VARCHAR(30) A SQLTNAME field of the appropriate
extended SQLVAR is set to one of
the following as per Table 71 on
page 934.

v For a distinct type column, DB2
sets this to the fully qualified
distinct type name. The first 8
bytes contain the schema name of
the type, (extended to the right
with spaces, if necessary). Byte 9
contains a period (.). Bytes 10 to
27 contain the low order portion of
the type name, which is not
extended to the right with spaces.

Otherwise, schema name is
SYSIBM and the low order portion
of the name is the name of the
type from the catalog.

DESCRIBE INPUT does not return
information about distinct type
types.

v For a label, this field is set to the
contents of the label.

In the case that both a distinct type
name and a label need to be
returned in extended SQLVAR entries
(USING BOTH has been specified),
the distinct type name is returned in
the first extended SQLVAR entry and
the label in the second extended
SQLVAR entry.

Not used.

Notes:

1. The third column of this table represents several forms of the DESCRIBE statement.
v For DESCRIBE output and PREPARE INTO, the column pertains to columns of the result table.
v For DESCRIBE CURSOR, the column pertains to a result set associated with a cursor.
v For DESCRIBE INPUT, the column pertains to parameter markers.
v For DESCRIBE PROCEDURE, the column pertains to the result sets returned by the stored procedure.

SQLTYPE and SQLLEN: The following table shows the values that may appear in
the SQLTYPE and SQLLEN fields of the SQLDA. In DESCRIBE and PREPARE
INTO, an even value of SQLTYPE means the column does not allow nulls, and an
odd value means the column does allow nulls. In FETCH, OPEN, EXECUTE, and
CALL, an even value of SQLTYPE means no indicator variable is provided, and an
odd value means that SQLIND contains the address of an indicator variable.

SQLDA

Appendix C. SQLCA and SQLDA 939

Table 74. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and CALL

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or Parameter
data type SQLLEN

Host variable data
type SQLLEN

384/385 date 10 1 fixed-length character
string representation of
a date

length attribute of the
host variable

388/389 time 8 2 fixed-length character
string representation of
a time

length attribute of the
host variable

392/393 timestamp 26 fixed-length character
string representation of
a timestamp

length attribute of the
host variable

400/401 N/A N/A NUL-terminated
graphic string

length attribute of the
host variable

404/405 BLOB 0 3 BLOB Not used. 3

408/409 CLOB 0 3 CLOB Not used. 3

412/413 DBCLOB 0 3 DBCLOB Not used. 3

448/449 varying-length
character string

length attribute of the
column

varying-length
character string

length attribute of the
host variable

452/453 fixed-length character
string

length attribute of the
column

fixed-length character
string

length attribute of the
host variable

456/457 long varying-length
character string

length attribute of the
column

long varying-length
character string

length attribute of the
host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of the
host variable

464/465 varying-length graphic
string

length attribute of the
column

varying-length graphic
string

length attribute of the
host variable

468/469 fixed-length graphic
string

length attribute of the
column

fixed-length graphic
string

length attribute of the
host variable

472/473 long varying-length
graphic string

length attribute of the
column

long graphic string length attribute of the
host variable

480/481 floating point 4 for single precision,
8 for double precision

floating point 4 for single precision,
8 for double precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

504/505 N/A N/A DISPLAY SIGN
LEADING SEPARATE

precision in byte 1;
scale in byte 2

904/905 N/A N/A ROWID 40

960/961 N/A N/A BLOB locator 4

964/965 N/A N/A CLOB locator 4

968/969 N/A N/A DBCLOB locator 4

972/973 result set locator 4 result set locator 4

976/977 table locator 4 table locator 4

SQLDA

940 SQL Reference

Table 74. SQLTYPE and SQLLEN values for DESCRIBE, PREPARE INTO, FETCH, OPEN, EXECUTE, and
CALL (continued)

SQLTYPE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

Column or Parameter
data type SQLLEN

Host variable data
type SQLLEN

Notes:

1. Might be different if a date installation exit is specified.

2. Might be different if a time installation exit is specified.

3. Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column.

SQLDATA: The following table identifies the CCSID values that appear in the
SQLDATA field when the SQLVAR element describes a string column.

Table 75. CCSID values for SQLDATA

Data type Subtype Bytes 1 and 2 Bytes 3 and 4

Character SBCS data X'0000' CCSID

Character mixed data X'0000' CCSID

Character BIT data X'0000' X'FFFF'

Graphic N/A X'0000' CCSID

Any other data type N/A N/A N/A

Unrecognized and unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on the
level of data type support available at the sender as well as at the receiver of the
data. This support is particularly important as new data types are added to the
product.

New data types may or may not be supported by the sender or receiver of the data
and may or may not be recognized by the sender or reciver of the data. Depending
on the situation, the new data type may be returned, or a compatible data type that
is agreed to by both the sender and the receiver of the data may be returned or an
error may occur.

When the sender and receiver agree to use a compatible data type, the following
table indicates the mapping that takes place. This mapping takes place when at
least one of the sender or receiver does not support the data type provided. The
unsupported data type can be provided by either the application or the database
manager.

Table 76. Compatible data types for unsupported data types

Data type Compatible data type

BIGINT DECIMAL(19,0) (1)

ROWID VARCHAR(40) FOR BIT DATA

Notes:

1. BIGINT is supported by other DB2 platforms.

Note that no indication is given in the SQLDA that the data type is substituted.

SQLDA

Appendix C. SQLCA and SQLDA 941

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

||

||

||

||

|

|
|
|

The included SQLDA
The description of the SQLDA that is given by INCLUDE SQLDA is shown below.
Only assembler, C, C⁺⁺, COBOL46, and PL/I C are supported.

C and C⁺⁺:

46. Excluding OS/VS COBOL

assembler:
SQLTRIPL EQU C'3'
SQLDOUBL EQU C'2'
SQLSINGL EQU C' '
*

SQLSECT SAVE
*
SQLDA DSECT
SQLDAID DS CL8 ID
SQLDABC DS F BYTE COUNT
SQLN DS H COUNT SQLVAR/SQLVAR2 ENTRIES
SQLD DS H COUNT VARS (TWICE IF USING BOTH)
*
SQLVAR DS 0F BEGIN VARS
SQLVARN DSECT , NTH VARIABLE
SQLTYPE DS H DATA TYPE CODE
SQLLEN DS 0H LENGTH
SQLPRCSN DS X DEC PRECISION
SQLSCALE DS X DEC SCALE
SQLDATA DS A ADDR OF VAR
SQLIND DS A ADDR OF IND
SQLNAME DS H,CL30 DESCRIBE NAME
SQLVSIZ EQU *-SQLDATA
SQLSIZV EQU *-SQLVARN
*
SQLDA DSECT
SQLVAR2 DS 0F BEGIN EXTENDED FIELDS OF VARS
SQLVAR2N DSECT , EXTENDED FIELDS OF NTH VARIABLE
SQLLONGL DS F LENGTH
SQLRSVDL DS F RESERVED
SQLDATAL DS A ADDR OF LENGTH IN BYTES
SQLTNAME DS H,CL30 DESCRIBE NAME
*

SQLSECT RESTORE

In the above declaration, SQLSECT SAVE is a macro invocation that remembers
the current CSECT name. SQLSECT RESTORE is a macro invocation that
continues that CSECT.

SQLDA

942 SQL Reference

#ifndef SQLDASIZE /* Permit duplicate Includes */
/**/
struct sqlvar

{ short sqltype;
short sqllen;
char *sqldata;
short *sqlind;
struct sqlname

{ short length;
char data[30];

} sqlname;
};

/**/
struct sqlvar2

{ struct
{ long sqllonglen;

unsigned long reserved;
} len;

char *sqldatalen;
struct sqldistinct_type

{ short length;
char data[30];

} sqldatatype_name;
};

/**/
struct sqlda

{ char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar sqlvar[1];

};
/**/
/***/
/* Macros for using the sqlvar2 fields. */
/***/
/**/
/***/
/* '2' in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/* '3' in the 7th byte of sqldaid indicates a tripled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED '2'
#define SQLTRIPLED '3'
#define SQLSINGLED ' '
/**/

SQLDA

Appendix C. SQLCA and SQLDA 943

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) \

(((daptr)->sqldaid[6] == (char) SQLDOUBLED) ? \
(1) : \
(0))

/**/
/***/
/* GETSQLTRIPLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been tripled, or 0 if it has not been tripled. */
/***/
#define GETSQLTRIPLED(daptr) \

(((daptr)->sqldaid[6] == (char) SQLTRIPLED) ? \
(1) : \
(0))

/**/
/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to '2'. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ' '. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \

(((daptr)->sqldaid[6] = (newvalue)))
/**/
/***/
/* SETSQLTRIPLED(daptr) sets the 7th byte of sqldaid */
/* to '3'. */
/***/
#define SETSQLTRIPLED(daptr) \

(((daptr)->sqldaid[6] = (SQLTRIPLED)))
/**/
/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/
#define GETSQLDALONGLEN(daptr,n) (\

(long) (((struct sqlvar2 *) &((daptr);->sqlvar[(n) + \
((daptr)->sqld)])) \
->len.sqllonglen))

/**/

SQLDA

944 SQL Reference

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \

struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) \

&((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
var2ptr->len.sqllonglen = (long) (length); \
}

/**/
/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */
/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\

(((struct sqlvar2 *) &(daptr);->sqlvar[(n) + (daptr)->sqld]) \
->sqldatalen == NULL) ? \

((long *) NULL) : \
((long *) ((struct sqlvar2 *) \

&(daptr);->sqlvar[(n) + (daptr)->sqld]) \
->sqldatalen))

/**/
/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \

struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) \

&((daptr);->sqlvar[(n) + ((daptr)->sqld)]); \
var2ptr->sqldatalen = (char *) ptr; \
}

/**/
#define SQLDASIZE(n) \

(sizeof(struct sqlda) + ((n)-1) * sizeof(struct sqlvar))
#endif /* SQLDASIZE */

SQLDA

Appendix C. SQLCA and SQLDA 945

COBOL (IBM COBOL and VS COBOL II only):
01 SQLDA.

05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLN.

10 SQLVAR1.
15 SQLTYPE PIC S9(4) BINARY.
15 SQLLEN PIC S9(4) BINARY.
15 FILLER REDEFINES SQLLEN.

20 SQLPRECISION PIC X.
20 SQLSCALE PIC X.

15 SQLDATA POINTER.
15 SQLIND POINTER.
15 SQLNAME.

49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

10 SQLVAR2 REDEFINES SQLVAR1.
15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
15 SQLLONGLEN REDEFINES SQLVAR2-RESERVED-1

PIC S9(9) BINARY.
15 SQLVAR2-RESERVED-2 PIC S9(9) BINARY.
15 SQLDATALEN POINTER.
15 SQLDATATYPE-NAME.

20 SQLDATATYPE-NAMEL PIC S9(4) BINARY.
20 SQLDATATYPE-NAMEC PIC X(30).

PL/I:
DECLARE

1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC FIXED(31) BINARY,
2 SQLN FIXED(15) BINARY,
2 SQLD FIXED(15) BINARY,
2 SQLVAR(SQLSIZE REFER(SQLN)),

3 SQLTYPE FIXED(15) BINARY,
3 SQLLEN FIXED(15) BINARY,
3 SQLDATA POINTER,
3 SQLIND POINTER,
3 SQLNAME CHAR(30) VAR;

/* */
DECLARE

1 SQLDA2 BASED(SQLDAPTR),
2 SQLDAID2 CHAR(8),
2 SQLDABC2 FIXED(31) BINARY,
2 SQLN2 FIXED(15) BINARY,
2 SQLD2 FIXED(15) BINARY,
2 SQLVAR2(SQLSIZE REFER(SQLN2)),

3 SQLBIGLEN,
4 SQLLONGL FIXED(31) BINARY,
4 SQLRSVDL FIXED(31) BINARY,

3 SQLDATAL POINTER,
3 SQLTNAME CHAR(30) VAR;

/* */
DECLARE SQLSIZE FIXED(15) BINARY;
DECLARE SQLDAPTR POINTER;
DECLARE SQLTRIPLED CHAR(1) INITIAL('3');
DECLARE SQLDOUBLED CHAR(1) INITIAL('2');
DECLARE SQLSINGLED CHAR(1) INITIAL(' ');

SQLDA

946 SQL Reference

Identifying an SQLDA in C or C⁺⁺
A descriptor-name can be specified in the CALL, DESCRIBE, EXECUTE, FETCH,
and OPEN statements. When the host application is written in C or C⁺⁺,
descriptor-name can be a pointer variable with pointer notation.

For example, descriptor-name could be declared as
sqlda *outsqlda;

Afterwords, it could be used in a statement like the following:
EXEC SQL DESCRIBE STMT1 INTO DESCRIPTOR :*outsqlda;

The REXX SQLDA
A REXX SQLDA consists of a set of REXX variables with a common stem. The
stem must be a REXX variable name that contains no periods and is the same as
the value of descriptor-name that you specify when you use the SQLDA in an SQL
statement. DB2 does not support the INCLUDE SQLDA statement in REXX.

Table 77 shows the variable names in a REXX SQLDA. The values in the second
column of the table are values that DB2 inserts into the SQLDA when the statement
executes. Except where noted otherwise, the values in the third column of the table
are values that the application must put in the SQLDA before the statement
executes.

Table 77. Fields of a REXX SQLDA

Variable name Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.SQLD The number of columns that are
described in the SQLDA. Double that
number if USING BOTH appears in
the DESCRIBE or PREPARE INTO
statement. Contains a 0 if the
statement string is not a query.

For DESCRIBE PROCEDURE, the
number of result sets returned by the
stored procedure. Contains a 0 if no
result sets are returned.

The number of host variables that are
used by the SQL statement.

Each SQLDA contains stem.SQLD of the following variables. Therefore, 1<=n<=stem.SQLD. There is one occurrence
of each variable for each column of the result table or host variable that is described by the SQLDA. This set of
variables is equivalent to the SQLVAR structure in SQLDAs for other languages.

stem.n.SQLTYPE Indicates the data type of the column
or parameter and whether it can
contain null values. For a description
of the type codes, see “SQLTYPE and
SQLLEN” on page 939.

For a distinct type, the data type on
which the distinct type was based is
placed in this field. The base SQLVAR
provides no indication that this is part
of the description of a distinct type.

Indicates the data type of the host
variable and whether an indicator
variable is provided. Host variables for
datetime values must be character
string variables. For FETCH, a
datetime type code means a
fixed-length character string. For a
description of the type codes, see
“SQLTYPE and SQLLEN” on
page 939.

SQLDA

Appendix C. SQLCA and SQLDA 947

Table 77. Fields of a REXX SQLDA (continued)

Variable name Usage in DESCRIBE
and PREPARE INTO

Usage in FETCH, OPEN,
EXECUTE, and CALL

stem.n.SQLLEN For a column other than a DECIMAL
or NUMERIC column, the length
attribute of the column or parameter.
For datetime data, the length of the
string representation of the value. See
“SQLTYPE and SQLLEN” on
page 939 for a description of
allowable values.

For a host variable that does not have
a decimal data type, the length
attribute of the host variable. See
“SQLTYPE and SQLLEN” on
page 939 for a description of
allowable values.

stem.n.SQLLEN.SQLPRECISION For a DECIMAL or NUMERIC column,
the precision of the column or
parameter.

For a host variable with a decimal
data type, the precision of the host
variable.

stem.n.SQLLEN.SQLSCALE For a DECIMAL or NUMERIC column,
the scale of the column or parameter.

For a host variable with a decimal
data type, the scale of the host
variable.

stem.n.SQLCCSID For a string column or parameter, the
CCSID of the column or parameter.

For a string host variable, the CCSID
of the host variable.

stem.n.SQLLOCATOR For DESCRIBE PROCEDURE, the
value of a result set locator.

Not used.

stem.n.SQLDATA Not used. Before EXECUTE or OPEN, contains
the value of an input host variable.
The application must supply this
value.

After FETCH, contains the values of
an output host variable.

stem.n.SQLIND Not used. Before EXECUTE or OPEN, contains
a negative number to indicate that the
input host variable in
stem.n.SQLDATA is null. The
application must supply this value.

After FETCH, contains a negative
number if the value of the output host
variable in stem.n.SQLDATA is null.

stem.n.SQLNAME The name of the nth column in the
result table. For DESCRIBE
PROCEDURE, contains the cursor
name that is used by the stored
procedure to return the result set. The
values for SQLNAME appear in the
order that the cursors were opened by
the stored procedure.

Not used.

SQLDA

948 SQL Reference

Appendix D. DB2 catalog tables

DB2 for OS/390 and z/OS maintains a set of tables (in database DSNDB06) called
the DB2 catalog. This appendix describes that catalog by describing the columns of
each catalog table.

The catalog tables describe such things as table spaces, tables, columns, indexes,
privileges, application plans, and packages. Authorized users can query the catalog;
however, it is primarily intended for use by DB2 and is therefore subject to change.
All catalog tables are qualified by SYSIBM. Do not use this qualifier for user-defined
tables.

The catalog tables are updated by DB2 during normal operations in response to
certain SQL statements, commands, and utilities.

Use as a programming interface

Not all catalog table columns are part of the general-use programming interface.
Whether a column is part of this interface is indicated in a column labeled “Use” in
the table that describes the column. The values that “Use” can assume are as
follows:

Value Meaning
G Column is part of the general-use programming interface
S Column is part of the product-sensitive interface
I Column is for internal use only
N Column is not used

For columns for which “Use” is N or I, the name of the column and its description
do not appear in the column’s explanation.

Release dependency indicators

Some objects depend on functions in particular releases of DB2. If you are running
on a release of DB2 and fall back to a previous release, an object that depends on
the more recent release becomes frozen. The object is marked with a release
dependency indicator and is unavailable until remigration. The release dependency
indicator, which is listed in the IBMREQD column of the catalog tables, shows the
release of DB2 upon which the objects depends. Release dependency indicators in
IBMREQD are defined by the following values:

Value Meaning
B Version 1R3 dependency indicator, not from the machine-readable material

(MRM) tape
C Version 2R1 dependency indicator, not from MRM tape
D Version 2R2 dependency indicator, not from MRM tape
E Version 2R3 dependency indicator, not from MRM tape
F Version 3R1 dependency indicator, not from MRM tape
G Version 4 dependency indicator, not from MRM tape
H Version 5 dependency indicator, not from MRM tape
I Version 6 dependency indicator, not from MRM tape
J Version 6 dependency indicator, not from MRM tape
K Version 7 dependency indicator, not from MRM tape
N Not from MRM tape, no dependency

© Copyright IBM Corp. 1982, 2001 949

|

|
|
|
|
|
|
|

||
||
|
||
||
||
||
||
||
||
||
||
||

Table spaces and indexes
The table below shows to what table spaces the catalog tables are assigned, and
what indexes they have. The pages that follow describe the columns in each table
arranged alphabetically by table name. The indexes are in ascending order, except
where noted.

DB2 Catalog Tables

950 SQL Reference

|

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

SYSCOPY SYSCOPY 984 DSNUCH01 DBNAME.TSNAME.START_RBA.1

TIMESTAMP1

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

SYSGPAUT SYSRESAUTH 1042 DSNAGH01 GRANTEE.QUALIFIER.
NAME.OBTYPE

DSNAGX01 GRANTOR.QUALIFIER.
NAME.OBTYPE

SYSGROUP SYSSTOGROUP 1058 DSNSSH01 NAME

SYSVOLUMES 1086

SYSGRTNS SYSROUTINES_OPTS 1050 DSNROX01 SCHEMA.ROUTINENAME.
BUILDDATE.BUILDTIME

SYSROUTINES_SRC 1051 DSNRSX01 ROUTINENAME

DSNRSX02 SCHEMA.ROUTINENAME.
BUILDDATE.
SEQNO

SYSHIST SYSCOLDIST_HIST 973 DSNHFX01 TBOWNER.TBNAME.
NAME.STATSTIME

SYSCOLUMNS_HIST 981 DSNHEX01 TBCREATOR.TBNAME.
NAME.STATSTIME

SYSINDEXES_HIST 1001 DSNHHX01 TBCREATOR.TBNAME.
NAME.STATSTIME

DSNHHX02 CREATOR.NAME

SYSINDEXPART_HIST 1005 DSNHGX01 IXCREATOR.IXNAME.
PARTITION.STATSTIME

SYSINDEXSTATS_HIST 1079 DSNHIX01 OWNER.NAME.
PARTITION.STATSTIME

SYSLOBSTATS_HIST 1016 DSNHJX01 DBNAME.NAME.STATSTIME

SYSTABLEPART_HIST 1068 DSNHCX01 DBNAME.TSNAME.
PARTITION.STATSTIME

SYSTABLES_HIST 1074 DSNHDX01 CREATOR.NAME.STATSTIME

SYSTABSTATS_HIST 1079 DSNHBX01 OWNER.NAME.
PARTITION.STATSTIME

SYSJAVA SYSJARCONTENTS 1009 DSNJCX01 JARSCHEMA.JAR_ID

SYSJAROBJECTS 1011 DSNJOX01 JARSCHEMA.JAR_ID

SYSJAVAOPTS 1012 DSNJVX01 JARSCHEMA.JAR_ID

SYSJAUXA LOB SYSJARDATA 1010 DSNJDX01 JAR_DATA

SYSJAUXB LOB SYSJARCLASS_SOURCE 1008 DSNJSX01 CLASS_SOURCE

SYSOBJ SYSAUXRELS 967 DSNOXX01 TBOWNER.TBNAME

DSNOXX02 AUXTBOWNER.AUXTBNAME

SYSCONSTDEP 983 DSNCCX01 BSCHEMA.BNAME.BTYPE

DSNCCX02 DTBCREATOR.DTBNAME

SYSDATATYPES 990 DSNODX01 SCHEMA.NAME

DSNODX02 DATATYPEID1

SYSKEYCOLUSE 1013 DSNCUX01 TBCREATOR.TBNAME.
CONSTNAME.COLSEQ.

DB2 Catalog Tables

952 SQL Reference

|||||
|

|||||

|||||
|
|

|||||
|

|||||
|

|||||
|

|||||

|||||
|

|||||
|

|||||

|||||
|

|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||
|

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

SYSPARMS 1028 DSNOPX01 SCHEMA.SPECIFICNAME.
ROUTINETYPE.ROWTYPE
ORDINAL

DSNOPX02 TYPESCHEMA.TYPENAME.
ROUTINETYPE.CAST_FUNCTION.
OWNER.SCHEMA.SPECIFICNAME

DSNOPX03 TYPESCHEMA.TYPENAME

SYSROUTINEAUTH 1043 DSNOAX01 GRANTOR.SCHEMA.
SPECIFICNAME.ROUTINETYPE.
GRANTEETYPE.EXECUTEAUTH

DSNOAX02 GRANTEE.SCHEMA.SPECIFICNAME.
ROUTINETYPE.GRANTEETYPE.
EXECUTEAUTH.GRANTEDTS

DSNOAX03 SCHEMA.SPECIFICNAME
ROUTINETYPE

SYSROUTINES 1044 DSNOFX01 NAME.PARM_COUNT.
ROUTINETYPE.PARM_SIGNATURE.
SCHEMA.PARM1.PARM2.PARM3.
PARM4.PARM5.PARM6.PARM7.
PARM8.PARM9.PARM10.PARM11.
PARM12.PARM13.PARM14.PARM15.
PARM16.PARM17.PARM18.PARM19.
PARM20.PARM21.PARM22.PARM23.
PARM24.PARM25.PARM26.PARM27.
PARM28.PARM29.PARM30

DSNOFX02 SCHEMA.SPECIFICNAME.
ROUTINETYPE

DSNOFX03 NAME.SCHEMA.CAST_FUNCTION.
PARM_COUNT.PARM_SIGNATURE.
PARM1

DSNOFX04 ROUTINE_ID1

DSNOFX05 SOURCESCHEMA.SOURCESPECIFIC.
ROUTINETYPE

DSNOFX06 SCHEMA.NAME.ROUTINETYPE.
PARM_COUNT

DSNOFX07 NAME.PARM_COUNT.
ROUTINETYPE. SCHEMA.
PARM_SIGNATURE.
PARM1.PARM2.PARM3.
PARM4.PARM5.PARM6.PARM7.
PARM8.PARM9.PARM10.PARM11.
PARM12.PARM13.PARM14.PARM15.
PARM16.PARM17.PARM18.PARM19.
PARM20.PARM21.PARM22.PARM23.
PARM24.PARM25.PARM26.PARM27.
PARM28.PARM29.PARM30

DSNOFX08 JARSCHEMA.
JAR_ID

SYSSCHEMAAUTH 1052 DSNSKX01 GRANTEE.SCHEMANAME

DSNSKX02 GRANTOR

SYSTABCONST 1064 DSNCNX01 TBCREATOR.TBNAME.CONSTNAME

DSNCNX02 IXOWNER.IXNAME

SYSTRIGGERS 1080 DSNOTX01 SCHEMA.NAME.SEQNO

DSNOTX02 TBOWNER.TBNAME

DSNOTX03 SCHEMA.TRIGNAME

DB2 Catalog Tables

Appendix D. DB2 catalog tables 953

|||||
|
|
|
|
|
|
|
|
|
|

|||||
|

|||||

|||||

|||||

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

SYSPKAGE SYSPACKAGE 1017 DSNKKX01 LOCATION.COLLID.NAME.
VERSION

DSNKKX02 LOCATION.COLLID.NAME.
CONTOKEN

SYSPACKAUTH 1022 DSNKAX01 GRANTOR.LOCATION.COLLID.NAME

DSNKAX02 GRANTEE.LOCATION.COLLID.
NAME.BINDAUTH.COPYAUTH.
EXECUTEAUTH

DSNKAX03 LOCATION.COLLID.NAME

SYSPACKDEP 1023 DSNKDX01 DLOCATION.DCOLLID.DNAME.
DCONTOKEN

DSNKDX02 BQUALIFIER.BNAME.BTYPE

DSNKDX03 BQUALIFIER.BNAME.BTYPE.
DTYPE

SYSPROCEDURES 1038 DSNKCX01 PROCEDURE.AUTHID1.LUNAME1

SYSPACKLIST 1024 DSNKLX01 LOCATION.COLLID.NAME

DSNKLX02 PLANNAME.SEQNO.LOCATION.
COLLID.NAME

SYSPACKSTMT 1025 DSNKSX01 LOCATION.COLLID.NAME.
CONTOKEN.SEQNO

SYSPKSYSTEM 1030 DSNKYX01 LOCATION.COLLID.NAME.
CONTOKEN.SYSTEM.ENABLE

SYSPLSYSTEM 1037 DSNKPX01 NAME.SYSTEM.ENABLE

SYSPLAN SYSDBRM 993

SYSPLAN 1031 DSNPPH01 NAME

SYSPLANAUTH 1035 DSNAPH01 GRANTEE.NAME.EXECUTEAUTH

DSNAPX01 GRANTOR

SYSPLANDEP 1036 DSNGGX01 BCREATOR.BNAME.BTYPE

SYSSTMT 1055

SYSSEQ SYSSEQUENCES 1053 DSNSQX01 SCHEMA.NAME

DSNSQX02 SEQUENCEID1

SYSSEQ2 SYSSEQUENCESDEP 1054 DSNSRX01 DCREATOR.DNAME.DCOLNAME

SYSSTATS SYSCOLDIST 972 DSNTNX01 TBOWNER.TBNAME.NAME

SYSCOLDISTSTATS 974 DSNTPX01 TBOWNER.TBNAME.NAME
PARTITION

SYSCOLSTATS 975 DSNTCX01 TBOWNER.TBNAME.NAME
PARTITION

SYSINDEXSTATS 1006 DSNTXX01 OWNER.NAME.PARTITION

SYSLOBSTATS 1015 DSNLNX01 DBNAME.NAME

SYSTABSTATS 1078 DSNTTX01 OWNER.NAME.PARTITION

SYSSTR SYSCHECKDEP 968 DSNSDX01 TBOWNER.TBNAME.CHECKNAME
COLNAME

SYSCHECKS 969 DSNSCX01 TBOWNER.TBNAME.CHECKNAME

SYSCHECKS2 970 DSNCHX01 TBOWNER.TBNAME.CHECKNAME

SYSSTRINGS 1059 DSNSSX01 OUTCCSID.INCCSID.IBMREQD

DB2 Catalog Tables

954 SQL Reference

|||||

TABLE SPACE
DSNDB06. ...

TABLE
SYSIBM. ... Page

INDEX
SYSIBM. ... INDEX FIELDS

SYSUSER SYSUSERAUTH 1081 DSNAUH01 GRANTEE.GRANTEDTS

DSNAUX02 GRANTOR

SYSVIEWS SYSVIEWDEP 1084 DSNGGX02 BCREATOR.BNAME.BTYPE

DSNGGX03 BSCHEMA.BNAME.BTYPE

SYSVIEWS 1085 DSNVVX01 CREATOR.NAME.SEQNO.TYPE

Note:
1. Index field is in descending order

SQL statements allowed on the catalog
The following SQL statements can be used to change the value of certain options
for existing catalog indexes and table spaces, and to add indexes to any of the
catalog tables.

SQL statement Index Allowable clauses and usage notes

ALTER INDEX IBM-defined Only these clauses are allowed:
CLOSE
FREEPAGE
GBPCACHE
PCTFREE
PIECESIZE
COPY

You cannot alter the GBPCACHE value for
indexes DSNDXX01, DSNDXX02, and
DSNDXX03, which are on catalog table
SYSIBM.SYSINDEXES.

ALTER TABLE The only clause allowed is DATA CAPTURE
CHANGES.

DB2 Catalog Tables

Appendix D. DB2 catalog tables 955

|||||

SQL statement Index Allowable clauses and usage notes

ALTER TABLESPACE Only these clauses are allowed:
CLOSE
FREEPAGE
GBPCACHE
LOCKMAX
MAXROWS
PCTFREE
TRACKMOD

You cannot alter the GBPCACHE or
MAXROWS value of some catalog table
spaces. Do not specify GBPCACHE for the
following table spaces:
v DSNDB06.SYSDBASE
v DSNDB06.SYSDBAUT
v DSNDB06.SYSPKAGE
v DSNDB06.SYSPLAN
v DSNDB06.SYSUSER (exception: the

attribute can be altered if authorization
includes installation SYSADM authority.)

Do not specify MAXROWS for the following
table spaces:
v DSNDB06.SYSDBASE
v DSNDB06.SYSDBAUT
v DSNDB06.SYSGROUP
v DSNDB06.SYSPLAN
v DSNDB06.SYSVIEWS

You can specify the LOCKSIZE keyword on the
ALTER TABLESPACE statement for any
catalog table spaces that are not LOB table
spaces and that do not contain links. The
following table spaces contain links:
v DSNDB06.SYSDBASE
v DSNDB06.SYSDBUT
v DSNDB06.SYSGROUP
v DSNDB06.SYSPLAN
v DSNDB06.SYSVIEWS

CREATE INDEX User-created All clauses are allowed, except for:
CLOSE YES
CLUSTER
UNIQUE
DEFER YES (only on tables SYSINDEXES,

SYSINDEXPART, and SYSKEYS)

The only value allowed for BUFFERPOOL is
BP0.

You can create up to 100 indexes on the
catalog.

ALTER INDEX User-created All clauses are allowed, except for
BUFFERPOOL.

DROP INDEX User-created The statement has no clauses.

DB2 Catalog Tables

956 SQL Reference

#
#
#
#
#
#
#
#
#
#

Reorganizing the catalog
The REORG TABLESPACE utility can be run on all the table spaces in the catalog
database (DSNDB06) to reclaim unused or wasted space, which can affect
performance. The utility observes the PCTFREE and FREEPAGE values specified
in the ALTER INDEX statement for all the catalog indexes and the following table
spaces:
v DSNDB06.SYSCOPY
v DSNDB06.SYSDDF
v DSNDB06.SYSGPAUT
v DSNDB06.SYSGRTNS
v DSNDB06.SYSHIST
v DSNDB06.SYSJAVA
v DSNDB06.SYSJAUXA
v DSNDB06.SYSJAUXB
v DSNDB06.SYSOBJ
v DSNDB06.SYSPKAGE
v DSNDB06.SYSSEQ
v DSNDB06.SYSEQ2
v DSNDB06.SYSSTR
v DSNDB06.SYSSTATS
v DSNDB06.SYSUSER
v DSNDB01.SCT02
v DSNDB01.SPT01

For details on running REORG TABLESPACE, see DB2 Utility Guide and
Reference.

DB2 Catalog Tables

Appendix D. DB2 catalog tables 957

|
|
|
|
|

New and changed catalog tables
Descriptions of the following catalog tables have been added:
v SYSIBM.SYSCHECK2
v SYSIBM.SYSCOLDIST_HIST
v SYSIBM.SYSCOLUMNS_HIST
v SYSIBM.SYSINDEXES_HIST
v SYSIBM.SYSINDEXPART_HIST
v SYSIBM.SYSINDEXSTATS_HIST
v SYSIBM.SYSJARCLASS_SOURCE
v SYSIBM.SYSJARCONTENTS
v SYSIBM.SYSJARDATA
v SYSIBM.SYSJAROBJECTS
v SYSIBM.SYSJAVAOPTS
v SYSIBM.SYSKEYCOLUSE
v SYSIBM.SYSLOBSTATS_HIST
v SYSIBM.SYSROUTINES_OPTS
v SYSIBM.SYSROUTINES_SRC
v SYSIBM.SYSTABCONST
v SYSIBM.SYSTABLEPART_HIST
v SYSIBM.SYSTABLES_HIST
v SYSIBM.SYSTABSTATS_HIST

The following tables have new or revised columns, column values, or column
descriptions to support the new function in DB2 Version 7:

Table name New column Revised column

SYSCOPY COPYPAGESF
NPAGESF
CPAGESF
JOBNAME
AUTHID

SYSDATABASE ENCODING_SCHEME

SYSDATATYPES ENCODING_SCHEME

SYSINDEXES SPACEF
REMARKS

SYSINDEXPART SPACEF
DSNUM
EXTENTS
PSEUDO_DEL_ENTRIES
LEAFNEAR
LEAFFAR

SYSPACKAGE ENCODING_CCSID
IMMEDWRITE
RELBOUND

SYSPACKSTMT EXPLAINABLE
QUERYNO

SYSPARMS ENCODING_SCHEME

SYSPLAN ENCODING_CCSID
IMMEDWRITE
RELBOUND

SYSROUTINES JAVA_SIGNATURE
CLASS
JARSCHEMA
JAR_ID
SPECIAL_REGS

DB2 Catalog Tables

958 SQL Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||||

||
|
|
|
|

|

|||

|||

||
|
|

||
|
|
|
|
|

|

||
|
|

|

||
|
|

|||

||
|
|

|

||
|
|
|
|

|

Table name New column Revised column

SYSSEQUENCES MAXVALUE
MINVALUE
CYCLE

SYSSTMT EXPLAINABLE
QUERYNO

SYSTABLEPART SPACEF
DSNUM
EXTENTS

SYSTABLES NPAGESF
SPACEF
AVGROWLEN
RELCREATED

ENCODING_SCHEME
TABLESTATUS

SYSTABLESPACE ENCODING_SCHEME

SYSTRIGGERS TRIGNAME

SYSVIEWDEP DTYPE

SYSVIEWS RELCREATED
TYPE

DB2 Catalog Tables

Appendix D. DB2 catalog tables 959

|||

|||
|
|

||
|
|

||
|
|

|

||
|
|
|

|
|

|||

|||

|||

||
|
|

|
|

SYSIBM.IPNAMES table
Defines the remote DRDA servers DB2 can access using TCP/IP. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

LINKNAME CHAR(8)
NOT NULL

The value specified in this column must match the value specified
in the LINKNAME column of the associated row in
SYSIBM.LOCATIONS.

G

SECURITY_OUT CHAR(1)
NOT NULL
WITH DEFAULT 'A'

This column defines the DRDA security option that is used when
local DB2 SQL applications connect to any remote server
associated with this TCP/IP host:

A The option is “already verified”. Outbound connection
requests contain an authorization ID and no password.
The authorization ID used for an outbound request is
either the DB2 user’s authorization ID or a translated ID,
depending upon the value of the USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection
requests contain a userid and a RACF PassTicket. The
value specified in the LINKNAME column is used as the
RACF PassTicket application name for the remote
server.

The authorization ID used for an outbound request is
either the DB2 user’s authorization ID or a translated ID,
depending upon the value of the USERNAMES column.

P The option is “password”. Outbound connection requests
contain an authorization ID and a password. The
password is obtained from the SYSIBM.USERNAMES
table.

The USERNAMES column must specify “O”.

G

USERNAMES CHAR(1)
NOT NULL WITH
DEFAULT

This column controls outbound authorization ID translation.
Outbound translation is performed when an authorization ID is
sent by DB2 to a remote server.

O An outbound ID is subject to translation. Rows in the
SYSIBM.USERNAMES table are used to perform ID
translation.

No translation or “come from” checking is performed on
inbound IDs.

blank No translation occurs.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

IPADDR VARCHAR(254)
NOT NULL WITH
DEFAULT

This column contains the IP address or domain name of a remote
TCP/IP host. The IPADDR column must be specified as follows:

v If the IPADDR contains a left justified character string containing
four numeric values delimited by decimal points, DB2 assumes
the value is an IP address in dotted decimal format. For
example, '123.456.78.91' would be interpreted as a dotted
decimal IP address.

v All other values are interpreted as a TCP/IP domain name,
which can be resolved by the TCP/IP gethostbyname socket
call. TCP/IP domain names are not case sensitive.

G

SYSIBM.IPNAMES

960 SQL Reference

SYSIBM.LOCATIONS table
Contains a row for every accessible remote server. The row associates a
LOCATION name with the TCP/IP or SNA network attributes for the remote server.
Requesters are not defined in this table. Rows in this table can be inserted,
updated, and deleted.

Column name Data type Description Use

LOCATION CHAR(16)
NOT NULL

A unique location name for the accessible server. This is the name
by which the remote server is known to local DB2 SQL
applications.

G

LINKNAME CHAR(8)
NOT NULL

Identifies the VTAM or TCP/IP attributes associated with this
location. For any LINKNAME specified, one or both of the
following statements must be true:

v A row exists in SYSIBM.LUNAMES whose LUNAME matches
the value specified in the SYSIBM.LOCATIONS LINKNAME
column. This row specifies the VTAM communication attributes
for the remote location.

v A row exists in SYSIBM.IPNAMES whose LINKNAME matches
the value specified in the SYSIBM.LOCATIONS LINKNAME
column. This row specifies the TCP/IP communication attributes
for the remote location.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

PORT CHAR(32)
NOT NULL WITH
DEFAULT

TCP/IP is used for outbound DRDA connections when the
following statement is true:

v A row exists in SYSIBM.IPNAMES, where the LINKNAME
column matches the value specified in the
SYSIBM.LOCATIONS LINKNAME column.

If the above mentioned row is found, the value of the PORT
column is interpreted as follows:

v If PORT is blank, the default DRDA port (446) is used.

v If PORT is nonblank, the value specified for PORT can take one
of two forms:

– If the value in PORT is left justified with 1-5 numeric
characters, the value is assumed to be the TCP/IP port
number of the remote database server.

– Any other value is assumed to be a TCP/IP service name,
which can be converted to a TCP/IP port number using the
TCP/IP getservbyname socket call. TCP/IP service names
are not case sensitive.

G

TPN VARCHAR(64)
NOT NULL WITH
DEFAULT

Used only when the local DB2 begins an SNA conversation with
another server. When used, TPN indicates the SNA LU 6.2
transaction program name (TPN) that will allocate the
conversation. A length of zero for the column indicates the default
TPN. For DRDA conversations, this is the DRDA default, which is
X'07F6C4C2'. For DB2 private protocol conversations, this column
is not used.

For an SQL/DS™ server, TPN should contain the resource ID of
the SQL/DS machine.

G

SYSIBM.LOCATIONS

Appendix D. DB2 catalog tables 961

SYSIBM.LULIST table
Allows multiple LU names to be specified for a given LOCATION. Insert rows into
this table when you want to define a remote DB2 data sharing group. The same
value for LUNAME column cannot appear in both the SYSIBM.LUNAMES table and
the SYSIBM.LULIST table. Rows in this table can be inserted, updated, and
deleted.

Column name Data type Description Use

LINKNAME CHAR(8)
NOT NULL

The value of the LINKNAME column in the SYSIBM.LOCATIONS
table with which this row is associated. This is also the value of
the LUNAME column in the SYSIBM.LUNAMES table. The values
of the other columns in the SYSIBM.LUNAMES row apply to the
LU identified by the LUNAME column in this row of
SYSIBM.LULIST.

G

LUNAME CHAR(8)
NOT NULL

The VTAM® logical unit name (LUNAME) of the remote database
system. This LUNAME must not exist in the LUNAME column of
SYSIBM.LUNAMES.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.LULIST

962 SQL Reference

SYSIBM.LUMODES table
Each row of the table provides VTAM with conversation limits for a specific
combination of LUNAME and MODENAME. The table is accessed only during the
initial conversation limit negotiation between DB2 and a remote LU. This negotiation
is called change-number-of-sessions (CNOS) processing. Rows in this table can be
inserted, updated, and deleted.

Column name Data type Description Use

LUNAME CHAR(8)
NOT NULL

LU name of the server involved in the CNOS processing. G

MODENAME CHAR(8)
NOT NULL

Name of a logon mode description in the VTAM logon mode table. G

CONVLIMIT SMALLINT
NOT NULL

Maximum number of active conversations between the local DB2
and the other system for this mode. Used to override the number
in the DSESLIM parameter of the VTAM APPL definition statement
for this mode.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.LUMODES

Appendix D. DB2 catalog tables 963

SYSIBM.LUNAMES table
The table must contain a row for each remote SNA client or server that
communicates with DB2. Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

LUNAME CHAR(8)
NOT NULL

Name of the LU for one or more accessible systems. A blank
string indicates the row applies to clients whose LU name is not
specifically defined in this table.

All other column values for a given row in this table are for clients
and servers associated with the row’s LU name.

G

SYSMODENAME CHAR(8)
NOT NULL
WITH DEFAULT

Mode used to establish inter-system conversations. A blank
indicates the default mode IBMDB2LM (DB2 private protocol
access).

G

SECURITY_IN CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security options that are accepted by this
DB2 when an SNA client connects to DB2:

V The option is “verify”. An incoming connection request
must include one of the following: a userid and
password, a userid and RACF PassTicket, or a Kerberos
security ticket.

A The option is “already verified”. A request does not need
a password, although a password is checked if it is sent.

With this option, an incoming connection request is
accepted if it includes any of the following: a userid, a
userid and password, a userid and RACF PassTicket, or
a Kerberos security ticket.

If the USERNAMES column contains 'I' or 'B', RACF is
not invoked to validate incoming connection requests
that contain only a userid.

G

SECURITY_OUT CHAR(1)
NOT NULL WITH
DEFAULT 'A'

This column defines the security option that is used when local
DB2 SQL applications connect to any remote server associated
with this LUNAME:

A The option is “already verified”. Outbound connection
requests contain an authorization ID and no password.

The authorization ID used for an outbound request is
either the DB2 user’s authorization ID or a translated ID,
depending upon the value of the USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection
requests contain a userid and a RACF PassTicket. The
server’s LU name is used as the RACF PassTicket
application name.

The authorization ID used for an outbound request is
either the DB2 user’s authorization ID or a translated ID,
depending upon the value of the USERNAMES column.

P The option is “password”. Outbound connection requests
contain an authorization ID and a password. The
password is obtained from the SYSIBM.USERNAMES
table or RACF, depending upon the value specified in
the ENCRYPTPWDS column.

The USERNAMES column must specify 'B' or 'O'.

G

SYSIBM.LUNAMES

964 SQL Reference

|

|

Column name Data type Description Use

ENCRYPTPSWDS CHAR(1)
NOT NULL WITH
DEFAULT 'N'

This column only applies to DB2 for OS/390 and z/OS partners. It
is provided to support connectivity to prior releases of DB2 that
are unable to support RACF PassTickets.

For connections between DB2 Version 5 and later, we recommend
using the SECURITY_OUT='R' option instead of the
ENCRYPTPSWDS='Y' option.

N No, passwords are not in internal RACF encrypted
format. This is the default.

Y Yes for outbound requests, the encrypted password is
extracted from RACF and sent to the server. For
inbound requests, the password is treated as encrypted.

G

MODESELECT CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether to use the SYBIBM.MODESELECT table:

N Use default modes: IBMDB2LM (for DB2 private
protocol) and IBMRDB (for DRDA).

Y Searches SYSIBM.MODESELECT for appropriate mode
name.

G

USERNAMES CHAR(1)
NOT NULL WITH
DEFAULT

This column controls inbound and outbound authorization ID
translation, and “come from” checking.

Inbound translation and “come from” checking are performed when
an authorization ID is received from a remote client.

Outbound translation is performed when an authorization ID is
sent by DB2 to a remote server.

When I, O, or B is specified in this column, rows in the
SYSIBM.USERNAMES table are used to perform ID translation.

I An inbound ID is subject to translation and “come from”
checking.

No translation is performed on outbound IDs.

O No translation or “come from” checking is performed on
inbound IDs.

An outbound ID is subject to translation.

B An inbound ID is subject to translation and “come from”
checking.

An outbound ID is subject to translation.

blank No translation occurs.

G

GENERIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Indicates whether DB2 should use its real LU name or generic LU
name to identify itself to the partner LU, which is identified by this
row.
N The real VTAM LU name of this DB2 subsystem
Y The VTAM generic LU name of this DB2 subsystem

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.LUNAMES

Appendix D. DB2 catalog tables 965

SYSIBM.MODESELECT table
Associates a mode name with any conversation created to support an outgoing
SQL request. Each row represents one or more combinations of LUNAME,
authorization ID, and application plan name. Rows in this table can be inserted,
updated, and deleted.

Column name Data type Description Use

AUTHID CHAR(8)
NOT NULL
WITH DEFAULT

Authorization ID of the SQL request. Blank (the default) indicates
that the MODENAME specified for the row is to apply to all
authorization IDs.

G

PLANNAME CHAR(8)
NOT NULL
WITH DEFAULT

Plan name associated with the SQL request. Blank (the default)
indicates that the MODENAME specified for the row is to apply to
all plan names.

G

LUNAME CHAR(8)
NOT NULL

LU name associated with the SQL request. G

MODENAME CHAR(8)
NOT NULL

Name of the logon mode in the VTAM logon mode table to be
used in support of the outgoing SQL request. If blank, IBMDB2LM
is used for DB2 private protocol connections and IBMRDB is used
for DRDA connections.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.MODESELECT

966 SQL Reference

SYSIBM.SYSAUXRELS table
Contains one row for each auxiliary table created for a LOB column. A base table
space that is partitioned must have one auxiliary table for each partition of each
LOB column.

Column name Data type Description Use

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the base table. G

TBNAME VARCHAR(18)
NOT NULL

Name of the base table. G

COLNAME VARCHAR(18)
NOT NULL

Name of the LOB column in the base table. G

PARTITION SMALLINT
NOT NULL

Partition number if the base table space is partitioned. Otherwise,
the value is 0.

G

AUXTBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the auxiliary table. G

AUXTBNAME VARCHAR(18)
NOT NULL

Name of the auxiliary table. G

AUXRELOBID INTEGER
NOT NULL

Internal identifier of the relationship between the base table and
the auxiliary table.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSAUXRELS

Appendix D. DB2 catalog tables 967

SYSIBM.SYSCHECKDEP table
Contains one row for each reference to a column in a table check constraint.

Column name Data type Description Use

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table on which the table check
constraint is defined.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the check constraint is defined. G

CHECKNAME VARCHAR(128)
NOT NULL

Name of the check constraint. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column that the table check constraint refers to. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCHECKDEP

968 SQL Reference

SYSIBM.SYSCHECKS table
Contains one row for each table check constraint.

Column name Data type Description Use

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table on which the table check
constraint is defined.

G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the creator of the table check constraint. G

DBID SMALLINT
NOT NULL

Internal identifier of the database for the table check constraint. S

OBID SMALLINT
NOT NULL

Internal identifier of the table check constraint. S

TIMESTAMP TIMESTAMP
NOT NULL

Time when the table check constraint was created. G

RBA CHAR(6)
FOR BIT DATA
NOT NULL

The log RBA when the table check constraint was created. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the check constraint is defined. G

CHECKNAME VARCHAR(128)
NOT NULL

Table check constraint name. G

CHECKCONDITION VARCHAR(3800)
NOT NULL

Text of the table check constraint. G

SYSIBM.SYSCHECKS

Appendix D. DB2 catalog tables 969

SYSIBM.SYSCHECKS2 table
Contains one row for each table check constraint.

Column name Data type Description Use

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table on which the table check
constraint is defined.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the check constraint is defined. G

CHECKNAME VARCHAR(128)
NOT NULL

Table check constraint name. G

PATHSCHEMAS VARCHAR(254)
NOT NULL

SQL path at the time the table check constraint was created. The
path is used to resolve unqualified cast function names that are
used in the constraint definition.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCHECKS2

970 SQL Reference

|

|

|||||

||
|
|
|
|

||
|
||

||
|
||

||
|
|
|
|

|

||
|
|
|
|

|

|
|

SYSIBM.SYSCOLAUTH table
Records the UPDATE or REFERENCES privileges that are held by users on
individual columns of a table or view.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could also
be PUBLIC or PUBLIC followed by an asterisk47.

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privilege or the name of
an application plan or package that uses the privilege. PUBLIC for
a grant to PUBLIC. PUBLIC followed by an asterisk for a grant to
PUBLIC AT ALL LOCATIONS.

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
P An application plan or a package. The grantee is a

package if COLLID is not blank.

G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view on which the
update privilege is held.

G

TNAME VARCHAR(18)
NOT NULL

Name of the table or view. G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privilege was granted, in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privilege was granted, in the form hhmmssth. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column to which the UPDATE privilege applies. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

COLLID CHAR(18)
NOT NULL WITH
DEFAULT

If GRANTEE is a package, its collection name. Otherwise, the
value is blank.

G

CONTOKEN CHAR(8)
NOT NULL WITH
DEFAULT

If GRANTEE is a package, the consistency token of the DBRM
from which the package was derived. Otherwise, the value is
blank.

S

PRIVILEGE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates which privilege this row describes:
R Row pertains to the REFERENCES privilege.
blank Row pertains to the UPDATE privilege.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

47. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Part 3 (Volume 1) of DB2 Administration Guide.

SYSIBM.SYSCOLAUTH

Appendix D. DB2 catalog tables 971

SYSIBM.SYSCOLDIST table
Contains one or more rows for the first key column of an index key. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

SMALLINT
NOT NULL

Not used N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1, this
name identifies the first column name of the set of columns
associated with the statistics.

G

COLVALUE VARCHAR(254)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value. Statistics are not
collected for an index on a ROWID column. If the value has a
non-character data type, the data might not be printable.

S

TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C Cardinality
F Frequent value

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values for the column group. This number is
valid only for TYPE C statistics.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL WITH
DEFAULT

Identifies the set of columns associated with the statistics. If the
statistics are only associated with a single column, the field
contains a zero length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension equal to the value in
NUMCOLUMNS. This is an updatable column.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the statistics. G

FREQUENCYF FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value specified
in COLVALUE when the number is multiplied by 100. For example,
a value of 1 indicates 100%. A value of .153 indicates 15.3%.
Statistics are not collected for an index on a ROWID column.

G

SYSIBM.SYSCOLDIST

972 SQL Reference

SYSIBM.SYSCOLDIST_HIST table
Contains rows from SYSCOLDIST. Whenever rows are added or changed in
SYSCOLDIST, the rows are also written to the new history table. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1, this
name identifies the first column name of the set of columns
associated with the statistics.

G

COLVALUE VARCHAR(255)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value. Statistics are not
collected for an index on a ROWID column. If the value has a
non-character data type, the data might not be printable.

S

TYPE CHAR(1)
NOT NULL WITH
DEFAULT ’F’

The type of statistics gathered:
C Cardinality
F Frequent value

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values for the column group. This number is
valid only for TYPE C statistics. The value is -1 if statistics have
not been gathered.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL

Identifies the set of columns associated with the statistics. If the
statistics are only associated with a single column, the field
contains a zero length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension equal to the value in
NUMCOLUMNS.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the statistics. G

FREQUENCYF FLOAT(8)
NOT NULL
DEFAULT -1

Gives the percentage of rows in the table with the value specified
in COLVALUE when the number is multiplied by 100. For example,
a value of 1 indicates 100%. A value of .153 indicates 15.3%.
Statistics are not collected for an index on a ROWID column. The
value is -1 if statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCOLDIST_HIST

Appendix D. DB2 catalog tables 973

|

|
|
|

|||||

||
|
|
|
|

||
|
|
|
|

||
|
||

||
|
|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
||
||

|

||
|
|

|
|
|

|

||
|
|
|
|
|
|

|

||
|
|

||

||
|
|

|
|
|
|
|

|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSCOLDISTSTATS table
Contains zero or more rows per partition for the first key column of a partitioning
index. Rows are inserted when RUNSTATS scans index partitions of the partitioning
index. No row is inserted if the index is a nonpartitioning index. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

SMALLINT
NOT NULL

Not used N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space that contains the table in
which the column is defined.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

Name of the column. If NUMCOLUMNS is greater than 1, this
name identifies the first column name of the set of columns
associated with the statistics.

G

COLVALUE VARCHAR(254)
NOT NULL
FOR BIT DATA

Contains the data of a frequently occurring value. Statistics are not
collected for an index on a ROWID column. If the value has a
non-character data type, the data may not be printable.

S

TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'F'

The type of statistics gathered:
C Cardinality
F Frequent value

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values for the column group. This number is
valid only for TYPE C statistics.

S

COLGROUPCOLNO VARCHAR(254)
NOT NULL WITH
DEFAULT

Identifies the set of columns associated with the statistics. If the
statistics are only associated with a single column, the field
contains a zero length. Otherwise, the field is an array of
SMALLINT column numbers with a dimension equal to the value in
NUMCOLUMNS. This is an updatable column.

S

NUMCOLUMNS SMALLINT
NOT NULL WITH
DEFAULT 1

Identifies the number of columns associated with the statistics. G

FREQUENCYF FLOAT
NOT NULL WITH
DEFAULT -1

Gives the percentage of rows in the table with the value specified
in COLVALUE when the number is multiplied by 100. For example,
a value of 1 indicates 100%. A value of .153 indicates 15.3%.
Statistics are not collected for an index on a ROWID column.

G

SYSIBM.SYSCOLDISTSTATS

974 SQL Reference

SYSIBM.SYSCOLSTATS table
Contains partition statistics for selected columns. For each column, a row exists for
each partition in the table. Rows are inserted when RUNSTATS collects either
indexed column statistics or non-indexed column statistics for a partitioned table
space. No row is inserted if the table space is nonpartitioned. Rows in this table can
be inserted, updated, and deleted.

Column name Data type Description Use

HIGHKEY CHAR(8)
NOT NULL
FOR BIT DATA

Highest value of the column within the partition. Blank if statistics
have not been gathered or the column is an indicator column. If
the column has a non-character data type, the data might not be
printable.

S

HIGH2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second highest value of the column within the partition. Blank if
statistics have not been gathered or the column is an indicator
column. If the column has a non-character data type, the data
might not be printable.

S

LOWKEY CHAR(8)
NOT NULL
FOR BIT DATA

Lowest value of the column within the partition. Blank if statistics
have not been gathered or the column is an indicator column. If
the column has a non-character data type, the data might not be
printable.

S

LOW2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second lowest value of the column within the partition. Blank if
statistics have not been gathered or the column is an indicator
column. If the column has a non-character data type, the data
might not be printable.

S

INTEGER
NOT NULL

Number of distinct column values in the partition. S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. If the value is
'0001-01-02.00.00.00.000000', which indicates that an ALTER
TABLE statement was executed to change the length of a
VARCHAR column, RUNSTATS should be run to update the
statistics before they are used.

G

IBMREQD CHAR(1)
NOT NULL

Whether the row came from the basic machine-readable material
(MRM) tape:
N No
Y Yes

G

PARTITION SMALLINT
NOT NULL

Partition number for the table space that contains the table in
which the column is defined.

G

TBOWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

NAME VARCHAR(18)
NOT NULL

Name of the column. G

COLCARDDATA VARCHAR(1000)
NOT NULL
FOR BIT DATA

Internal use only I

SYSIBM.SYSCOLSTATS

Appendix D. DB2 catalog tables 975

Column name Data type Description Use

LENGTH SMALLINT
NOT NULL

Length attribute of the column or, in the case of a decimal column,
its precision. The number does not include the internal prefixes
that are used to record the actual length and null state, where
applicable.
INTEGER 4
SMALLINT 2
FLOAT 4 or 8
CHAR Length of string
VARCHAR Maximum length of string
LONGVAR Maximum length of string
DECIMAL Precision of number
GRAPHIC Number of DBCS characters
VARG Maximum number of DBCS characters
LONGVARG Maximum number of DBCS characters
DATE 4
TIME 3
TIMESTMP 10
BLOB 4 - The length of the field that is stored in the

base table. The maximum length of the LOB
column is found in LENGTH2.

CLOB 4 - The length of the field that is stored in the
base table. The maximum length of the CLOB
column is found in LENGTH2.

DBCLOB 4 - The length of the field that is stored in the
base table. The maximum length of the
DBCLOB column is found in LENGTH2.

ROWID 17 - The maximum length of the stored portion
of the identifier.

DISTINCT The length of the source data type.

G

SCALE SMALLINT
NOT NULL

Scale of decimal data. Zero if not a decimal column. G

NULLS CHAR(1)
NOT NULL

Whether the column can contain null values:
N No
Y Yes

The value can be N for a view column that is derived from an
expression or a function. Nevertheless, such a column allows nulls
when an outer select list refers to it.

G

INTEGER
NOT NULL

Not used N

HIGH2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics have not
been gathered, or the column is an indicator column or a column
of an auxiliary table. If the column has a non-character data type,
the data might not be printable. This is an updatable column.

S

LOW2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics have not
been gathered, or the column is an indicator column or a column
of an auxiliary table. If the column has a non-character data type,
the data might not be printable. This is an updatable column.

S

UPDATES CHAR(1)
NOT NULL

Whether the column can be updated:
N No
Y Yes

The value is N if the column is:
v Derived from a function or expression
v A column with a row ID data type (or a distinct type based on a

row ID type)

The value is Y if the column is a read-only view or the columns
are defined with the AS IDENTITY and GENERATED ALWAYS
attributes..

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCOLUMNS

Appendix D. DB2 catalog tables 977

Column name Data type Description Use

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT ON
statement.

G

DEFAULT CHAR(1)
NOT NULL

The contents of this column are meaningful only if the TYPE
column for the associated SYSTABLES row indicates that this is
for a table (T) or a created temporary table (G).

Default indicator:

A The column has a row ID data type
(COLTYPE=’ROWID’) and the GENERATED ALWAYS
attribute.

B The column has a default value that depends on the
data type of the column.

Data type Default Value
Numeric 0
Fixed-length string Blanks
Varying-length string A string length

of 0
Date The current date
Time The current time
Timestamp The current

timestamp

D The column has a row ID data type
(COLTYPE=’ROWID’) and the GENERATED BY
DEFAULT attribute.

I The column is defined with the AS IDENTITY and
GENERATED ALWAYS attributes.

J The column is defined with the AS IDENTITY and
GENERATED BY DEFAULT attributes.

N The column has no default value.

S The column has a default value that is the value of the
SQL authorization ID of the process at the time a default
value is used.

U The column has a default value that is the value of the
USER special register at the time a default value is
used.

Y If the NULLS column is Y, the column has a default
value of null.

If the NULLS column is N, the default value depends on
the data type of the column.

Data type Default Value
Numeric 0
Fixed-length string Blanks
Varying-length string A string length

of 0
Date The current date
Time The current time
Timestamp The current

timestamp

G

SYSIBM.SYSCOLUMNS

978 SQL Reference

Column name Data type Description Use

DEFAULT (continued) CHAR(1)
NOT NULL

The contents of this column are meaningful only if the TYPE
column for the associated SYSTABLES row indicates that this is
for a table (T) or a created temporary table (G).

Default indicator:

1 The column has a default value that is the string
constant found in the DEFAULTVALUE column of this
table row.

2 The column has a default value that is the floating-point
constant found in the DEFAULTVALUE column of this
table row.

3 The column has a default value that is the decimal
constant found in the DEFAULTVALUE column of this
table row.

4 The column has a default value that is the integer
constant found in the DEFAULTVALUE column of this
table row.

5 The column has a default value that is the hex string
found in the DEFAULTVALUE column of this table row.

G

KEYSEQ SMALLINT
NOT NULL

The column’s numeric position within the table’s primary key. The
value is 0 if it is not part of a primary key.

G

FOREIGNKEY CHAR(1)
NOT NULL

Applies to character columns only, where it indicates the subtype
of the data.
v B indicates BIT data.
v S indicates SBCS data if the encoding scheme is Unicode or if

the value of the field MIXED DATA on installation panel
DSNTIPF is YES.

v Any other value indicates:
– MIXED if the encoding scheme is Unicode or the value of

the field MIXED DATA on installation panel DSNTIPF is YES.
– SBCS if the encoding scheme is not Unicode and the value

of the field MIXED DATA on installation panel DSNTIPF is
NO.

For views defined prior to Version 7, subtype information is not
available and the default (MIXED or SBCS) is used. This is an
updatable column.

G

FLDPROC CHAR(1)
NOT NULL

Whether the column has a field procedure:
N No
Y Yes
blank The column is for a view defined prior to Version 7.

Views defined after Version 7 contain Y or N.

G

LABEL VARCHAR(30)
NOT NULL

The column label provided by the user with a LABEL ON
statement; otherwise it is an empty string.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'. If the value is
'0001-01-02.00.00.00.000000', which indicates that an ALTER
TABLE statement was executed to change the length of a
VARCHAR column, RUNSTATS should be run to update the
statistics before they are used. This is an updatable column.

G

SYSIBM.SYSCOLUMNS

Appendix D. DB2 catalog tables 979

##
#
#
#
#
#
#
#
#
#
#
#
#
#

|
|
#

#

|
|

Column name Data type Description Use

DEFAULTVALUE VARCHAR(512)
NOT NULL WITH
DEFAULT

This field is meaningful only if the column being described is for a
table (the TYPE column of the associated SYSTABLES row is T
for table or G for created temporary table).

When the DEFAULT column is 1, 2, 3, 4, or 5, this field contains
the default value of the column.

If the default value is a string constant or a hexadecimal constant
(DEFAULT is 1 or 5, respectively), the value is stored without
delimiters, except for a graphic string constant which is enclosed
by the shift-out and shift-in characters.

If the default value is a numeric constant (DEFAULT is 2, 3, or 4),
the value is stored as specified by the user, including sign and
decimal point representation, as appropriate for the constant.
When the default column is S or U and the default value was
specified with the definition of a new column on an ALTER TABLE
statement, this field contains the value of the CURRENT SQLID or
USER special register at the time of the ALTER statement.

G

COLCARDF FLOAT
NOT NULL WITH
DEFAULT

Estimated number of distinct values in the column. For an indicator
column, this is the number of LOBs that are not null and have a
length greater than zero. The value is -1 if statistics have not been
gathered. The value is -2 for the first column of an index of an
auxiliary table. This is an updatable column.

S

COLSTATUS CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the status of the definition of a column:
I The definition is incomplete because a LOB table space,

auxiliary table, or index on an auxiliary table has not
been created for the column.

blank The definition is complete.

G

LENGTH2 INTEGER
NOT NULL WITH
DEFAULT

Maximum length of the data retrieved from the column. Possible
values are:
0 Not a LOB or ROWID column
40 For a ROWID column, the length of the returned value
1 to 2 147 483 647 bytes

For a LOB column, the maximum length

G

DATATYPEID INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, the internal ID of the built-in type. For a
distinct type, the internal ID of the distinct type.

S

SOURCETYPEID INTEGER
NOT NULL WITH
DEFAULT

For a built-in data type, 0. For a distinct type, the internal ID of the
built-in data type upon which the distinct type is sourced.

S

TYPESCHEMA CHAR(8)
NOT NULL WITH
DEFAULT 'SYSIBM'

If COLTYPE is 'DISTINCT', the schema of the distinct type.
Otherwise, the value is 'SYSIBM'.

G

TYPENAME VARCHAR(18)
NOT NULL WITH
DEFAULT

If COLTYPE is 'DISTINCT', the name of the distinct type.
Otherwise, the value is the same as the value of the COLTYPE
column. TYPENAME is set only for columns created in Version 6
or later. The value for columns created earlier is not filled in.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the column was created. The value is
'0001-01-01.00.00.00.000000' if the column was created prior to
migration to Version 6.

G

SYSIBM.SYSCOLUMNS

980 SQL Reference

|
|

SYSIBM.SYSCOLUMNS_HIST table
Contains rows from SYSCOLUMNS. Whenever rows are added or changed in
SYSCOLUMNS, the rows are also written to the new history table. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the column. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table or view that contains the column. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view that contains the
column.

G

COLNO SMALLINT
NOT NULL

Numeric place of the column in the table or view. For example 4
(out of 10).

G

COLTYPE CHAR(8)
NOT NULL

The type of the column specified in the definition of the column:
INTEGER Large integer
SMALLINT Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR Varying-length character string
LONGVAR Varying-length character string
DECIMAL Decimal
GRAPHIC Fixed-length graphic string
VARG Varying-length graphic string
LONGVARG Varying-length graphic string
DATE Date
TIME Time
TIMESTMP Timestamp
BLOB Binary large object
CLOB Character large object
DBCLOB Double-byte character large object
ROWID Row ID data type
DISTINCT Distinct type

Whether a column described as VARCHAR, LONGVAR, CLOB,
VARG, LONGVARG, DBCLOB, or BLOB is a long string column
depends on its length attribute.

G

LENGTH SMALLINT
NOT NULL

Length attribute of the column or, in the case of a decimal column,
its precision. The number does not include the internal prefixes
that are used to record the actual length and null state, where
applicable.
INTEGER 4
SMALLINT 2
FLOAT 4 or 8
CHAR Length of string
VARCHAR Maximum length of string
LONGVAR Maximum length of string
DECIMAL Precision of number
GRAPHIC Number of DBCS characters
VARG Maximum number of DBCS characters
LONGVARG Maximum number of DBCS characters
DATE 4
TIME 3
TIMESTMP 10
BLOB 4 - The length of the field that is stored in the

base table. The maximum length of the LOB
column is found in LENGTH2.

CLOB 4 - The length of the field that is stored in the
base table. The maximum length of the CLOB

G

SYSIBM.SYSCOLUMNS_HIST

Appendix D. DB2 catalog tables 981

|

|
|
|

|||||

||
|
||

||
|
||

||
|
|
|
|

||
|
|
|
|

||
|
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

|
|
|

|

||
|
|
|
|
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
|
||
|

|

Column name Data type Description Use

LENGTH2 INTEGER
NOT NULL

Maximum length of the data retrieved from the column. Possible
values are:
0 Not a LOB or ROWID column
40 For a ROWID column, the length of the returned value
1 to 2 147 483 647 bytes

For a LOB column, the maximum length

G

NULLS CHAR(1)
NOT NULL

Whether the column can contain null values:
N No
Y Yes

G

HIGH2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second highest value of the column. Blank if statistics have not
been gathered, or the column is an indicator column or a column
of an auxiliary table. If the column has a non-character data type,
the data might not be printable.

S

LOW2KEY CHAR(8)
NOT NULL
FOR BIT DATA

Second lowest value of the column. Blank if statistics have not
been gathered, or the column is an indicator column or a column
of an auxiliary table. If the column has a non-character data type,
the data might not be printable.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’. If the value is
’0001-01-02.00.00.00.000000’, which indicates that an ALTER
TABLE statement was executed to change the length of a
VARCHAR column, RUNSTATS should be run to update the
statistics before they are used.

G

COLCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Estimated number of distinct values in the column. For an indicator
column, this is the number of LOBs that are not null and have a
length greater than zero. The value is -1 if statistics have not been
gathered. The value is -2 for the first column of an index of an
auxiliary table.

S

IBMREQD CHAR(1)
NOT NULL
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCOLUMNS_HIST

982 SQL Reference

||||

||
|
|
|
||
||
|
|

|

||
|
|
||
||

|

||
|
|

|
|
|
|

|

||
|
|

|
|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|

|
|
|
|
|

|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSCONSTDEP table
Records dependencies on check constraints or user-defined defaults for a column.

Column name Data type Description Use

BNAME VARCHAR(18)
NOT NULL

Name of the object on which the dependency exists. G

BSCHEMA CHAR(8)
NOT NULL

Schema of the object on which the dependency exists. G

BTYPE CHAR(1)
NOT NULL

Type of object on which the dependency exists:
F Function instance

G

DTBNAME VARCHAR(18)
NOT NULL

Name of the table to which the dependency applies. G

DTBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table to which the dependency
applies.

G

DCONSTNAME VARCHAR(128)
NOT NULL

If DTYPE = 'C', the unqualified name of the check constraint. If
DTYPE = 'D', a column name.

G

DTYPE CHAR(1)
NOT NULL

Type of object:
C Check constraint
D User-defined default constant

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSCONSTDEP

Appendix D. DB2 catalog tables 983

SYSIBM.SYSCOPY table
Contains information needed for recovery.

Column name Data type Description Use

DBNAME CHAR(8)
NOT NULL

Name of the database. G

TSNAME CHAR(8)
NOT NULL

Name of the target table space or index space. G

DSNUM INTEGER
NOT NULL

Data set number within the table space. For partitioned table
spaces, this value corresponds to the partition number for a single
partition copy, or 0 for a copy of an entire partitioned table space
or index space.

G

ICTYPE CHAR(1)
NOT NULL

Type of operation:
A ALTER
B REBUILD INDEX
D CHECK DATA LOG(NO) (no log records for the range

are available for RECOVER utility)
F COPY FULL YES
I COPY FULL NO
P RECOVER TOCOPY or RECOVER TORBA (partial

recovery point)
Q QUIESCE
R LOAD REPLACE LOG(YES)
S LOAD REPLACE LOG(NO)
W REORG LOG(NO)
X REORG LOG(YES)
Y LOAD LOG(NO)
Z LOAD LOG(YES)
T TERM UTILITY command (terminated utility)

G

ICDATE CHAR(6)
NOT NULL

Date of the entry in the form yymmdd. For the COPYTOCOPY
utility, this value is the date of the original entry, when the primary
local site or primary recovery site copy was made.

G

START_RBA CHAR(6)
NOT NULL
FOR BIT DATA

A 48-bit positive integer that contains the LRSN of a point in the
DB2 recovery log. (The LRSN is the RBA in a non-data-sharing
environment.)
v For ICTYPE I or F, the starting point for all updates since the

image copy was taken
v For ICTYPE P, the point after the log-apply phase of

point-in-time recovery
v For ICTYPE Q, the point after all data sets have been

successfully quiesced
v For ICTYPE R or S, the end of the log before the start of the

LOAD utility and before any data is changed
v For ICTYPE T, the end of the log when the utility is terminated
v For other values of ICTYPE, the end of the log before the start

of the RELOAD phase of the LOAD or REORG utility.

G

FILESEQNO INTEGER
NOT NULL

Tape file sequence number of the copy. G

DEVTYPE CHAR(8)
NOT NULL

Device type the copy is on. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

DSNAME CHAR(44)
NOT NULL

For ICTYPE='P' (RECOVER TOCOPY only), 'I', or 'F', DSNAME
contains the data set name. Otherwise, DSNAME contains the
name of the database and table space or index space in the form,
database-name.space-name, or DSNAME is blank for any row
migrated from a DB2 release prior to Version 4.

G

SYSIBM.SYSCOPY

984 SQL Reference

Column name Data type Description Use

ICTIME CHAR(6)
NOT NULL

The time at which this row was inserted, in the form hhmmss. The
insertion takes place after the completion of the operation that the
row represents. ICTIME is blank for any row which was migrated
from Version 1 Release 1 of DB2. For the COPYTOCOPY utility,
this value is the time when the row was inserted for the primary
local site or primary recovery site copy.

G

SHRLEVEL CHAR(1)
NOT NULL

SHRLEVEL parameter on COPY (for ICTYPE F or I only):
C Change
R Reference
blank Does not describe an image copy or was migrated from

Version 1 Release 1 of DB2.

G

DSVOLSER VARCHAR(1784)
NOT NULL

The volume serial numbers of the data set. A list of 6-byte
numbers separated by commas. Blank if the data set is cataloged.

G

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The date and time when the row was inserted. This is the date
and time recorded in ICDATE and ICTIME. The use of
TIMESTAMP is recommended over that of ICDATE and ICTIME,
because the latter two columns may not be supported in later DB2
releases. For the COPYTOCOPY utility, this value is the date and
time when the row was inserted for the primary local site or
primary recovery site copy.

G

ICBACKUP CHAR(2)
NOT NULL WITH
DEFAULT

Specifies the type of image copy contained in the data set:
blank LOCALSITE primary copy (first data set named with

COPYDDN)
LB LOCALSITE backup copy (second data set named with

COPYDDN)
RP RECOVERYSITE primary copy (first data set named

with RECOVERYDDN)
RB RECOVERYSITE backup copy (second data set named

with RECOVERYDDN)

G

ICUNIT CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the media that the image copy data set is stored on:
D DASD
T Tape
blank Medium is neither tape nor DASD, the image copy is

from a DB2 release prior to Version 2 Release 3, or
ICTYPE is not 'I' or 'F'.

G

SYSIBM.SYSCOPY

Appendix D. DB2 catalog tables 985

Column name Data type Description Use

STYPE CHAR(1)
NOT NULL WITH
DEFAULT

When ICTYPE=A (the length of an indexed VARCHAR column in a
table was increased), the value is V.

When ICTYPE=F, the values are:
blank DB2 image copy
C DFSMS concurrent copy
R LOAD REPLACE(YES)
S LOAD REPLACE(NO)
W REORG LOG(NO)
X REORG LOG(YES)
The MERGECOPY utility, when used to merge an embedded copy
with subsequent incremental copies, also produces a record that
contains ICTYPE=F and the STYPE of the original image copy (R,
S, W, or X).

When ICTYPE=P and the operation is RECOVER TORBA
LOGONLY, the value is L.

When ICTYPE=Q and option WRITE(YES) is in effect when the
quiesce point is taken, the value is W.

When ICTYPE=R, S, W, or X and the operation is resetting
REORG pending status, the value is A.

When ICTYPE=T, this field indicates which COPY utility was
terminated by the TERM UTILITY command or the START
DATABASE command with the ACCESS(FORCE) option. The
values are:
F COPY FULL YES
I COPY FULL NO

For other values of ICTYPE, the value is blank.

G

PIT_RBA CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

When ICTYPE=P, this field contains the LRSN for the point in the
DB2 log. (The LRSN is the RBA in a non-data-sharing
environment). For other ICTYPEs, this field is X’000000000000’.

When ICTYPE=P, this field indicates the stop location of a
point-in-time recovery. If a record contains ICTYPE=P and
PIT_RBA=X’000000000000’, the copy pending status is active and
a full image copy is required. If such a record is encountered
during fallback processing of RECOVER, the recover job fails, and
a point-in-time recovery is required. PIT_RBA can be zero if the
point-in-time recovery is completed by the fall-back processing of
RECOVER, or if ICTYPE=P from a prior release of DB2.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the operation. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment at the time
the operation was performed.

G

OTYPE CHAR(1)
NOT NULL WITH
DEFAULT 'T'

Type of object that the recovery information is for:
I Index space
T Table space

G

LOWDSNUM INTEGER
NOT NULL WITH
DEFAULT

Partition number of the lowest partition in the range for SYSCOPY
records created for REORG and LOAD REPLACE for resetting a
REORG pending status. Version number of an index for
SYSCOPY records created for a COPY (ICTYPE=F) of an index
space (OTYPE=I). (An index is versioned when a VARCHAR
column in the index key is lengthened.) The column is valid only
for these uses.

G

HIGHDSNUM INTEGER
NOT NULL WITH
DEFAULT

Partition number of the highest partition in the range. This column
is valid only for SYSCOPY records created for REORG and LOAD
REPLACE for resetting REORG pending status.

G

COPYPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of pages written to the copy data set. G

SYSIBM.SYSCOPY

986 SQL Reference

||
|
|

||

Column name Data type Description Use

NPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

The number of pages in the tablespace or index at the time of
INLINE COPY.

G

CPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of changed pages. G

JOBNAME CHAR(8)
NOT NULL WITH
DEFAULT

Job name of the utility. G

AUTHID CHAR(8)
NOT NULL WITH
DEFAULT

Authorization ID of the utility. G

SYSIBM.SYSCOPY

Appendix D. DB2 catalog tables 987

||
|
|

|
|
|

||
|
|

||

||
|
|

||

||
|
|

||

SYSIBM.SYSDATABASE table
Contains one row for each database, except for database DSNDB01.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Database name. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the database. G

STGROUP CHAR(8)
NOT NULL

Name of the default storage group of the database; blank for a
system database.

G

BPOOL CHAR(8)
NOT NULL

Name of the default buffer pool of the table space; blank for a
system table space.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. If there were 32511 databases
or more when this database was created, the DBID is a negative
number.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the database. G

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

The value is '0001-01-01-00.00.00.000000'. G

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of database:
blank Not a work file database or a TEMP database.
T A TEMP database. The database was created with the

AS TEMP clause, which indicates it is used for declared
temporary tables.

W A work file database. The database is DSNDB07, or it
was created with the WORKFILE clause and used as a
work file database by a member of a DB2 data sharing
group.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
uses this work file database. This column is blank if the work file
database was not created in a DB2 data sharing environment, or if
the database is not a work file database as indicated by the TYPE
column.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the
database. For DSNDB04 and DSNDB06, the value is
'1985-04-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER DATABASE statement was
applied. If no ALTER DATABASE statement has been applied,
ALTEREDTS has the value of CREATEDTS.

G

ENCODING_SCHEME CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Default encoding scheme for the database:
E EBCDIC
A ASCII
U UNICODE
blank For DSNDB04, a work file database, and a TEMP

database.

G

SBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the database. For a TEMP database or a
database created in a DB2 release prior to Version 5, the value is
0.

G

DBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the database. For a TEMP database or a
database created in a DB2 release prior to Version 5, the value is
0.

G

SYSIBM.SYSDATABASE

988 SQL Reference

||
||
|

Column name Data type Description Use

MIXED_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the database. For a TEMP database or
database created in a DB2 release prior to Version 5, the value is
0.

G

INDEXBP CHAR(8)
NOT NULL WITH
DEFAULT 'BP0'

Name of the default buffer pool for indexes. G

SYSIBM.SYSDATABASE

Appendix D. DB2 catalog tables 989

SYSIBM.SYSDATATYPES table
Contains one row for each distinct type defined to the system.

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

Schema of the distinct type. G

OWNER CHAR(8)
NOT NULL

Owner of the distinct type. G

NAME CHAR(18)
NOT NULL

Name of the distinct type. G

CREATEDBY CHAR(8)
NOT NULL

Authorization ID under which the distinct type was created. G

SOURCESCHEMA CHAR(8)
NOT NULL

SYSIBM.SYSDBAUTH table
Records the privileges that are held by users over databases.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could also
be PUBLIC or PUBLIC followed by an asterisk.48

G

GRANTEE CHAR(8)
NOT NULL

Application ID of the user who holds the privilege. Could also be
PUBLIC for a grant to PUBLIC.

G

NAME CHAR(8)
NOT NULL

Database name. G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

CREATETABAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create tables within the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATETSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create table spaces within the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBADM authority over the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBCTRLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBCTRL authority over the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DBMAINTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has DBMAINT authority over the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

DISPLAYDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the DISPLAY command for the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

48. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Part 3 (Volume 1) of DB2 Administration Guide.

SYSIBM.SYSDBAUTH

Appendix D. DB2 catalog tables 991

Column name Data type Description Use

DROPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the ALTER DATABASE and
DROP DATABASE statement:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IMAGCOPYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the COPY, MERGECOPY,
MODIFY, and QUIESCE utilities on the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

LOADAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the LOAD utility to load tables in
the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REORGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the REORG utility to reorganize
table spaces and indexes in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

RECOVERDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER and REPORT
utilities on table spaces in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

REPAIRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DIAGNOSE and REPAIR
utilities on table spaces and indexes in the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STARTDBAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the START command against the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STATSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the CHECK and RUNSTATS
utilities against the database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the STOP command against the
database:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

SYSIBM.SYSDBAUTH

992 SQL Reference

SYSIBM.SYSDBRM table
Contains one row for each DBRM of each application plan.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the DBRM. G

TIMESTAMP CHAR(8)
NOT NULL
FOR BIT DATA

Consistency token. S

PDSNAME CHAR(44)
NOT NULL

Name of the partitioned data set of which the DBRM is a member. G

PLNAME CHAR(8)
NOT NULL

Name of the application plan of which this DBRM is a part. G

PLCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

PRECOMPTIME CHAR(8)
NOT NULL

Time of precompilation in the form hhmmssth.

If the LEVEL precompiler option is used, then this value does not
represent the precompile time.

G

PRECOMPDATE CHAR(6)
NOT NULL

Date of precompilation in the form yymmdd.

If the LEVEL precompiler option is used, then this value does not
represent the precompile date.

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for the SQL statements in the DBRM:
N Apostrophe
Y Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in the DBRM:
N Period
Y Comma

G

HOSTLANG CHAR(1)
NOT NULL

The host language used:
B Assembler language
C OS/VS COBOL
D C
F Fortran
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly called

COBOL/370)
3 IBM COBOL (Release 2 or subsequent releases)
4 C⁺⁺

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CHARSET CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether the system CCSID for SBCS data was 290
(Katakana) when the program was precompiled:
A No
K Yes

G

MIXED CHAR(1)
NOT NULL WITH
DEFAULT

Indicates if mixed data was in effect when the application program
was precompiled (for more on when mixed data is in effect, see
“Character strings” on page 49):
N No
Y Yes

G

DEC31 CHAR(1)
NOT NULL WITH
DEFAULT

Indicates whether DEC31 was in effect when the program was
precompiled (for more on when DEC31 is in effect, see “Arithmetic
with two decimal operands” on page 114):
blank No
Y Yes

G

VERSION VARCHAR(64)
NOT NULL WITH
DEFAULT

Version identifier for the DBRM. G

SYSIBM.SYSDBRM

Appendix D. DB2 catalog tables 993

Column name Data type Description Use

PRECOMPTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the DBRM was precompiled. G

SYSIBM.SYSDBRM

994 SQL Reference

SYSIBM.SYSDUMMY1 table
Contains one row. The table is used for SQL statements in which a table reference
is required, but the contents of the table are not important.

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSDUMMY1

Appendix D. DB2 catalog tables 995

SYSIBM.SYSFIELDS table
Contains one row for every column that has a field procedure.

Column name Data type Description Use

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

COLNO SMALLINT
NOT NULL

Numeric place of this column in the table. G

NAME VARCHAR(18)
NOT NULL

Name of the column. G

FLDTYPE CHAR(8)
NOT NULL

Data type of the encoded values in the field 49:
INTEGER Large integer
SMALLINT Small integer
FLOAT Floating-point
CHAR Fixed-length character string
VARCHAR Varying-length character string
DECIMAL Decimal
GRAPHIC Fixed-length graphic string
VARG Varying-length graphic string

G

LENGTH SMALLINT
NOT NULL

The length attribute of the field; or, for a decimal field, its
precision49. The number does not include the internal prefixes that
can be used to record actual length and null state.
INTEGER 4
SMALLINT 2
FLOAT 8
CHAR Length of string
VARCHAR Maximum length of string
DECIMAL Precision of number
GRAPHIC Number of DBCS characters
VARG Maximum number of DBCS characters

G

SCALE SMALLINT
NOT NULL

Scale if FLDTYPE is DECIMAL; otherwise, the value is 0. G

FLDPROC CHAR(8)
NOT NULL

For a row describing a field procedure, the name of the
procedure49.

G

WORKAREA SMALLINT
NOT NULL

For a row describing a field procedure, the size, in bytes, of the
work area required for the encoding and decoding of the
procedure49.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

EXITPARML SMALLINT
NOT NULL

For a row describing a field procedure, the length of the field
procedure parameter value block49.

G

PARMLIST VARCHAR(254)
NOT NULL

For a row describing a field procedure, the parameter list following
FIELDPROC in the statement that created the column, with
insignificant blanks removed49.

G

EXITPARM VARCHAR(1530)
NOT NULL
FOR BIT DATA

For a row describing a field procedure, the parameter value block
of the field procedure (the control block passed to the field
procedure when it is invoked)49.

G

49. Some columns might contain statistical values from a prior release.

SYSIBM.SYSFIELDS

996 SQL Reference

SYSIBM.SYSFOREIGNKEYS table
Contains one row for every column of every foreign key.

Column name Data type Description Use

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the
column.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table that contains the column. G

RELNAME CHAR(8)
NOT NULL

Constraint name for the constraint for which the column is part of
the foreign key.

G

COLNAME VARCHAR(18)
NOT NULL

Name of the column. G

COLNO SMALLINT
NOT NULL

Numeric place of the column in its table. G

COLSEQ SMALLINT
NOT NULL

Numeric place of the column in the foreign key. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSFOREIGNKEYS

Appendix D. DB2 catalog tables 997

SYSIBM.SYSINDEXES table
Contains one row for every index.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the index. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table. G

UNIQUERULE CHAR(1)
NOT NULL

Whether the index is unique:
D No (duplicates are allowed)
U Yes
P Yes, and it is a primary index (As in prior releases of

DB2, a value of P is used for primary keys that are used
to enforce a referential constraint.)

C Yes, and it is an index used to enforce UNIQUE
constraint

N Yes, and it is defined with UNIQUE WHERE NOT NULL
R Yes, and it is an index used to enforce the uniqueness

of a non-primary parent key
G Yes, and it is an index used to enforce the uniqueness

of values in a column defined as ROWID GENERATED
BY DEFAULT.

G

COLCOUNT SMALLINT
NOT NULL

The number of columns in the key. G

CLUSTERING CHAR(1)
NOT NULL

Whether CLUSTER was specified when the index was created:
N No
Y Yes

G

CLUSTERED CHAR(1)
NOT NULL

Whether the table is actually clustered by the index:
N A significant number of rows are not in clustering order,

or statistics have not been gathered.
Y Most of the rows are in clustering order.
blank Not applicable.
This is an updatable column that can also be changed by the
RUNSTATS utility.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database. S

OBID SMALLINT
NOT NULL

Internal identifier of the index fan set descriptor. S

ISOBID SMALLINT
NOT NULL

Internal identifier of the index page set descriptor. S

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the index. G

INDEXSPACE CHAR(8)
NOT NULL

Name of the index space. G

INTEGER
NOT NULL

Not used N

INTEGER
NOT NULL

Not used N

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index. The value is -1 if
statistics have not been gathered. This is an updatable column.

S

NLEVELS SMALLINT
NOT NULL

Number of levels in the index tree. If the index is partitioned, it is
the maximum of the number of levels in the index tree for all the
partitions. The value is -1 if statistics have not been gathered. This
is an updatable column.

S

SYSIBM.SYSINDEXES

998 SQL Reference

Column name Data type Description Use

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the index. G

PGSIZE SMALLINT
NOT NULL

Size, in bytes, of the leaf pages in the index: 256, 512, 1024,
2048, or 4096

G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are erased when dropped. The value is
meaningless if the index is partitioned:
N No
Y Yes

G

Not used N

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the limit on
the number of open data sets is reached:
N No
Y Yes

G

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the index, as
determined by the last execution of the STOSPACE utility. The
value is 0 if the index is not related to a storage group, or if
STOSPACE has not been run. If the index space is partitioned, the
value is the total kilobytes of DASD storage allocated to all
partitions that are defined in a storage group.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CLUSTERRATIO SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows that are in clustering order. For a partitioning
index, it is the weighted average of all index partitions in terms of
the number of rows in the partition. The value is 0 if statistics have
not been gathered. The value is -2 if the index is for an auxiliary
table. This is an updatable column.

S

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the index. G

SMALLINT
NOT NULL

Internal use only I

SMALLINT
NOT NULL

Not used N

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'. This is an updatable
column.

G

INDEXTYPE CHAR(1)
NOT NULL WITH
DEFAULT

The index type:
2 Type 2 index
blank Type 1 index

G

FIRSTKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column. This number is
an estimate if updated while collecting statistics on a single
partition. The value is -1 if statistics have not been gathered. This
is an updatable column.

S

FULLKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is -1 if statistics
have not been gathered. This is an updatable column.

S

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the index. If
the index was created in a DB2 release prior to Version 5, the
value is '0001-01-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement was
executed for the index. If no ALTER INDEX statement has been
applied, ALTEREDTS has the value of CREATEDTS. If the index
was created in a DB2 release prior to Version 5, the value is
'0001-01-01.00.00.00.000000'.

G

SYSIBM.SYSINDEXES

Appendix D. DB2 catalog tables 999

Column name Data type Description Use

PIECESIZE INTEGER
NOT NULL
WITH DEFAULT

Maximum size of a data set in kilobytes for nonpartitioning
indexes.

A value of zero (0) indicates that the index is a partitioning index
or that the index was created in a DB2 release prior to Version 5.

G

COPY CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether COPY YES was specified for the index, which indicates if
the index can be copied and if SYSIBM.SYSLGRNX recording is
enabled for the index.
N No
Y Yes

G

COPYLRSN CHAR(6)
NOT NULL WITH
DEFAULT
X'000000000000'
FOR BIT DATA

The value can be either an RBA or LRSN. (LRSN is only for data
sharing.) If the index is currently defined as COPY YES, the value
is the RBA or LRSN when the index was created with COPY YES
or altered to COPY YES, not the current RBA or LRSN. If the
index is currently defined as COPY NO, the value is set to
X'000000000000' if the index was created with COPY NO;
otherwise, if the index was altered to COPY NO, the value in
COPYLRSN is not changed when the index is altered to COPY
NO.

G

CLUSTERRATIOF FLOAT
NOT NULL WITH
DEFAULT

When multiplied by 100, the value of the column is the percentage
of rows that are in clustering order. For example, a value of .9125
indicates 91.25%. For a partitioning index, it is the weighted
average of all index partitions in terms of the number of rows in
the partition. The value is 0 if statistics have not been gathered.
The value is -2 if the index is for an auxiliary table. This is an
updatable column.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

REMARKS VARCHAR(254)
NOT NULL WITH
DEFAULT

A character field string provided by the user with the COMMENT
ON statement..

G

SYSIBM.SYSINDEXES

1000 SQL Reference

||
|
|

|
|
|

||
|
|

|
|
|

SYSIBM.SYSINDEXES_HIST table
Contains rows from SYSINDEXES. Whenever rows are added or changed in
SYSINDEXES, the rows are also written to the new history table. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the index. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the index is defined. G

TBCREATOR VARCHAR(18)
NOT NULL

Authorization ID of the owner of the table. G

CLUSTERING CHAR(1)
NOT NULL

Whether CLUSTER was specified when the index was created:
N No
Y Yes

G

NLEAF INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index. The value is -1 if
statistics have not been gathered.

S

NLEVELS SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the index tree. If the index is partitioned, it is
the maximum of the number of levels in the index tree for all the
partitions. The value is -1 if statistics have not been gathered.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’.

G

FIRSTKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the first key column. This number is
an estimate if updated while collecting statistics on a single
partition. The value is -1 if statistics have not been gathered.

S

FULLKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of distinct values of the key. The value is -1 if statistics
have not been gathered.

S

CLUSTERRATIOF FLOAT(8)
NOT NULL

Percentage of rows that are in clustering order. For a partitioning
index, it is the weighted average of all index partitions in terms of
the number of rows in the partition. The value is 0 if statistics have
not been gathered. The value is -2 if the index is for an auxiliary
table.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the index space
partition. The value is -1 if statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSINDEXES_HIST

Appendix D. DB2 catalog tables 1001

|

|
|
|

|||||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
|
||
||

|

||
|
|

|
|
|

||
|
|

|
|
|

|

||
|
|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|

||
|
|
|
|
|
|

|

||
|
|

|
|
|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSINDEXPART table
Contains one row for each nonpartitioning index and one row for each partition of a
partitioning index.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number; Zero if index is not partitioned. G

IXNAME VARCHAR(18)
NOT NULL

Name of the index. G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

PQTY INTEGER
NOT NULL

Primary space allocation in units of 4KB storage blocks. For
user-managed data sets, the value is set to the primary space
allocation only if RUNSTATS INDEX with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.

G

SQTY SMALLINT
NOT NULL

Secondary space allocation in units of 4KB storage blocks. For
user-managed data sets, the value is set to the secondary space
allocation only if RUNSTATS INDEX with UPDATE(ALL) or
UPDATE(SPACE) is executed; otherwise, the value is zero.

If the value does not fit into the column, the value of the column is
32767. See the description of column SECQTYI.

G

STORTYPE CHAR(1)
NOT NULL

Type of storage allocation:
E Explicit, and STORNAME names an integrated catalog

facility catalog
I Implicit, and STORNAME names a storage group

G

STORNAME CHAR(8)
NOT NULL

Name of storage group or integrated catalog facility catalog used
for space allocation.

G

VCATNAME CHAR(8)
NOT NULL

Name of integrated catalog facility catalog used for space
allocation.

G

INTEGER
NOT NULL

Not used N

INTEGER
NOT NULL

Not used N

LEAFDIST INTEGER
NOT NULL

100 times the average number of leaf pages between successive
active leaf pages of the index. The value is -1 if statistics have not
been gathered.

S

INTEGER
NOT NULL

Not used S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

LIMITKEY VARCHAR(512)
NOT NULL
FOR BIT DATA

The high value of the limit key of the partition in an internal format.
Zero if the index is not partitioned.

If any column of the key has a field procedure, the internal format
is the encoded form of the value.

S

FREEPAGE SMALLINT
NOT NULL

Number of pages that are loaded before a page is left as free
space.

G

PCTFREE SMALLINT
NOT NULL

Percentage of each leaf or nonleaf page that is left as free space. G

SYSIBM.SYSINDEXPART

1002 SQL Reference

#
#

Column name Data type Description Use

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the index space
partition, as determined by the last execution of the STOSPACE
utility. The value is 0 if STOSPACE or RUNSTATS has not been
run. The value is updated by STOSPACE if the index is related to
a storage group. The value is updated by RUNSTATS if the utility
is executed as RUNSTATS INDEX with UPDATE(ALL) or
UPDATE(SPACE). The value is -1 if the index was defined with
the DEFINE NO clause, which defers the physical creation of the
data sets until data is first inserted into the index, and data has yet
to be inserted into the index.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'.

G

CHAR(1)
NOT NULL

Not used N

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this index or index
partition.
blank Only changed pages are cached in the group buffer

pool.
A Changed and unchanged pages are cached in the group

buffer pool.
N No data is cached in the group buffer pool.

G

FAROFFPOSF FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position because of an
insert into a full page. The value is -1 if statistics have not been
gathered. The column is not applicable for an index on an auxiliary
table.

S

NEAROFFPOSF FLOAT
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal position,
because of an insert into a full page. Not applicable for an index
on an auxiliary table.

S

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of keys in the index that refer to data rows or LOBs. The
value is -1 if statistics have not been gathered.

S

SECQTYI INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. If a storage
group is not used, the value is zero.

G

IPREFIX CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for this index’s data set
name. 'I' or 'J' are the only valid characters for this field. The
default is 'I'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement was
executed for the index. If no ALTER INDEX statement has been
applied, the value is '0001-01-01.00.00.00.000000'.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics have not been
gathered. This is an updatable column.

G

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

PSEUDO_DEL_ENTRIES INTEGER
NOT NULL WITH
DEFAULT -1

Number of psuedo deleted entries (entries that are logically
deleted but still physically present in the index). For a non-unique
index, value is the number of RIDs that are pseudo deleted. For a
unique index, the value is the number of keys and RIDs that are
pseudo deleted. The value is -1 if statistics have not been
gathered. This is an updatable column.

G

LEAFNEAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf page for
successive active leaf pages. The value is -1 if statistics have not
been gathered. This is an updatable column.

S

SYSIBM.SYSINDEXPART

Appendix D. DB2 catalog tables 1003

#
#

||
|
|

|
|
|

|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|
|
|
|

|

||
|
|

|
|
|

|

Column name Data type Description Use

LEAFFAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from previous
leaf pages for successive (active leaf) pages accessed in an index
scan. The value is -1 if statistics have not been gathered. This is
an updatable column.

S

SYSIBM.SYSINDEXPART

1004 SQL Reference

||
|
|

|
|
|
|

|

SYSIBM.SYSINDEXPART_HIST table
Contains rows from SYSINDEXPART. Whenever rows are added or changed in
SYSINDEXPART, the rows are also written to the new history table. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number. Zero if index is not partitioned. G

IXNAME VARCHAR(18)
NOT NULL

Name of the index. G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

PQTY INTEGER
NOT NULL

Primary space allocation in units of 4KB storage blocks. Zero if a
storage group is not used.

G

SECQTYI INTEGER
NOT NULL

Secondary space allocation in units of 4KB storage. If a storage
group is not used, the value is 0.

G

LEAFDIST INTEGER
NOT NULL WITH
DEFAULT -1

100 times the average number of leaf pages between successive
active leaf pages of the index. The value is -1 if statistics have not
been gathered.

S

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the index space
partition. The value is -1 if statistics have not been gathered.

G

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’.

G

FAROFFPOSF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows far from optimal position because of an
insert into a full page. The value is -1 if statistics have not been
gathered. The column is not applicable for an index on an auxiliary
table.

S

NEAROFFPOSF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of referred to rows near, but not at optimal position,
because of an insert into a full page. Not applicable for an index
on an auxiliary table. The value is -1 if statistics have not been
gathered.

S

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of keys in the index that refer to data rows or LOBs. The
value is -1 if statistics have not been gathered.

S

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics have not
been gathered.

G

PSEUDO_DEL_ENTRIES INTEGER
NOT NULL WITH
DEFAULT -1

Number of psuedo deleted entries. The value is -1 if statistics
have not been gathered.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned index
spaces, this value corresponds to the partition number for a single
partition copy, or 0 for a copy of an entire partitioned index space.
The value is -1 if statistics have not been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

LEAFNEAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages physically near previous leaf page for
successive active leaf pages. The value is -1 if statistics have not
been gathered. This is an updatable column.

S

LEAFFAR INTEGER
NOT NULL WITH
DEFAULT -1

Number of leaf pages located physically far away from previous
leaf pages for successive (active leaf) pages accessed in an index
scan. The value is -1 if statistics have not been gathered. This is
an updatable column.

S

SYSIBM.SYSINDEXPART_HIST

Appendix D. DB2 catalog tables 1005

|

|
|
|

|||||

||
|
||

||
|
||

||
|
||

||
|
|
|
|

||
|
|
|
|

||
|
|

|
|
|

|

||
|
|

|
|
|

||
|
|
|
|

|

||
|
|

|
|
|
|

|

||
|
|

|
|
|
|

|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|
|

|

|
|

SYSIBM.SYSINDEXSTATS table
Contains one row for each partition of a partitioning index. Rows in this table can be
inserted, updated, and deleted.

Column name Data type Description Use

FIRSTKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values of the first key
column.

S

FULLKEYCARD INTEGER
NOT NULL

For the index partition, number of distinct values of the key. S

NLEAF INTEGER
NOT NULL

Number of active leaf pages in the index partition. S

NLEVELS SMALLINT
NOT NULL

Number of levels in the partition index tree. S

SMALLINT
NOT NULL

Not used N

SMALLINT
NOT NULL

Not used N

CLUSTERRATIO SMALLINT
NOT NULL

For the index partition, the percentage of rows that are in
clustering order. The value is 0 if statistics have not been
gathered.

N

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

PARTITION SMALLINT
NOT NULL

Partition number of the index. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

NAME VARCHAR(18)
NOT NULL

Name of the index. G

KEYCOUNT INTEGER
NOT NULL

Total number of rows in the partition. S

FIRSTKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the first key
column.

S

FULLKEYCARDF FLOAT
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the key. S

KEYCOUNTF FLOAT
WITH
DEFAULT -1

Total number of rows in the partition. S

CLUSTERRATIOF FLOAT
NOT NULL WITH
DEFAULT

For the index partition, the value, when multiplied by 100, is the
percentage of rows that are in clustering order. For example, a
value of .9125 indicates 91.25%. The value is 0 if statistics have
not been gathered.

G

SYSIBM.SYSINDEXSTATS

1006 SQL Reference

SYSIBM.SYSINDEXSTATS_HIST table
Contains rows from SYSINDEXSTATS. Whenever rows are added or changed in
SYSINDEXSTATS, the rows are also written to the new history table. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

NLEAF INTEGER
NOT NULL WITH
DEFAULT -1

Number of active leaf pages in the index partition. The value is -1
if statistics have not been gathered.

S

NLEVELS SMALLINT
NOT NULL WITH
DEFAULT -1

Number of levels in the partition index tree. The value is -1 if
statistics have not been gathered.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’.

G

PARTITION SMALLINT
NOT NULL

Partition number of the index. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

NAME VARCHAR(18)
NOT NULL

Name of the index. G

FIRSTKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the first key
column. The value is -1 if statistics have not been gathered.

S

FULLKEYCARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

For the index partition, number of distinct values of the key. The
value is -1 if statistics have not been gathered.

S

KEYCOUNTF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. The value is -1 if statistics
have not been gathered.

S

CLUSTERRATIOF FLOAT(8)
NOT NULL

For the index partition, the value, when multiplied by 100, is the
percentage of rows that are in clustering order. For example, a
value of indicates 91.25%. The value is 0 if statistics have not
been gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSINDEXSTATS_HIST

Appendix D. DB2 catalog tables 1007

|

|
|
|

|||||

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|
|
|

|

||
|
||

||
|
||

||
|
||

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|
|
|
|

|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSJARCLASS_SOURCE table
Auxiliary table for SYSIBM.SYSCONTENTS.

Column name Data type Description Use

CLASS_SOURCE CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

SYSIBM.SYSJARCLASS_SOURCE

1008 SQL Reference

|

|

|||||

||
|
||

|
|

SYSIBM.SYSJARCONTENTS table
Contains Java class source for installed JAR.

Column name Data type Description Use

JARSCHEMA CHAR(8)
NOT NULL

The schema of the JAR file. G

JAR_ID CHAR(18)
NOT NULL

The name of the JAR file. G

CLASS VARCHAR(128)
NOT NULL

The class name contained in the JAR file. G

CLASS_SOURCE_ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support CLOB datatype. G

CLASS_SOURCE CLOB(10M)
NOT NULL

The contents of the class in the JAR file. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSJARCONTENTS

Appendix D. DB2 catalog tables 1009

|

|

|||||

||
|
||

||
|
||

||
|
||

||
|
|
|

||

||
|
||

||
|
|

|
|
|

|

|
|

SYSIBM.SYSJARDATA table
Auxiliary table for SYSIBM.SYSOBJECTS.

Column name Data type Description Use

JAR_DATA BLOB(100M)
NOT NULL

The contents of the JAR file. G

SYSIBM.SYSJARDATA

1010 SQL Reference

|

|

|||||

||
|
||

|
|

SYSIBM.SYSJAROBJECTS table
Contains binary large object representing the installed JAR.

Column name Data type Description Use

JARSCHEMA CHAR(8)
NOT NULL

The schema of the JAR file. G

JAR_ID CHAR(18)
NOT NULL

The name of the JAR file. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the JAR object. G

JAR_DATA_ROWID ROWID
NOT NULL
GENERATED
ALWAYS

ID used to support BLOB datatype. G

JAR_DATA BLOB(100M)
NOT NULL

The contents of the JAR file. This is an updatable column. G

VARCHAR(1024)
NOT NULL

Not used N

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the JAR object was created. G

ALTEREDTS TIMESTAMP
NOT NULL

Time when the JAR object was altered. G

SYSIBM.SYSJAROBJECTS

Appendix D. DB2 catalog tables 1011

|

|

|||||

||
|
||

||
|
||

||
|
||

||
|
|
|

||

||
|
||

||
|
||

||
|
|

|
|
|

|

||
|
||

||
|
||

|
|

SYSIBM.SYSJAVAOPTS table
Contains build options used during INSTALL_JAR.

Column name Data type Description Use

JARSCHEMA CHAR(8)
NOT NULL

The schema of the JAR file. G

JAR_ID CHAR(18)
NOT NULL

The name of the JAR file. G

BUILDSCHEMA CHAR(8)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME CHAR(18)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER CHAR(8)
NOT NULL

Authorization ID used to create the routine. G

DBMLIB VARCHAR(128)
NOT NULL

PDS name where DBRM is located. G

HPJCOMPILE_OPTS VARCHAR(256)
NOT NULL

HPJ compile options used to install the routine. G

BIND_OPTS VARCHAR(1024)
NOT NULL

Bind options used to install the routine. G

POBJECT_LIB VARCHAR(128)
NOT NULL

PDSE name where program object is located. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSJAVAOPTS

1012 SQL Reference

|

|

|||||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
|

|
|
|

|

|
|

SYSIBM.SYSKEYCOLUSE table
Contains a row for every column in a unique constraint (primary key or unique key)
from the SYSIBM.SYSTABCONST table.

Column name Data type Description Use

CONSTNAME VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table on which the constraint
is defined.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the constraint is defined. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column G

COLSEQ SMALLINT
NOT NULL

Numeric position of the column in the key (the first position in the
key is 1).

G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table on which the constraint
is defined.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSKEYCOLUSE

Appendix D. DB2 catalog tables 1013

|

|
|

|||||

||
|
||

||
|
|
|
|

||
|
||

||
|
||

||
|
|
|
|

||
|
|
|
|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSKEYS table
Contains one row for each column of an index key.

Column name Data type Description Use

IXNAME VARCHAR(18)
NOT NULL

Name of the index. G

IXCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the index. G

COLNAME VARCHAR(18)
NOT NULL

Name of the column of the key. G

COLNO SMALLINT
NOT NULL

Numeric position of the column in the table; for example, 4 (out of
10).

G

COLSEQ SMALLINT
NOT NULL

Numeric position of the column in the key; for example, 4 (out of
4).

G

ORDERING CHAR(1)
NOT NULL

Order of the column in the key:
A Ascending
D Descending

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSKEYS

1014 SQL Reference

SYSIBM.SYSLOBSTATS table
Contains one row for each LOB table space.

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

Timestamp of RUNSTATS statistics update. G

AVGSIZE INTEGER
NOT NULL

Average size of a LOB, measured in bytes, in the LOB table
space.

S

FREESPACE INTEGER
NOT NULL

Number of kilobytes of available space in the LOB table space. S

ORGRATIO DECIMAL(5,2)
NOT NULL

Ratio of organization in the LOB table space. A value of 1
indicates perfect organization of the LOB table space. The greater
the value exceeds 1, the more disorganized the LOB table space.

S

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the LOB table space named
in NAME.

G

NAME CHAR(8)
NOT NULL

Name of the LOB table space. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSLOBSTATS

Appendix D. DB2 catalog tables 1015

SYSIBM.SYSLOBSTATS_HIST table
Contains rows from SYSLOBSTATS. Whenever rows are added or changed in
SYSLOBSTATS, the rows are also written to the new history table. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

STATSTIME TIMESTAMP
NOT NULL

Timestamp of RUNSTATS statistics update. G

FREESPACE INTEGER
NOT NULL

Number of pages of free space in the LOB table space. S

ORGRATIO DECIMAL(5,2)
NOT NULL

Ratio of organization in the LOB table space. A value of 1
indicates perfect organization of the LOB table space. The greater
the value exceeds 1, the more disorganized the LOB table space.

S

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the LOB table space named
in NAME.

G

NAME CHAR(8)
NOT NULL

Name of the LOB table space. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSLOBSTATS_HIST

1016 SQL Reference

|

|
|
|

|||||

||
|
||

||
|
||

||
|
|
|
|

|

||
|
|
|
|

||
|
||

||
|
|

|
|
|

|

|
|

SYSIBM.SYSPACKAGE table
Contains a row for every package.

Column name Data type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. For a trigger package, it is the
schema name of the trigger.

G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. For a package derived from a
DB2 DBRM, this is either:
v The “level” as specified by the LEVEL option when the

package’s program was precompiled
v The timestamp indicating when the package’s program was

precompiled, in an internal format.

S

OWNER CHAR(8)
NOT NULL

Authorization ID of the package owner. For a trigger package, the
value is the authorization ID of the owner of the trigger, which is
set to the current authorization ID (the plan or packge owner for
static CREATE TRIGGER statement; the current SQLID for a
dynamic CREATE TRIGGER statement).

G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the creator of the package
version. For a trigger package, the value is determined differently.
For dynamic SQL, it is the primary authorization ID of the user
who issued the CREATE TRIGGER statement. For static SQL, it is
the authorization ID of the plan or package owner.

G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the package was created. G

BINDTIME TIMESTAMP
NOT NULL

Timestamp indicating when the package was last bound. G

QUALIFIER CHAR(8)
NOT NULL

Implicit qualifier for the unqualified table, view, index, and alias
names in the static SQL statements of the package.

G

PKSIZE INTEGER
NOT NULL

Size of the base section50 of the package, in bytes. G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections50 of the plan that contain
SQL statements processed at bind time.

G

SYSENTRIES SMALLINT
NOT NULL

Number of enabled or disabled entries for this package in
SYSIBM.SYSPKSYSTEM. A value of 0 if all types of connections
are enabled.

G

VALID CHAR(1)
NOT NULL

Whether the package is valid:
A An ALTER statement changed the description of the

table or base table of a view referred to by the package.
The changes do not invalidate the package.

H An ALTER TABLE statement changed the description of
the table or base table of a view referred to by the
package. For releases of DB2 prior to V5R1, the change
invalidates the package.

N No
Y Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the package can be allocated:
N No; an explicit BIND or REBIND is required before the

package can be allocated.
Y Yes

G

50. Packages are divided into sections. The base section of the package must be in the EDM pool during the entire time the package
is executing. Other sections of the package, corresponding roughly to sets of related SQL statements, are brought into the pool
as needed.

SYSIBM.SYSPACKAGE

Appendix D. DB2 catalog tables 1017

|
|
|

Column name Data type Description Use

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:
B All checking must be performed at bind time.
R Validation is done at run time for tables, views, and

privileges that do not exist at bind time.

G

ISOLATION CHAR(1)
NOT NULL

Isolation level when the package was last bound or rebound
R RR (repeatable read)
S CS (cursor stability)
T RS (read stability)
U UR (uncommitted read)
blank Not specified, and therefore at the level specified for the

plan executing the package

G

RELEASE CHAR(1)
NOT NULL

The value used for RELEASE when the package was last bound
or rebound:
C Value used was COMMIT.
D Value used was DEALLOCATE.
blank Not specified, and therefore the value specified for the

plan executing the package.

G

EXPLAIN CHAR(1)
NOT NULL

EXPLAIN option specified for the package; that is, whether
information on the package’s statements was added to the owner
of the PLAN_TABLE table:
N No
Y Yes

G

QUOTE CHAR(1)
NOT NULL

SQL string delimiter for SQL statements in the package:
N Apostrophe
Y Quotation mark

G

COMMA CHAR(1)
NOT NULL

Decimal point representation for SQL statements in package:
N Period
Y Comma

G

HOSTLANG CHAR(1)
NOT NULL

Host language for the package’s DBRM:
B Assembler language
C OS/VS COBOL
D C
F Fortran
P PL/I
2 VS COBOL II or IBM COBOL Release 1 (formerly called

COBOL/370™)
3 IBM COBOL (Release 2 or subsequent releases)
4 C⁺⁺
blank For remotely bound packages, or trigger packages

(TYPE='T')

G

CHARSET CHAR(1)
NOT NULL

Indicates whether the system CCSID for SBCS data was 290
(Katakana) when the program was precompiled:
K Yes
A No

G

MIXED CHAR(1)
NOT NULL

Indicates if mixed data was in effect when the package’s program
was precompiled (for more on when mixed data is in effect, see
“Character strings” on page 49):
N No
Y Yes

G

DEC31 CHAR(1)
NOT NULL

Indicates whether DEC31 was in effect when the package’s
program was precompiled (for more on when DEC31 is in effect,
see “Arithmetic with two decimal operands” on page 114):
N No
Y Yes

G

SYSIBM.SYSPACKAGE

1018 SQL Reference

Column name Data type Description Use

DEFERPREP CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the package was
bound or rebound:
A Data currency is required for all cursors. Inhibit blocking

for all cursors.
B Data currency is not required for ambiguous cursors.
C Data currency is required for ambiguous cursors.
blank The package was created before the CURRENTDATA

option was available.

G

SQLERROR CHAR(1)
NOT NULL

Indicates the SQLERROR option on the most recent subcommand
that bound or rebound the package:
C CONTINUE
N NOPACKAGE

G

REMOTE CHAR(1)
NOT NULL

Source of the package:
C Package was created by BIND COPY.
D Package was created by BIND COPY with the

OPTIONS(COMMAND) option.
K The package was copied from a package that was

originally bound on behalf of a remote requester.
L The package was copied with the

OPTIONS(COMMAND) option from a package that was
originally bound on behalf of a remote requester.

N Package was locally bound from a DBRM.
Y Package was bound on behalf of a remote requester.

G

PCTIMESTAMP TIMESTAMP
NOT NULL

Date and time the application program was precompiled, or
0001-01-01-00.00.00.000000 if the LEVEL precompiler option was
used, or if the package came from a non-DB2 location.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

VERSION VARCHAR(64)
NOT NULL

Version identifier for the package. The value is blank for a trigger
package (TYPE='T').

G

PDSNAME VARCHAR(44)
NOT NULL

For a locally bound package, the name of the PDS (library) in
which the package’s DBRM is a member. For a locally copied
package, the value in SYSPACKAGE.PDSNAME for the source
package. Otherwise, the product signature of the bind requester
followed by one of the following:
v The requester’s location name if the product is DB2
v Otherwise, the requester’s LU name enclosed in angle brackets;

for example, “<LUSQLDS>”.

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the package was last bound:
ANY DEGREE(ANY)
1 or blank DEGREE(1). Blank if the package was

migrated.

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the most recent bind. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment when the
bind was performed.

G

SYSIBM.SYSPACKAGE

Appendix D. DB2 catalog tables 1019

Column name Data type Description Use

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the package was last
bound:

B BIND. Dynamic SQL statements are executed with
DYNAMICRULES bind behavior.

D DEFINEBIND. When the package is run under an active
stored procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES define behavior.

When the package is not run under an active stored
procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES bind behavior.

E DEFINERUN. When the package is run under an active
stored procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES define behavior.

When the package is not run under an active stored
procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES run behavior.

H INVOKEBIND. When the package is run under an active
stored procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES invoke behavior.

When the package is not run under an active stored
procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES bind behavior.

I INVOKERUN. When the package is run under an active
stored procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES invoke behavior.

When the package is not run under an active stored
procedure or user-defined function, dynamic SQL
statements in the package are executed with
DYNAMICRULES run behavior.

R RUN. Dynamic SQL statements are executed with
DYNAMICRULES run behavior.

blank DYNAMICRULES is not specified for the package. The
package uses the DYNAMICRULES value of the plan to
which the package is appended at execution time.

For a description of the DYNAMICRULES behaviors, see
“Authorization IDs and dynamic SQL” on page 43.

G

REOPTVAR CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at execution time
using input variable values:
N Bind option NOREOPT(VARS) indicates that the access

path is determined at bind time.
Y Bind option REOPT(VARS) indicates that the access

path is determined at execution time for SQL statements
with variable values.

G

SYSIBM.SYSPACKAGE

1020 SQL Reference

Column name Data type Description Use

DEFERPREPARE CHAR(1)
NOT NULL WITH
DEFAULT

Whether PREPARE processing is deferred until OPEN is
executed:
N Bind option NODEFER(PREPARE) indicates that

PREPARE processing is not deferred until OPEN is
executed.

Y Bind option DEFER(PREPARE) indicates that PREPARE
processing is deferred until OPEN is executed.

blank Bind option not specified for the package. It is inherited
from the plan.

G

KEEPDYNAMIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged at each
commit point:
N The bind option is KEEPDYNAMIC(NO). Prepared

dynamic SQL statements are destroyed at commit.
Y The bind option is KEEPDYNAMIC(YES). Prepared

dynamic SQL statements are kept past commit.

G

PATHSCHEMAS VARCHAR(254)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command that bound
the package. The path is used to resolve unqualified data type,
function, and stored procedure names used in certain contexts. If
the PATH bind option was not specified, the value in the column is
a zero length string; however, DB2 uses a default SQL path of:
SYSIBM, SYSFUN, SYSPROC, package qualifier.

G

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of package. Identifies how the package was created:
blank BIND PACKAGE command created the package.
T CREATE TRIGGER statement created the package, and

the package is a trigger package.

G

DBPROTOCOL CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL with three-part names is
implemented with DRDA or DB2 private protocol access:
D DRDA
P DB2 private protocol

G

FUNCTIONTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. Set by the BIND and
REBIND commands, but not by AUTOBIND.

G

OPTHINT CHAR(8)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in the
authid.PLAN_TABLE to be used as input to the optimizer. Contains
blanks if no rows in the authid.PLAN_TABLE are to be used as
input.

G

ENCODING_CCSID INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or CCSID as
specified for the bind option ENCODING. The Encoding Scheme
specified on the bind command:
ccsid The specified or derived CCSID.
0 The default CCSID as specified on panel DSNTIPF at

installation time. Used when the package was bound
prior to Version 7.

G

IMMEDWRITE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool dependent
pages are to be done. This option is only applicable for data
sharing environments.
N Bind option IMMEDWRITE(NO) indicates normal write

activity is done.
Y Bind option IMMEDWRITE(YES) indicates that

immediate writes are done for updated group buffer pool
dependent pages.

1 Bind option IMMEDWRITE(PH1) indicates that updated
group buffer pool dependent pages are written at or
before phase 1 commit.

blank A migrated package.

G

RELBOUND CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank Bound prior to Version 7
K Bound on Version 7

G

SYSIBM.SYSPACKAGE

Appendix D. DB2 catalog tables 1021

||
|
|

|
|
|
||
||
|
|

|

||
|
|

|
|
|
||
|
||
|
|
||
|
|
||

|

||
|
|

|
||
||

|

SYSIBM.SYSPACKAUTH table
Records the privileges that are held by users over packages.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privilege. Could also
be PUBLIC or PUBLIC followed by an asterisk51.

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges, the name of
a plan that uses the privileges or PUBLIC for a grant to PUBLIC.

G

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Collection name for the package or packages on which the
privilege was granted.

G

NAME CHAR(8)
NOT NULL

Name of the package on which the privileges are held. An asterisk
(*) if the privileges are held on all packages in a collection.

G

CHAR(8)
NOT NULL

Not used N

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the privilege was granted. G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
P An application plan

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
A PACKADM (on collection *)
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
P PACKADM (on a specific collection)
S SYSADM

G

BINDAUTH CHAR(1)
NOT NULL

Whether GRANTEE can use the BIND and REBIND
subcommands against the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

COPYAUTH CHAR(1)
NOT NULL

Whether GRANTEE can COPY the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether GRANTEE can execute the package:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

51. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Part 3 (Volume 1) of DB2 Administration Guide.

SYSIBM.SYSPACKAUTH

1022 SQL Reference

SYSIBM.SYSPACKDEP table
Records the dependencies of packages on local tables, views, synonyms, table
spaces, indexes, aliases, functions, and stored procedures.

Column name Data type Description Use

BNAME VARCHAR(18)
NOT NULL

The name of an object that a package depends on. G

BQUALIFIER CHAR(8)
NOT NULL

If BNAME identifies a table space, the name of its database.
Otherwise, the authorization ID of the owner of BNAME.

G

BTYPE CHAR(1)
NOT NULL

Type of object identified by BNAME and BQUALIFIER:
A Alias
F User-defined function or cast function
I Index
O Stored procedure
P Partitioned table space
R Table space
S Synonym
T Table
V View

G

DLOCATION CHAR(16)
NOT NULL

Always contains blanks S

DCOLLID CHAR(18)
NOT NULL

Name of the package collection. G

DNAME CHAR(8)
NOT NULL

Name of the package. G

DCONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package’s program was precompiled
v The timestamp indicating when the package’s program was

precompiled, in an internal format.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

DOWNER CHAR(8)
NOT NULL WITH
DEFAULT

Owner of the package. G

DTYPE CHAR(1)
NOT NULL WITH
DEFAULT

Type of package:
T Trigger package
blank Not a trigger package

G

SYSIBM.SYSPACKDEP

Appendix D. DB2 catalog tables 1023

SYSIBM.SYSPACKLIST table
Contains one or more rows for every local application plan bound with a package
list. Each row represents a unique entry in the plan’s package list.

Column name Data type Description Use

PLANNAME CHAR(8)
NOT NULL

Name of the application plan. G

SEQNO SMALLINT
NOT NULL

Sequence number of the entry in the package list. G

LOCATION CHAR(16)
NOT NULL

Location of the package. Blank if this is local. An asterisk (*)
indicates location to be determined at run time.

G

COLLID CHAR(18)
NOT NULL

Collection name for the package. An asterisk (*) indicates that the
collection name is determined at run time.

G

NAME CHAR(8)
NOT NULL

Name of the package. An asterisk (*) indicates an entire collection. G

TIMESTAMP TIMESTAMP
NOT NULL

Timestamp indicating when the row was created. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSPACKLIST

1024 SQL Reference

SYSIBM.SYSPACKSTMT table
Contains one or more rows for each statement in a package.

Column name Data type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package’s program was precompiled
v The timestamp indicating when the package’s program was

precompiled, in an internal format

S

SEQNO SMALLINT
NOT NULL

Sequence number of the row with respect to a statement in the
package52. The numbering starts with 0.

G

STMTNO SMALLINT
NOT NULL

The statement number of the statement in the source program. A
statement number greater than 32767 is displayed as zero or as a
negative number (see STMTNOI for the statement number). 53

G

SECTNO SMALLINT
NOT NULL

The section number of the statement.53 G

BINDERROR CHAR(1)
NOT NULL

Whether an SQL error was detected at bind time:
N No
Y Yes

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

VERSION VARCHAR(64)
NOT NULL

Version identifier for the package. G

STMT VARCHAR(254)
NOT NULL

All or a portion of the text for the SQL statement that the row
represents.

S

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)
L KEEP UPDATE LOCKS for an RS isolation
X KEEP UPDATE LOCKS for an RR isolation
blank The WITH clause was not specified on this statement.

The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

52. Rows in which the value of SEQNO, STMTNO, and SECTNO are zero are for internal use.

53. To convert a negative STMTNO to a meaningful statement number that corresponds to your precompile output, add 65536 to it.
For example, -26472 is equivalent to +39064 (-26472 + 65536).

SYSIBM.SYSPACKSTMT

Appendix D. DB2 catalog tables 1025

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A Distributed - statement uses DB2 private protocol

access. The statement will be parsed and executed at
the server using defaults for input variables during
access path selection.

B Distributed - statement uses DB2 private protocol
access. The statement will be parsed and executed at
the server using values for input variables during access
path selection.

C Compiled - statement was bound successfully using
defaults for input variables during access path selection.

E Explain - statement is an SQL EXPLAIN statement. The
explain is done at bind time using defaults for input
variables during access path selection.

F Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using values for input
variables during access path selection.

G Compiled - statement bound successfully, but REOPT is
specified. The statement will be rebound at execution
time using values for input variables during access path
selection.

H Parsed - statement is either a data definition statement
or a statement that did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using defaults for input
variables during access path selection. Data
manipulation statements use defaults for input variables
during access path selection.

I Indefinite - statement is dynamic. The statement will be
bound at execution time using defaults for input
variables during access path selection.

J Indefinite - statement is dynamic. The statement will be
bound at execution time using values for input variables
during access path selection.

K Control - CALL statement.
L Bad - the statement has some allowable error. The bind

continues but the statement cannot be executed.
blank The statement is non-executable, or was bound in a

DB2 release prior to Version 5.

S

ACCESSPATH CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints. A value of
'H' indicates that optimization hints were used. A blank value
indicates that the access path was determined without the use of
optimization hints, or that there is no access path associated with
the statement.

For dynamic statements, the value is blank.

G

STMTNOI INTEGER
NOT NULL WITH
DEFAULT

The statement number of the statement in the source program. G

SECTNOI INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement. G

EXPLAINABLE CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y Indicates that the SQL statement can be used with the

EXPLAIN function and may have rows describing its
access path in the userid.PLAN_TABLE.

N Indicates that the SQL statement does not have any
rows describing its access path in the
userid.PLAN_TABLE.

blank Indicates that the SQL statement was bound prior to
Version 7.

G

SYSIBM.SYSPACKSTMT

1026 SQL Reference

||
|
|

|
||
|
|
||
|
|
||
|

|

Column name Data type Description Use

QUERYNO INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source program.
SQL statements bound prior to Version 7 have a default value of
–1. Statements bound in Version 7 or later use the value specified
on the QUERYNO clause on SELECT, UPDATE, INSERT,
DELETE, EXPLAIN, and DECLARE CURSOR statements. If the
QUERYNO clause is not specified, the query number is set to the
statement number.

G

SYSIBM.SYSPACKSTMT

Appendix D. DB2 catalog tables 1027

||
|
|

|
|
|
|
|
|
|

|

SYSIBM.SYSPARMS table
Contains a row for each parameter of a routine or multiple rows for table
parameters (one for each column of the table).

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

Schema of the routine. G

OWNER CHAR(8)
NOT NULL

Owner of the routine. G

NAME CHAR(18)
NOT NULL

Name of the routine. G

SPECIFICNAME CHAR(18)
NOT NULL

Specific name of the routine. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

CAST_FUNCTION CHAR(1)
NOT NULL

Whether the routine is a cast function:
N Not a cast function
Y A cast function

The only way to get a value of Y is if a user creates a distinct type
when DB2 implicitly generates cast functions for the distinct type.

G

PARMNAME CHAR(18)
NOT NULL

Name of the parameter. G

ROUTINEID INTEGER
NOT NULL

Internal identifier of the routine. S

ROWTYPE CHAR(1)
NOT NULL

Type of parameter:

P Input parameter.

O Output parameter; not applicable for functions

B Both an input and an output parameter; not applicable
for functions

R Result before casting; not applicable for stored
procedures

C Result after casting; not applicable for stored procedures

This column can have an additional value. If the routine is a
user-defined function that is sourced on a built-in function, an
additional row is inserted into the catalog table for each input
parameter (ROWTYPE='P'). The additional row describes the data
type of the corresponding input parameter of the built-in function.
When such a row is added, the value of ROWTYPE is 'S'. When
PARAMETER CCSID is specified, the ROWTYPE is also 'S'.

G

ORDINAL SMALLINT
NOT NULL

If ROWTYPE is B, O, P, or S, the ordinal number of the parameter
within the routine signature. If ROWTYPE is C or R, the value is 0.
When ROWTYPE is S, because a PARAMETER CCSID is
specified, the ORDINAL value is 0.

G

TYPESCHEMA CHAR(8)
NOT NULL

Schema of the data type of the parameter. G

TYPENAME CHAR(18)
NOT NULL

Name of the data type of the parameter. G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in type. For a
distinct type, the internal ID of the distinct type.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the internal ID of the
built-in data type upon which the distinct type is sourced.

S

SYSIBM.SYSPARMS

1028 SQL Reference

|
|

|
|

|
|

Column name Data type Description Use

LOCATOR CHAR(1)
NOT NULL

Indicates whether a locator to a value, instead of the actual value,
is to be passed or returned when the routine is called:
N The actual value is to be passed.
Y A locator to a value is to be passed

G

TABLE CHAR(1)
NOT NULL

The data type of a column for a table parameter:
N This is not a table parameter.
Y This is a table parameter.

G

TABLE_COLNO SMALLINT
NOT NULL

For table parameters, the column number of the table. Otherwise,
the value is 0.

G

LENGTH INTEGER
NOT NULL

Length attribute of the parameter, or in the case of a decimal
parameter, its precision.

G

SCALE SMALLINT
NOT NULL

Scale of the data type of the parameter. G

SUBTYPE CHAR(1)
NOT NULL

If the data type is a distinct type, the subtype of the distinct type,
which is based on the subtype of its source type:
B The subtype is FOR BIT DATA.
S The subtype is FOR SBCS DATA.
M The subtype is FOR MIXED DATA.
blank The source type is not a character type.

G

CCSID INTEGER
NOT NULL

CCSID of the data type for character, graphic, date, time, and
timestamp data types. When ROWTYPE is S and ORDINAL is 0,
the CCSID column is the CCSID for all string parameters.

G

CAST_FUNCTION_ID INTEGER
NOT NULL

Internal function ID of the function used to cast the argument, if
this function is sourced on another function, or result. Otherwise,
the value is 0. Not applicable for stored procedures.

S

ENCODING_SCHEME CHAR(1)
NOT NULL

Encoding scheme of the parameter:
A ASCII
E EBCDIC
U UNICODE
blank The source type is not a character, graphic, or datetime

type.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSPARMS

Appendix D. DB2 catalog tables 1029

|
|

||

SYSIBM.SYSPKSYSTEM table
Contains zero or more rows for every package. Each row for a given package
represents one or more connections to an environment in which the package could
be executed.

Column name Data type Description Use

LOCATION CHAR(16)
NOT NULL

Always contains blanks S

COLLID CHAR(18)
NOT NULL

Name of the package collection. G

NAME CHAR(8)
NOT NULL

Name of the package. G

CONTOKEN CHAR(8)
NOT NULL

Consistency token for the package. This is either:
v The “level” as specified by the LEVEL option when the

package’s program was precompiled
v The timestamp indicating when the package’s program was

precompiled, in an internal format.

S

SYSTEM CHAR(8)
NOT NULL

Environment. Values can be:
BATCH TSO batch
CICS Customer Information Control System
DB2CALL DB2 call attachment facility
DLIBATCH DLI batch support facility
IMSBMP IMS BMP region
IMSMPP IMS MPP and IFP region
REMOTE remote server

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the row are
enabled or disabled:
N Disabled
Y Enabled

G

CNAME CHAR(20)
NOT NULL

Identifies the connection or connections to which the row applies.
Interpretation depends on the environment specified by SYSTEM.
Values can be:

v Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

v The LU name for a database server if SYSTEM=REMOTE

v Either the requester’s location (if the product is DB2) or the
requester’s LU name enclosed in angle brackets if
SYSTEM=REMOTE.

v The name of a single connection if SYSTEM has any other
value.

CNAME can also be blank when SYSTEM is not equal to BATCH
or DB2CALL. When this is so, the row applies to all servers or
connections for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSPKSYSTEM

1030 SQL Reference

SYSIBM.SYSPLAN table
Contains one row for each application plan.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the application plan. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

BINDDATE CHAR(6)
NOT NULL

Date on which the plan was last bound, in the form yymmdd. G

VALIDATE CHAR(1)
NOT NULL

Whether validity checking can be deferred until run time:
B All checking must be performed during BIND.
R Validation is done at run time for tables, views, and

privileges that do not exist at bind time.

G

ISOLATION CHAR(1)
NOT NULL

Isolation level for the plan:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)

G

VALID CHAR(1)
NOT NULL

Whether the application plan is valid:
A An ALTER TABLE statement changed the description of

the table or base table of a view that is referred to by
the application plan. The changes do not invalidate the
plan.

H An ALTER TABLE statement changed the description of
the table or base table of a view that is referred to by
the application plan. For releases of DB2 prior to Version
5, the change invalidates the application plan.

N No
Y Yes

G

OPERATIVE CHAR(1)
NOT NULL

Whether the application plan can be allocated:
N No; an explicit BIND or REBIND is required before the

plan can be allocated
Y Yes

G

BINDTIME CHAR(8)
NOT NULL

Time of the BIND in the form hhmmssth. G

PLSIZE INTEGER
NOT NULL

Size of the base section 54 of the plan, in bytes. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

AVGSIZE INTEGER
NOT NULL

Average size, in bytes, of those sections54 of the plan that contain
SQL statements processed at bind time.

G

ACQUIRE CHAR(1)
NOT NULL

When resources are acquired:
A At allocation
U At first use

G

RELEASE CHAR(1)
NOT NULL

When resources are released:
C At commit
D At deallocation

G

CHAR(1)
NOT NULL

Not used N

CHAR(1)
NOT NULL

Not used N

54. Plans are divided into sections. The base section of the plan must be in the EDM pool during the entire time the application
program is executing. Other sections of the plan, corresponding roughly to sets of related SQL statements, are brought into the
pool as needed.

SYSIBM.SYSPLAN

Appendix D. DB2 catalog tables 1031

|
|
|
|

Column name Data type Description Use

CHAR(1)
NOT NULL

Not used N

EXPLAN CHAR(1)
NOT NULL

EXPLAIN option specified for the plan; that is, whether information
on the plan’s statements was added to the owner’s PLAN_TABLE
table:
N No
Y Yes

G

EXPREDICATE CHAR(1)
NOT NULL

Indicates the CURRENTDATA option when the plan was bound or
rebound:
B Data currency is not required for ambiguous cursors.

Allow blocking for ambiguous cursors.
C Data currency is required for ambiguous cursors. Inhibit

blocking for ambiguous cursors.
N Blocking is inhibited for ambiguous cursors, but the plan

was created before the CURRENTDATA option was
available.

G

BOUNDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the binder of the plan. G

QUALIFIER CHAR(8)
NOT NULL WITH
DEFAULT

Implicit qualifier for the unqualified table, view, index, and alias
names in the static SQL statements of the plan.

G

CACHESIZE SMALLINT
NOT NULL WITH
DEFAULT

Size, in bytes, of the cache to be acquired for the plan. A value of
zero indicates that no cache is used.

G

PLENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of package list entries for the plan. The negative of that
number if there are rows for the plan in SYSIBM.SYPACKLIST but
the plan was bound in a prior release after fall back.

G

DEFERPREP CHAR(1)
NOT NULL WITH
DEFAULT

Whether the package was last bound with the DEFER(PREPARE)
option:
N No
Y Yes

G

CURRENTSERVER CHAR(16)
NOT NULL WITH
DEFAULT

Location name specified with the CURRENTSERVER option when
the plan was last bound. Blank if none was specified, implying that
the first server is the local DB2 subsystem.

G

SYSENTRIES SMALLINT
NOT NULL WITH
DEFAULT

Number of rows associated with the plan in
SYSIBM.SYSPLSYSTEM. The negative of that number if such
rows exist but the plan was bound in a prior release after fall back.
A negative value or zero means that all connections are enabled.

G

DEGREE CHAR(3)
NOT NULL WITH
DEFAULT

The DEGREE option used when the plan was last bound:
ANY DEGREE(ANY)
1 or blank DEGREE(1). Blank if the plan was migrated.

G

SQLRULES CHAR(1)
NOT NULL WITH
DEFAULT

The SQLRULES option used when the plan was last bound:
D or blank SQLRULES(DB2)
S SQLRULES(STD)
blank A migrated plan

G

DISCONNECT CHAR(1)
NOT NULL WITH
DEFAULT

The DISCONNECT option used when the plan was last bound:
E or blank DISCONNECT(EXPLICIT) (EXPLICIT)
A DISCONNECT(AUTOMATIC) (AUTOMATIC)
C DISCONNECT(CONDITIONAL)

(CONDITIONAL)
blank A migrated plan

G

GROUP_MEMBER CHAR(8)
NOT NULL WITH
DEFAULT

The DB2 data sharing member name of the DB2 subsystem that
performed the most recent bind. This column is blank if the DB2
subsystem was not in a DB2 data sharing environment when the
bind was performed.

G

SYSIBM.SYSPLAN

1032 SQL Reference

Column name Data type Description Use

DYNAMICRULES CHAR(1)
NOT NULL WITH
DEFAULT

The DYNAMICRULES option used when the plan was last bound:
B BIND. Dynamic SQL statements are executed with

DYNAMICRULES bind behavior.
blank RUN. Dynamic SQL statements in the plan are executed

with DYNAMICRULES run behavior.

G

BOUNDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the plan was bound. G

REOPTVAR CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether the access path is determined again at execution time
using input variable values:
N Bind option NOREOPT(VARS) indicates that the access

path is determined at bind time.
Y Bind option REOPT(VARS) indicates that the access

path is determined at execution time for SQL statements
with variable values.

G

KEEPDYNAMIC CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether prepared dynamic statements are to be purged at each
commit point:
N The bind option is KEEPDYNAMIC(NO). Prepared

dynamic SQL statements are destroyed at commit or
rollback.

Y The bind option is KEEPDYNAMIC(YES). Prepared
dynamic SQL statements are kept past commit or
rollback.

G

PATHSCHEMAS VARCHAR(254)
NOT NULL WITH
DEFAULT

SQL path specified on the BIND or REBIND command that bound
the plan. The path is used to resolve unqualified data type,
function, and stored procedure names used in certain contexts. If
the PATH bind option was not specified, the value in the column is
a zero length string; however, DB2 uses a default SQL path of:
SYSIBM, SYSFUN, SYSPROC, plan qualifier.

G

DBPROTOCOL CHAR(1)
NOT NULL WITH
DEFAULT 'P'

Whether remote access for SQL with three-part names is
implemented with DRDA or DB2 private protocol access:
D DRDA
P DB2 private protocol

G

FUNCTIONTS TIMESTAMP
NOT NULL WITH
DEFAULT

Timestamp when the function was resolved. Set by the BIND and
REBIND commands, but not by AUTOBIND.

G

OPTHINT CHAR(8)
NOT NULL WITH
DEFAULT

Value of the OPTHINT bind option. Identifies rows in the
authid.PLAN_TABLE to be used as input to the optimizer. Contains
blanks if no rows in the authid.PLAN_TABLE are to be used as
input.

G

ENCODING_CCSID INTEGER
NOT NULL WITH
DEFAULT

The CCSID corresponding to the encoding scheme or CCSID as
specified for the bind option ENCODING. The Encoding Scheme
specified on the bind command:
ccsid The specified or derived CCSID.
0 The default CCSID as specified on panel DSNTIPF at

installation time. Used when the plan was bound prior to
Version 7

G

IMMEDWRITE CHAR(1)
NOT NULL WITH
DEFAULT

Indicates when writes of updated group buffer pool dependent
pages are to be done. This option is only applicable for data
sharing environments.
N Bind option IMMEDWRITE(NO) indicates normal write

activity is done.
Y Bind option IMMEDWRITE(YES) indicates that

immediate writes are done for updated group buffer pool
dependent pages.

1 Bind option IMMEDWRITE(PH1) indicates that updated
group buffer pool dependent pages are written at or
before phase 1 commit.

blank A migrated package.

G

SYSIBM.SYSPLAN

Appendix D. DB2 catalog tables 1033

||
|
|

|
|
|
||
||
|
|

|

||
|
|

|
|
|
||
|
||
|
|
||
|
|
||

|

Column name Data type Description Use

RELBOUND CHAR(1)
NOT NULL WITH
DEFAULT

The release when the package was bound or rebound.
blank Bound prior to Version 7
K Bound on Version 7

G

SYSIBM.SYSPLAN

1034 SQL Reference

||
|
|

|
||
||

|

SYSIBM.SYSPLANAUTH table
Records the privileges that are held by users over application plans.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges. Could also
be PUBLIC for a grant to PUBLIC.

G

NAME CHAR(8)
NOT NULL

Name of the application plan on which the privileges are held. G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

BINDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND, REBIND, or FREE
subcommands against the plan:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can run application programs that use the
application plan:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

SYSIBM.SYSPLANAUTH

Appendix D. DB2 catalog tables 1035

SYSIBM.SYSPLANDEP table
Records the dependencies of plans on tables, views, aliases, synonyms, table
spaces, indexes, functions, and stored procedures.

Column name Data type Description Use

BNAME VARCHAR(18)
NOT NULL

The name of an object the plan depends on. G

BCREATOR CHAR(8)
NOT NULL

If BNAME is a table space, its database. Otherwise, the
authorization ID of the owner of BNAME.

G

BTYPE CHAR(1)
NOT NULL

Type of object identified by BNAME:
A Alias
F User-defined function or cast function
I Index
O Stored procedure
P Partitioned table space
R Table space
S Synonym
T Table
V View

G

DNAME CHAR(8)
NOT NULL

Name of the plan. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSPLANDEP

1036 SQL Reference

SYSIBM.SYSPLSYSTEM table
Contains zero or more rows for every plan. Each row for a given plan represents
one or more connections to an environment in which the plan could be used.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the plan. G

SYSTEM CHAR(8)
NOT NULL

Environment. Values can be:
BATCH TSO batch
DB2CALL DB2 call attachment facility
CICS Customer Information Control System
DLIBATCH DLI batch support facility
IMSBMP IMS BMP region
IMSMPP IMS MPP or IFP region

G

ENABLE CHAR(1)
NOT NULL

Indicates whether the connections represented by the row are
enabled or disabled:
N Disabled
Y Enabled

G

CNAME CHAR(8)
NOT NULL

Identifies the connection or connections to which the row applies.
Interpretation depends on the environment specified by SYSTEM.
Values can be:

v Blank if SYSTEM=BATCH or SYSTEM=DB2CALL

v The name of a single connection if SYSTEM has any other
value

CNAME can also be blank when SYSTEM is not equal to BATCH
or DB2CALL. When this is so, the row applies to all connections
for the indicated environment.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSPLSYSTEM

Appendix D. DB2 catalog tables 1037

SYSIBM.SYSPROCEDURES table
In releases of DB2 for OS/390 and z/OS prior to Version 6, users were required to
use the SYSPROCEDURES catalog table to define stored procedures to DB2. In
Version 6 and Version 7, the SYSROUTINES catalog table contains information
about stored procedures. When the versions were installed, the rows in
SYSPROCEDURES that had non-blank values for AUTHID and LUNAME were
copied, with appropriate formatting, to SYSROUTINES.

Although this verson of DB2 for OS/390 and z/OS does not use
SYSPROCEDURES, SYSPROCEDURES is available for fallback to Version 5. For
information about falling back and remigrating, see DB2 Installation Guide.
However, any procedures that are defined with this version will not be available for
fallback to Version 5. Likewise, any procedure definitions that are altered for this
version with the ALTER PROCEDURE statement will not be changed in
SYSPROCEDURES and thus will not be available in Version 5.

Column name Data type Description Use

PROCEDURE CHAR(18)
NOT NULL

Name of the stored procedure specified on the SQL CALL
statement.

G

AUTHID CHAR(8)
NOT NULL WITH
DEFAULT

SQL authorization ID of the user running the SQL application that
issued the SQL CALL statement. When the SQL CALL statement
is received from a remote location, this column is compared to the
value of the authorization ID after outbound and inbound name
translation operations have been performed.

If AUTHID is blank, values in this row apply to all authorization
IDs.

G

LUNAME CHAR(8)
NOT NULL WITH
DEFAULT

LUNAME of the system that issued the SQL CALL statement.

v If the LUNAME column contains the local DB2 system’s
LUNAME, this row applies to local applications that issue the
SQL CALL statement.

v If the LUNAME column contains the LUNAME of a remote
client, this row applies to SQL CALL statements received from
that remote client.

v If LUNAME is blank, the values in this row apply to all systems,
including the local DB2 system and clients connected through
TCP/IP or SNA.

To ease migration to future releases of DB2, specify blanks in this
field.

G

LOADMOD CHAR(8)
NOT NULL

Member name of the MVS load module that DB2 should load to
satisfy the request for the stored procedure.

When the value of LANGUAGE is COMPJAVA, this column value
is not used.

G

LINKAGE CHAR(1)
NOT NULL WITH
DEFAULT

Linkage convention used to pass parameters to the stored
procedure:
N The SIMPLE WITH NULLS convention is used where an

indicator array is passed to the stored procedure. Null
input parameters are allowed.

blank The SIMPLE linkage convention is used where input
parameters cannot be null.

Conventions for passing parameters to stored procedures are
described in Part 6 of DB2 Application Programming and SQL
Guide.

G

SYSIBM.SYSPROCEDURES

1038 SQL Reference

Column name Data type Description Use

COLLID CHAR(18)
NOT NULL

Name of the package collection to use when the stored procedure
is executed.

A blank value indicates that the package collection is the same as
the package collection of the program that issued the SQL CALL
statement.

G

LANGUAGE CHAR(8)
NOT NULL

Programming language used to create the stored procedure.
Possible values are 'ASSEMBLE', 'PLI', 'COBOL', 'C', 'REXX', or
'COMPJAVA'.

G

ASUTIME INTEGER
NOT NULL WITH
DEFAULT

Number of service units permitted for any single invocation of this
stored procedure. If ASUTIME is zero, there is no limit on the
service units.

If a stored procedure uses more service units than allowed by the
ASUTIME value, DB2 cancels the stored procedure.

G

STAYRESIDENT CHAR(1)
NOT NULL WITH
DEFAULT

Determines whether the stored procedure load module is deleted
from memory when the stored procedure ends.
Y The load module remains resident in memory after the

stored procedure ends.
blank The load module is deleted from memory after the

stored procedure ends.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

RUNOPTS VARCHAR(254)
NOT NULL

The Language Environment (Language Environment for MVS &
VM) run-time options to use for this stored procedure. If this
column contains an empty string, the installation default Language
Environment run-time options are used.

When the value of LANGUAGE is COMPJAVA, this column value
is the stored procedure program name, in the format class.method.

An example Language Environment run-time option list follows:

'MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)'

G

PARMLIST VARCHAR(3000)
NOT NULL

Defines the parameter list expected by the stored procedure. For
syntax and a description of the information contained in the
PARMLIST string, see Part 6 of DB2 Application Programming and
SQL Guide.

G

RESULT_SETS SMALLINT
NOT NULL WITH
DEFAULT

Maximum number of query result sets that can be returned by this
stored procedure.

Zero indicates there are no query result sets.

G

WLM_ENV CHAR(18)
NOT NULL WITH
DEFAULT

Name of the WLM environment to be used to run this stored
procedure.

A blank value results in the stored procedure being run in the
DB2-established stored procedures address space.

G

PGM_TYPE CHAR(1)
NOT NULL WITH
DEFAULT 'M'

Whether the stored procedure runs as a main routine or a
subroutine:
M The stored procedure runs as a main routine.
S The stored procedure runs as a subroutine.

G

EXTERNAL_SECURITY CHAR(1)
NOT NULL WITH
DEFAULT 'N'

Whether a special RACF environment is required to control access
to non-SQL resources:
N RACF access to non-SQL resources is not required for

the stored procedure. This option is sufficient when the
stored procedure only accesses SQL objects.

Y A RACF environment should be automatically created by
DB2 each time the stored procedure is invoked so that
RACF can manage access to non-SQL resources.

G

SYSIBM.SYSPROCEDURES

Appendix D. DB2 catalog tables 1039

Column name Data type Description Use

COMMIT_ON_RETURN CHAR(1)
WITH DEFAULT 'N'

Whether the unit of work is always to be committed immediately
upon successful return (non-negative SQLCODE) from this stored
procedure:
N The unit of work is to continue.
Y The unit of work is to be committed.
A null value means the same as the value N.

G

SYSIBM.SYSPROCEDURES

1040 SQL Reference

SYSIBM.SYSRELS table
Contains one row for every referential constraint.

Column name Data type Description Use

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the dependent table of the
referential constraint.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the dependent table of the referential constraint. G

RELNAME CHAR(8)
NOT NULL

Constraint name. G

REFTBNAME VARCHAR(18)
NOT NULL

Name of the parent table of the referential constraint. G

REFTBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the parent table. G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the foreign key. G

DELETERULE CHAR(1)
NOT NULL

Type of delete rule for the referential constraint:
A NO ACTION
C CASCADE
N SET NULL
R RESTRICT

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

RELOBID1 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the database that
contains the parent table.

S

RELOBID2 SMALLINT
NOT NULL WITH
DEFAULT

Internal identifier of the constraint with respect to the database that
contains the dependent table.

S

TIMESTAMP TIMESTAMP
NOT NULL WITH
DEFAULT

Date and time the constraint was defined. If the constraint is
between catalog tables prior to DB2 Version 2 Release 3, the
value is '1985-04-01-00.00.00.000000.'.

G

IXOWNER CHAR(8)
NOT NULL WITH
DEFAULT

Owner of unique non-primary index used for the parent key.
'99999999' if the enforcing index has been dropped. Blank if the
enforcing index is a primary index.

G

IXNAME VARCHAR(18)
NOT NULL WITH
DEFAULT

Name of unique non-primary index used for a parent key.
'99999999' if the enforcing index has been dropped. Blank if the
enforcing index is a primary index.

G

SYSIBM.SYSRELS

Appendix D. DB2 catalog tables 1041

SYSIBM.SYSRESAUTH table
Records CREATE IN and PACKADM ON privileges for collections; USAGE
privileges for distinct types; and USE privileges for buffer pools, storage groups,
and table spaces.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privilege. Could also be
PUBLIC for a grant to PUBLIC.

G

QUALIFIER CHAR(8)
NOT NULL

Qualifier of the table space (the database name) if the privilege is
for a table space (OBTYPE='R'). The schema name of the distinct
type if the privilege is for a distinct type (OBTYPE='D'). Otherwise,
the value is blank.

G

NAME CHAR(18)
NOT NULL

Name of the buffer pool, collection, DB2 storage group, distinct
type, or table space. Could also be ALL when USE OF ALL
BUFFERPOOLS is granted.

G

CHAR(1)
NOT NULL

Internal use only I

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM
P PACKADM (on a specific collection)
A PACKADM (on collection *)

G

OBTYPE CHAR(1)
NOT NULL

Type of object:
B Buffer pool
C Collection
D Distinct type
R Table space
S Storage group
J JAR (Java ARchieve file)

G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privilege was granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privilege was granted; in the form hhmmssth. G

USEAUTH CHAR(1)
NOT NULL

Whether the privilege is held with the GRANT option:
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

The authority held is PACKADM when the OBTYPE is C (a
collection) and QUALIFIER is PACKADM. The authority held is
CREATE IN when the OBTYPE is C and QUALIFIER is blank.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

SYSIBM.SYSRESAUTH

1042 SQL Reference

||

SYSIBM.SYSROUTINEAUTH table
Records the privileges that are held by users on routines. (A routine can be a
user-defined function, cast function, or stored procedure.)

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privilege. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privilege or the name of
a plan or package that uses the privilege. Can also be PUBLIC for
a grant to PUBLIC.

G

SCHEMA CHAR(8)
NOT NULL

Schema of the routine G

SPECIFICNAME CHAR(18)
NOT NULL

Specific name of the routine. An asterisk (*) if the privilege is held
on all routines in the schema.

G

GRANTEDTS TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
P An application plan or package. The grantee is a

package if COLLID is not blank.
R Internal use only

G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

This field is also used to indicate that the privilege was held on all
schemas by the grantor.
blank Not applicable
1 Grantor had privilege on schema.* at time of grant
L SYSCTRL
S SYSADM

G

EXECUTEAUTH CHAR(1)
NOT NULL

Whether GRANTEE can execute the routine:
Y Privilege is held without GRANT option.
G Privilege is held with GRANT option.

G

COLLID CHAR(18)
NOT NULL

If the GRANTEE is a package, its collection name. Otherwise, the
value is blank.

G

CONTOKEN CHAR(8)
NOT NULL

If the GRANTEE is a package, the consistency token of the DBRM
from which the package was derived. Otherwise, the value is
blank.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSROUTINEAUTH

Appendix D. DB2 catalog tables 1043

SYSIBM.SYSROUTINES table
Contains a row for every routine. (A routine can be a user-defined function, cast
function, or stored procedure.)

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

Schema of the routine. G

OWNER CHAR(8)
NOT NULL

Owner of the routine. G

NAME CHAR(18)
NOT NULL

Name of the routine. G

ROUTINETYPE CHAR(1)
NOT NULL

Type of routine:
F User-defined function or cast function
P Stored procedure

G

CREATEDBY CHAR(8)
NOT NULL

Authorization ID under which the routine was created. G

SPECIFICNAME CHAR(18)
NOT NULL

Specific name of the routine. G

ROUTINEID INTEGER
NOT NULL

Internal identifier of the routine. S

RETURN_TYPE INTEGER
NOT NULL

Internal identifier of the result data type of the function. The
column contains a -2 if the function is a table function.

S

ORIGIN CHAR(1)
NOT NULL

Origin of the routine:
E External or SQL user-defined function or stored

procedure
U Sourced on user-defined function or built-in function
S System-generated function

G

FUNCTION_TYPE CHAR(1)
NOT NULL

Type of function:
C Column function
S Scalar function
T Table function
blank For a stored procedure (ROUTINETYPE = 'P')

G

PARM_COUNT SMALLINT
NOT NULL

Number of parameters for the routine. G

LANGUAGE CHAR(8)
NOT NULL

Implementation language of the routine:
ASSEMBLE
C
COBOL
COMPJAVA
JAVA
PLI
REXX
SQL
blank ORIGIN is not 'E'.

G

COLLID CHAR(18)
NOT NULL

Name of the package collection to be used when the routine is
executed. A blank value indicates the package collection is the
same as the package collection of the program that invoked the
routine.

G

SOURCESCHEMA CHAR(8)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the schema of the
source user-defined function (’SYSIBM’ for a source built-in
function). Otherwise, the value is blank.

G

SOURCESPECIFIC CHAR(18)
NOT NULL

If ORIGIN is 'U' and ROUTINETYPE is 'F', the specific name of
the source user-defined function or source built-in function
name. Otherwise, the value is blank.

G

SYSIBM.SYSROUTINES

1044 SQL Reference

|
|

Column name Data type Description Use

DETERMINISTIC CHAR(1)
NOT NULL

The deterministic option of an external function or a stored
procedure:
N Indeterminate (results may differ with a given set of

input values).
Y Deterministic (results are consistent).
blank ROUTINETYPE='F' and ORIGIN is not 'E' (the routine

is a function, but not an external function).

G

EXTERNAL_ACTION CHAR(1)
NOT NULL

The external action option of an external function:
N Function has no side effects.
E Function has external side effects so that the number

of invocations is important.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

NULL_CALL CHAR(1)
NOT NULL

The CALLED ON NOT NULL INPUT option of an external
function or stored procedure:
N The routine is not called if any parameter has a NULL

value.
Y The routine is called if any parameter has a NULL

value.
blank ROUTINETYPE='F' and ORIGIN is not 'E' (the routine

is a function, but not an external function).

G

CAST_FUNCTION CHAR(1)
NOT NULL

Whether the routine is a cast function:
N The routine is not a cast function.
Y The routine is a cast function.

A cast function is generated by DB2 for a CREATE DISTINCT
TYPE statement,

G

SCRATCHPAD CHAR(1)
NOT NULL

The SCRATCHPAD option of an external function:
N This function does not have a SCRATCHPAD.
Y This function has a SCRATCHPAD.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

SCRATCHPAD_LENGTH INTEGER
NOT NULL

Length of the scratchpad if the ORIGIN is 'E' for the function
(ROUTINETYPE='F') and NO SCRATCHPAD is not specified.
Otherwise, the value is 0.

G

FINAL_CALL CHAR(1)
NOT NULL

The FINAL CALL option of an external function:
N A final call will not be made to the function.
Y A final call will be made to the function.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

PARALLEL CHAR(1)
NOT NULL

The PARALLEL option of an external function:
A This function can be invoked by parallel tasks.
D This function cannot be invoked by parallel tasks.
blank ORIGIN is not 'E' for the function

(ROUTINETYPE='F'), or it is a stored procedure
(ROUTINETYPE='P').

G

SYSIBM.SYSROUTINES

Appendix D. DB2 catalog tables 1045

|
|

Column name Data type Description Use

PARAMETER_STYLE CHAR(1)
NOT NULL

The PARAMETER STYLE option of an external function or
stored procedure:
D DB2SQL. All parameters are passed to the external

function or stored procedure according to the DB2SQL
standard convention.

G GENERAL. All parameters are passed to the stored
procedure according to the GENERAL standard
convention.

N GENERAL CALL WITH NULLS. All parameters are
passed to the stored procedure according to the
GENERAL WITH NULLS convention.

J JAVA. All parameters are passed to the function or
procedure according to the conventions for JAVA and
SQLJ specifications.

blank The column is blank if the ORIGIN is not 'E'.

G

FENCED CHAR(1)
NOT NULL Y Indicates that this routine runs separately in the DB2

address space. All user-defined routines run in the
DB2 address space.

G

SQL_DATA_ACCESS CHAR(1)
NOT NULL

The SQL statements that are allowed in an external function or
stored procedure:
C CONTAINS SQL: Only SQL that does not read or

modify data is allowed.
M MODIFIES SQL DATA: All SQL is allowed, including

SQL that reads or modifies data.
N NO SQL: SQL is not allowed.
R READS SQL DATA: Only SQL that reads data is

allowed.
blank Not applicable.

G

DBINFO CHAR(1)
NOT NULL

The DBINFO option of an external function or stored procedure:
N No, the DBINFO parameter will not be passed to the

external function or stored procedure.
Y Yes, the DBINFO parameter will be passed to the

external function or stored procedure.

G

STAYRESIDENT CHAR(1)
NOT NULL

The STAYRESIDENT option of the routine, which determines
whether the routine is to be deleted from memory when the
routine ends.
N The load module is to be deleted from memory after

the routine terminates.
Y The load module is to remain resident in memory after

the routine terminates.
blank ORIGIN is not 'E'.

G

ASUTIME INTEGER
NOT NULL

Number of CPU service units permitted for any single invocation
of this routine. If ASUTIME is zero, the number of CPU service
units is unlimited.

If a routine consumes more CPU service units than the
ASUTIME value allows, DB2 cancels the routine.

G

WLM_ENVIRONMENT CHAR(18)
NOT NULL

Name of the WLM environment to be used to run this routine.

If the ROUTINETYPE = 'P', the value might be blank. Blank
causes the stored procedure to be run in the DB2 stored
procedure address space.

G

SYSIBM.SYSROUTINES

1046 SQL Reference

Column name Data type Description Use

WLM_ENV_FOR_NESTED CHAR(1)
NOT NULL

For nested routine calls, indicates whether the address space of
the calling stored procedure or user-defined function is used to
run the nested stored procedure or user-defined function:
N The nested stored procedure or user-defined function

runs in an address space other than the specified
WLM environment if the calling stored procedure or
user-defined function is not running in the specified
WLM environment. ’WLM ENVIRONMENT name’ was
specified.

Y The nested stored procedure or user-defined function
runs in the environment used by the calling stored
procedure or user-defined function. ’WLM
ENVIRONMENT(name,*)’ was specified.

blank WLM_ENVIRONMENT is blank.

G

PROGRAM_TYPE CHAR(1)
NOT NULL

Indicates whether the routine runs as a Language Environment
main routine or a subroutine:
M The routine runs as a main routine.
S The routine runs as a subroutine.
blank ORIGIN is not 'E'.

G

EXTERNAL_SECURITY CHAR(1)
NOT NULL

Specifies the authorization ID to be used if the routine accesses
resources protected by an external security product:
D DB2 - The authorization ID associated with the

WLM-established stored procedure address space.
U USER - The authorization ID of the SQL user that

invoked the routine.
C DEFINER - The authorization ID of the owner of the

routine.
blank ORIGIN is not 'E'.

G

COMMIT_ON_RETURN CHAR(1)
NOT NULL

If ROUTINETYPE = 'P', whether the transaction is always to be
committed immediately on successful return (non-negative
SQLCODE) from this stored procedure:
N The unit of work is to continue.
Y The unit of work is to be committed immediately.
If ROUTINETYPE = 'F', the value is blank.

G

RESULT_SETS SMALLINT
NOT NULL

If ROUTINETYPE = 'P', the maximum number of ad hoc result
sets that this stored procedure can return.

If no ad hoc result exist or ROUTINETYPE = 'F', the value is
zero.

G

LOBCOLUMNS SMALLINT
NOT NULL

If ORIGIN = 'E', the number of LOB columns found in the
parameter list for this user-defined function.

If no LOB columns are found in the parameter list or ORIGIN is
not 'E', the value is 0.

I

CREATEDTS TIMESTAMP
NOT NULL

Time when the CREATE statement was executed for this
routine.

G

ALTEREDTS TIMESTAMP
NOT NULL

Time when the last ALTER statement was executed for this
routine.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

PARM1 SMALLINT
NOT NULL

Internal use only I

PARM2 SMALLINT
NOT NULL

Internal use only I

PARM3 SMALLINT
NOT NULL

Internal use only I

PARM4 SMALLINT
NOT NULL

Internal use only I

SYSIBM.SYSROUTINES

Appendix D. DB2 catalog tables 1047

Column name Data type Description Use

PARM5 SMALLINT
NOT NULL

Internal use only I

PARM6 SMALLINT
NOT NULL

Internal use only I

PARM7 SMALLINT
NOT NULL

Internal use only I

PARM8 SMALLINT
NOT NULL

Internal use only I

PARM9 SMALLINT
NOT NULL

Internal use only I

PARM10 SMALLINT
NOT NULL

Internal use only I

PARM11 SMALLINT
NOT NULL

Internal use only I

PARM12 SMALLINT
NOT NULL

Internal use only I

PARM13 SMALLINT
NOT NULL

Internal use only I

PARM14 SMALLINT
NOT NULL

Internal use only I

PARM15 SMALLINT
NOT NULL

Internal use only I

PARM16 SMALLINT
NOT NULL

Internal use only I

PARM17 SMALLINT
NOT NULL

Internal use only I

PARM18 SMALLINT
NOT NULL

Internal use only I

PARM19 SMALLINT
NOT NULL

Internal use only I

PARM20 SMALLINT
NOT NULL

Internal use only I

PARM21 SMALLINT
NOT NULL

Internal use only I

PARM22 SMALLINT
NOT NULL

Internal use only I

PARM23 SMALLINT
NOT NULL

Internal use only I

PARM24 SMALLINT
NOT NULL

Internal use only I

PARM25 SMALLINT
NOT NULL

Internal use only I

PARM26 SMALLINT
NOT NULL

Internal use only I

PARM27 SMALLINT
NOT NULL

Internal use only I

PARM28 SMALLINT
NOT NULL

Internal use only I

PARM29 SMALLINT
NOT NULL

Internal use only I

PARM30 SMALLINT
NOT NULL

Internal use only I

IOS_PER_INVOC FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/Os that required to execute the routine.
The value is -1 if the estimated number is not known.

S

SYSIBM.SYSROUTINES

1048 SQL Reference

Column name Data type Description Use

INSTS_PER_INVOC FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that required to
execute the routine. The value is -1 if the estimated number is
not known.

S

INITIAL_IOS FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of I/O’s that are performed the first time or
the last time the routine is invoked. The value is -1 if the
estimated number is not known.

S

INITIAL_INSTS FLOAT
NOT NULL WITH
DEFAULT -1

Estimated number of machine instructions that are performed
the first time or the last time the routine is invoked. The value is
-1 if the estimated number is not known.

S

CARDINALITY FLOAT
NOT NULL WITH
DEFAULT -1

The predicted cardinality of the routine. The value is -1 if the
cardinality option was not specified and DB2 is to assume a
finite value..

S

RESULT_COLS SMALLINT
NOT NULL
DEFAULT 1

For a table function, the number of columns in the result table.
Otherwise, the value is 1.

S

EXTERNAL_NAME VARCHAR(254)
NOT NULL

The path/module/function that DB2 should load to execute the
routine. The column is blank if the ORIGIN is not 'E'.

G

PARM_SIGNATURE VARCHAR(150)
NOT NULL
FOR BIT DATA

Internal use only I

RUNOPTS VARCHAR(254)
NOT NULL

The Language Environment run-time options to be used for this
routine. An empty string indicates that the installation default
Language Environment run-time options are to be used.

G

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT ON
statement.

G

JAVA_SIGNATURE VARCHAR(1024)
NOT NULL WITH
DEFAULT

The signature of the jar file.
blank When PARAMETER STYLE is not JAVA

G

CLASS VARCHAR(128)
NOT NULL WITH
DEFAULT

The class name contained in the jar file.
blank When PARAMETER STYLE is not JAVA

G

JARSCHEMA CHAR(8)
NOT NULL WITH
DEFAULT

The schema of the jar file.
blank When PARAMETER STYLE is not JAVA

G

JAR_ID CHAR(18)
NOT NULL WITH
DEFAULT

The name of the jar file.
blank When PARAMETER STYLE is not JAVA

G

SPECIAL_REGS CHAR(1)
NOT NULL WITH
DEFAULT ’I’

The SPECIAL REGISTER option for a routine.
I INHERIT SPECIAL REGISTERS
D DEFAULT SPECIAL REGISTERS

G

SYSIBM.SYSROUTINES

Appendix D. DB2 catalog tables 1049

||
|
|

|
||
|

||
|
|

|
||
|

||
|
|

|
||
|

||
|
|

|
||
|

||
|
|

|
||
||
|

|

SYSIBM.SYSROUTINES_OPTS table
Contains a row for each generated routine, such as one created by the DB2 Stored
Procedure Builder tool, that records the build options for the routine. Rows in this
table can be inersted, updated, and deleted.

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

Schema of the routine. G

ROUTINENAME CHAR(18)
NOT NULL

Name of the routine. G

BUILDDATE DATE
NOT NULL WITH
DEFAULT

Date the routine was built G

BUILDTIME TIME
NOT NULL WITH
DEFAULT

Time the routine was built G

BUILDSTATUS CHAR(1)
NOT NULL WITH
DEFAULT ’C’

Whether this version of the routine’s options is the current
version

G

BUILDSCHEMA CHAR(8)
NOT NULL

Schema name for BUILDNAME. G

BUILDNAME CHAR(18)
NOT NULL

Procedure used to create the routine. G

BUILDOWNER CHAR(8)
NOT NULL

Authorization ID used to create the routine. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

PRECOMPILE_OPTS VARCHAR(255)
NOT NULL WITH
DEFAULT

Precompiler options used to build the routine. G

COMPILE_OPTS VARCHAR(255)
NOT NULL WITH
DEFAULT

Compiler options used to build the routine. G

PRELINK_OPTS VARCHAR(255)
NOT NULL WITH
DEFAULT

Prelink-edit options used to build the routine. G

LINK_OPTS VARCHAR(255)
NOT NULL WITH
DEFAULT

Link-edit options used to build the routine. G

BIND_OPTS VARCHAR(1024)
NOT NULL WITH
DEFAULT

Bind options used to build the routine. G

SOURCEDSN VARCHAR(255)
NOT NULL WITH
DEFAULT

Name of the source data set. G

SYSIBM.SYSROUTINES_OPTS

1050 SQL Reference

|

|
|
|

|||||

||
|
||

||
|
||

||
|
|

||

||
|
|

||

||
|
|

|
|
|

||
|
||

||
|
||

||
|
||

||
|
|

|
|
|

|

||
|
|

||

||
|
|

||

||
|
|

||

||
|
|

||

||
|
|

||

||
|
|

||

|
|

SYSIBM.SYSROUTINES_SRC table
Contains source for generated routines, such as those created by the DB2 Stored
Procedure Builder tool. Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

Schema of the routine. G

ROUTINENAME CHAR(18)
NOT NULL

Name of the routine. G

BUILDDATE DATE
NOT NULL WITH
DEFAULT

Date the routine was built G

BUILDTIME TIME
NOT NULL WITH
DEFAULT

Time the routine was built G

BUILDSTATUS CHAR(1)
NOT NULL WITH
DEFAULT ’C’

Whether this version of the routine’s source is the current
version

G

SEQNO INTEGER
NOT NULL

Number of the source statement piece in CREATESTMT. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CREATESTMT VARCHAR(3800)
NOT NULL

Routine source statement. G

SYSIBM.SYSROUTINES_SRC

Appendix D. DB2 catalog tables 1051

|

SYSIBM.SYSSCHEMAAUTH table
Contains one or more rows for each user that is granted a privilege on a particular
schema in the database.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges or
SYSADM.

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user or group who holds the privileges. Can
also be PUBLIC for a grant to PUBLIC.

G

SCHEMANAME CHAR(8)
NOT NULL

Name of the schema or ’*’ for all schemas. G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.

This field is also used to indicate that the privilege was held on all
schemas by the grantor.
1 Grantor had privilege on all schemas at time of grant
L SYSCTRL
S SYSADM

G

CREATEINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds CREATEIN privilege on the
schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

ALTERINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds ALTERIN privilege on the
schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DROPINAUTH CHAR(1)
NOT NULL

Indicates whether grantee holds DROPIN privilege on the schema:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

GRANTEDTS TIMESTAMP
NOT NULL

Time when the GRANT statement was executed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSSCHEMAAUTH

1052 SQL Reference

SYSIBM.SYSSEQUENCES table
Contains one row for each identity column.

Column name Data type Description Use

SCHEMA CHAR(8)
NOT NULL

The value of TBCREATOR from the SYSCOLUMNS entry for the
identity column.

G

OWNER CHAR(8)
NOT NULL

The value of TBCREATOR from the SYSCOLUMNS entry for the
identity column.

G

NAME CHAR(18)
NOT NULL

Name that DB2 generated for the identity column. G

SEQTYPE CHAR(1)
NOT NULL

Type of entry:
I For an identity column

G

SEQUENCEID INTEGER
NOT NULL

Internal identifier of the identity column. G

CREATEDBY CHAR(8)
NOT NULL

The authorization ID under which the identity column was created. G

INCREMENT DECIMAL(31,0)
NOT NULL

Increment value (positive or negative, within INTEGER scope). G

START DECIMAL(31,0)
NOT NULL

Start value. G

MAXVALUE DECIMAL(31,0)
NOT NULL

Maximum value allowed for the identity column. G

MINVALUE DECIMAL(31,0)
NOT NULL

Minimum value allowed for the identity column. G

CYCLE CHAR(1)
NOT NULL

Whether values for the identity column are wrapped (values
continue to be generated for the column after the maximum or
minimum value is reached):
N No
Y Yes

G

CACHE INTEGER
NOT NULL

Number of identity column values to preallocate in memory for
faster access. A value of 0 indicates that values are not to be
preallocated.

G

ORDER CHAR(1)
NOT NULL

The value is always ’N’ for an identity column. G

DATATYPEID INTEGER
NOT NULL

For a built-in data type, the internal ID of the built-in type. For a
distinct type, the internal ID of the distinct type.

S

SOURCETYPEID INTEGER
NOT NULL

For a built-in data type, 0. For a distinct type, the internal ID of the
built-in data type upon which the distinct type is sourced.

S

CREATEDTS TIMESTAMP
NOT NULL

Timestamp when the identity column was created. G

ALTEREDTS TIMESTAMP
NOT NULL

Timestamp when the identity column was created. G

MAXASSIGNEDVAL DECIMAL(31,0) Last possible assigned value. Initialized to null when the sequence
object is created. Updated each time the next chunk of n values is
cached, where n is the value for CACHE.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

REMARKS VARCHAR(254)
NOT NULL

The value is always blank for an identity column. G

SYSIBM.SYSSEQUENCES

Appendix D. DB2 catalog tables 1053

|

||
|
||

||
|
|
|
|
||
||

|

SYSIBM.SYSSEQUENCESDEP table
Records the dependencies of identity columns on tables.

Column name Data type Description Use

BSEQUENCEID INTEGER
NOT NULL

Internal identifier of the identity column in SYSSEQUENCES. G

DCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table that contains the identity
column.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

DNAME CHAR(18)
NOT NULL

Name of the table containing the identity column. G

DCOLNAME CHAR(18)
NOT NULL

Name of the identity column. G

SYSIBM.SYSSEQUENCESDEP

1054 SQL Reference

SYSIBM.SYSSTMT table
Contains one or more rows for each SQL statement of each DBRM.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the DBRM. G

PLNAME CHAR(8)
NOT NULL

Name of the application plan. G

PLCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the application plan. G

SEQNO SMALLINT
NOT NULL

Sequence number of this row with respect to a statement of the
DBRM55. The numbering starts with zero.

G

STMTNO SMALLINT
NOT NULL

The statement number of the statement in the source program. A
statement number greater than 32767 is displayed as zero (see
STMTNOI for the statment number).55

G

SECTNO SMALLINT
NOT NULL

The section number of the statement.55 G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TEXT VARCHAR(254)
NOT NULL

Text or portion of the text of the SQL statement. S

ISOLATION CHAR(1)
NOT NULL WITH
DEFAULT

Isolation level for the SQL statement:
R RR (repeatable read)
T RS (read stability)
S CS (cursor stability)
U UR (uncommitted read)
L KEEP UPDATE LOCKS for an RS isolation
X KEEP UPDATE LOCKS for an RR isolation
blank The WITH clause was not specified on this statement.

The isolation level is recorded in
SYSPACKAGE.ISOLATION and in
SYSPLAN.ISOLATION.

G

55. Rows in which the values of SEQNO, STMTNO, and SECTNO are zero are for internal use.

SYSIBM.SYSSTMT

Appendix D. DB2 catalog tables 1055

Column name Data type Description Use

STATUS CHAR(1)
NOT NULL WITH
DEFAULT

Status of binding the statement:
A Distributed - statement uses DB2 private protocol

access. The statement will be parsed and executed at
the server using defaults for input variables during
access path selection.

B Distributed - statement uses DB2 private protocol
access. The statement will be parsed and executed at
the server using values for input variables during access
path selection.

C Compiled - statement was bound successfully using
defaults for input variables during access path selection.

E Explain - statement is an SQL EXPLAIN statement. The
explain is done at bind time using defaults for input
variables during access path selection.

F Parsed - statement did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using values for input
variables during access path selection.

G Compiled - statement bound successfully, but REOPT is
specified. The statement will be rebound at execution
time using values for input variables during access path
selection.

H Parsed - statement is either a data definition statement
or a statement that did not bind successfully and
VALIDATE(RUN) was used. The statement will be
rebound at execution time using defaults for input
variables during access path selection. Data
manipulation statements use defaults for input variables
during access path selection.

I Indefinite - statement is dynamic. The statement will be
bound at execution time using defaults for input
variables during access path selection.

J Indefinite - statement is dynamic. The statement will be
bound at execution time using values for input variables
during access path selection.

K Control - CALL statement.
L Bad - the statement has some allowable error. The bind

continues but the statement cannot be executed.
blank The statement is non-executable, or was bound in a

DB2 release prior to Version 5.

S

ACCESSPATH CHAR(1)
NOT NULL WITH
DEFAULT

For static statements, indicates if the access path for the
statement is based on user-specified optimization hints. A value of
'H' indicates that optimization hints were used. A blank value
indicates that the access path was determined without the use of
optimization hints, or that there is no access path associated with
the statement.

For dynamic statements, the value is blank.

G

STMTNOI INTEGER
NOT NULL WITH
DEFAULT

The statement number of the statement in the source program. G

SECTNOI INTEGER
NOT NULL WITH
DEFAULT

The section number of the statement. G

EXPLAINABLE CHAR(1)
NOT NULL WITH
DEFAULT

Contains one of the following values:
Y Indicates that the SQL statement can be used with the

EXPLAIN function and may have rows describing its
access path in the userid.PLAN_TABLE.

N Indicates that the SQL statement does not have any
rows describing its access path in the
usid.PLAN_TABLE.

blank Indicates that the SQL statement was bound prior to
Version 7.

G

SYSIBM.SYSSTMT

1056 SQL Reference

||
|
|

|
||
|
|
||
|
|
||
|

|

Column name Data type Description Use

QUERYNO INTEGER
NOT NULL WITH
DEFAULT –1

The query number of the SQL statement in the source program.
SQL statements bound prior to Version 7 have a default value of
–1. Statements bound in Version 7 or later use the value specified
on the QUERYNO clause on SELECT, UPDATE, INSERT,
DELETE, EXPLAIN, and DECLARE CURSOR statements. If the
QUERYNO clause is not specified, the query number is set to the
statement number.

G

SYSIBM.SYSSTMT

Appendix D. DB2 catalog tables 1057

||
|
|

|
|
|
|
|
|
|

|

SYSIBM.SYSSTOGROUP table
Contains one row for each storage group.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the storage group. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the storage group. G

VCATNAME CHAR(8)
NOT NULL

Name of the integrated catalog facility catalog. G

Not used N

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the storage
group as determined by the last execution of the STOSPACE
utility.

G

SPCDATE CHAR(5)
NOT NULL

Date when the SPACE column was last updated, in the form
yyddd.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the storage
group.

G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If the STOSPACE utility was executed for the storage group, date
and time when STOSPACE was last executed.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the storage
group.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER STOGROUP statement was
executed for the storage group. If no ALTER STOGROUP
statement has been applied, ALTEREDTS has the value of
CREATEDTS.

G

SYSIBM.SYSSTOGROUP

1058 SQL Reference

SYSIBM.SYSSTRINGS table
Contains information about character conversion. Each row describes a conversion
from one coded character set to another.

If OS/390 Version 2 Release 9 (or a subsequent release) is installed, refer to
OS/390 C/C++ Programming Guide for information on the additional conversions
that are supported.

Column name Data type Description Use

INCCSID INTEGER
NOT NULL

The source CCSID for the character conversion represented by
this row.

G

OUTCCSID INTEGER
NOT NULL

The target CCSID for the character conversion represented by this
row.

G

TRANSTYPE CHAR(2)
NOT NULL

Indicates the nature of the conversion. Values can be:
GG GRAPHIC to GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED
MS EBCDIC MIXED to SBCS
PM ASCII MIXED to EBCDIC MIXED
PS ASCII MIXED to SBCS
SM SBCS to EBCDIC MIXED
SS SBCS to SBCS
MP EBCDIC MIXED to ASCII MIXED
PP ASCII MIXED to ASCII MIXED
SP SBCS to ASCII MIXED

G

ERRORBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as an error byte. Null
indicates the absence of an error byte.

S

SUBBYTE CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as a substitution character.
Null indicates the absence of a substitution character.

S

TRANSPROC CHAR(8)
NOT NULL WITH
DEFAULT

The name of a module or blanks. If IBMREQD is 'N', a nonblank
value is the name of a conversion procedure provided by the user.
If IBMREQD is 'Y', a nonblank value is the name of a DB2 module
that contains DBCS conversion tables. The first five characters of
the name of a user-provided conversion procedure must not be
'DSNXV'; these characters are used to distinguish user-provided
conversion procedures from DB2 modules that contain DBCS
conversion tables.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TRANSTAB VARCHAR(256)
FOR BIT DATA
NOT NULL WITH
DEFAULT

Either a conversion table or an empty string. S

Each row in the table must have a unique combination of values for its INCCSID,
OUTCCSID, and IBMREQD columns. Rows for which the value of IBMREQD is N
can be deleted, inserted, and updated subject to this uniqueness constraint and to
the constraints imposed by a VALIDPROC defined on the table. An inserted row
could have values for the INCCSID and OUTCCSID columns that match those of a
row for which the value of IBMREQD is Y. DB2 then uses the information in the
inserted row instead of the information in the IBM-supplied row. Rows for which the
value of IBMREQD is Y cannot be deleted, inserted, or updated. For information
about the use of inserted rows for character conversion, see Appendix C of DB2
Installation Guide.

SYSIBM.SYSSTRINGS

Appendix D. DB2 catalog tables 1059

DB2 has three methods for character conversions and applies them in the following
order:

1. Conversions specified by the various combinations of the INCCSID and
OUTCCSID columns in the SYSIBM.SYSSTRINGS catalog table

2. Conversions provided by OS/390 support for Unicode. The use of OS/390
support for Unicode requires OS/390 Version 2 Release 8 or later. For further
information, see OS/390 Support for Unicode: Using Conversion Services.

3. Conversions provided by the Language Environment. The use of Language
Environment capabilities requires OS/390 Version 2 Release 9 or later.

If none of these methods can be used for a particular character conversion, DB2
returns an error.

SYSIBM.SYSSTRINGS

1060 SQL Reference

|
|

|
|

|
|
|

|
|

|
|

SYSIBM.SYSSYNONYMS table
Contains one row for each synonym of a table or view.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Synonym for the table or view. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the synonym. G

TBNAME VARCHAR(18)
NOT NULL

Name of the table or view. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the synonym. G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the synonym.
The value is '0001-01.01.00.00.00.000000' for synonyms created
in a DB2 release prior to Version 5.

G

SYSIBM.SYSSYNONYMS

Appendix D. DB2 catalog tables 1061

SYSIBM.SYSTABAUTH table
Records the privileges that users hold on tables and views.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. Could also
be PUBLIC, or PUBLIC followed by an asterisk.56

G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user who holds the privileges or the name
of an application plan or package that uses the privileges. PUBLIC
for a grant to PUBLIC. PUBLIC followed by an asterisk for a grant
to PUBLIC AT ALL LOCATIONS.

G

GRANTEETYPE CHAR(1)
NOT NULL

Type of grantee:
blank An authorization ID
P An application plan or a package. The grantee is a

package if COLLID is not blank.

G

DBNAME CHAR(8)
NOT NULL

If the privileges were received from a user with DBADM, DBCTRL,
or DBMAINT authority, DBNAME is the name of the database on
which the GRANTOR has that authority. Otherwise, DBNAME is
blank.

G

SCREATOR CHAR(8)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a result of a
CREATE VIEW statement, SCREATOR is the authorization ID of
the owner of a table or view referred to in the CREATE VIEW
statement. Otherwise, SCREATOR is the same as TCREATOR.

G

STNAME VARCHAR(18)
NOT NULL

If the row of SYSIBM.SYSTABAUTH was created as a result of a
CREATE VIEW statement, STNAME is the name of a table or
view referred to in the CREATE VIEW statement. Otherwise,
STNAME is the same as TTNAME.

G

TCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table or view. G

TTNAME VARCHAR(18)
NOT NULL

Name of the table or view. G

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted, in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted, in the form hhmmssth. G

UPDATECOLS CHAR(1)
NOT NULL

The value of this column is blank if the value of UPDATEAUTH
applies uniformly to all columns of the table or view. The value is
an asterisk (*) if the value of UPDATEAUTH applies to some
columns but not to others. In this case, rows will exist in
SYSIBM.SYSCOLAUTH with matching timestamps and
PRIVILEGE = blank. These rows list the columns on which update
privileges have been granted.

G

ALTERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can alter the table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

56. PUBLIC followed by an asterisk (PUBLIC*) denotes PUBLIC AT ALL LOCATIONS. For the conditions where GRANTOR can be
PUBLIC or PUBLIC*, see Part 3 (Volume 1) of DB2 Administration Guide.

SYSIBM.SYSTABAUTH

1062 SQL Reference

Column name Data type Description Use

DELETEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can delete rows from the table or view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INDEXAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create indexes on the table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

INSERTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can insert rows into the table or view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SELECTAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can select rows from the table or view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

UPDATEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can update rows of the table or view:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

CHAR(16)
NOT NULL WITH
DEFAULT

Not used N

COLLID CHAR(18)
NOT NULL WITH
DEFAULT

If the GRANTEE is a package, its collection name. Otherwise, the
value is blank.

G

CONTOKEN CHAR(8) NOT NULL
WITH DEFAULT

If the GRANTEE is a package, the consistency token of the DBRM
from which the package was derived. Otherwise, the value is
blank.

S

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

REFERENCESAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create or drop referential constraints
in which the table is a parent.
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

REFCOLS CHAR(1)
NOT NULL WITH
DEFAULT

The value of this column is blank if the value of
REFERENCESAUTH applies uniformly to all columns of the table.
The value is an asterisk(*) if the value of REFERENCESAUTH
applies to some columns but not to others. In this case, rows will
exist in SYSIBM.SYSCOLAUTH with PRIVILEGE = R and
matching timestamps that list the columns on which reference
privileges have been granted.

G

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. G

TRIGGERAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can create triggers in which the table is
named as the subject table:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSIBM.SYSTABAUTH

Appendix D. DB2 catalog tables 1063

SYSIBM.SYSTABCONST table
Contains one row for each unique constraint (primary key or unique key) created in
DB2 for OS/390 and z/OS Version 7 or later.

Column name Data type Description Use

CONSTNAME VARCHAR(128)
NOT NULL

Name of the constraint. G

TBCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table on which the constraint
is defined.

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table on which the constraint is defined. G

CREATOR CHAR(8)
NOT NULL

Authorization ID under which the constraint was created. G

TYPE CHAR(1)
NOT NULL

Type of constraint:
P Primary key
U Unique key

G

IXOWNER CHAR(8)
NOT NULL

Owner of the index enforcing the constraint or blank if index has
not been created yet.

G

IXNAME VARCHAR(18)
NOT NULL

Name of the index enforcing the constraint or blank if index has
not been created yet.

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the statement to create the constraint was executed. G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the constraint. G

SYSIBM.SYSTABCONST

1064 SQL Reference

|

|
|

|||||

||
|
||

||
|
|
|
|

||
|
||

||
|
||

||
|
|
||
||

|

||
|
|
|
|

||
|
|
|
|

||
|
||

||
|
|

|
|
|

|

||
|
||

|
|

Column name Data type Description Use

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

LIMITKEY VARCHAR(512)
NOT NULL

The high value of the partition in external format. The value is 0 if
the table space is not partitioned.

G

FREEPAGE SMALLINT
NOT NULL

Number of pages loaded before a page is left as free space. G

PCTFREE SMALLINT
NOT NULL

Percentage of each page left as free space. G

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

C The table space partition is in a check pending status
and there are rows in the table that can violate
referential constraints, table check constraints, or both.

blank The table space is not a partition, or does not contain
rows that may violate referential constraints, table check
constraints, or both.

G

CHAR(4)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Not used N

SPACE INTEGER
NOT NULL WITH
DEFAULT

Number of kilobytes of DASD storage allocated to the table space
partition, as determined by the last execution of the STOSPACE
utility or RUNSTATS utility. The value is 0 if STOSPACE or
RUNSTATS has not been run. The value is updated by
STOSPACE if the table space is related to a storage group. The
value is updated by RUNSTATS if the utility is executed as
RUNSTATS TABLESPACE with UPDATE(ALL) or
UPDATE(SPACE). The value is -1 if the table space was defined
with the DEFINE NO clause, which defers the physical creation of
the data sets until data is first inserted into one of the partitions,
and data has yet to be inserted.

G

COMPRESS CHAR(1)
NOT NULL WITH
DEFAULT

Indicates the following:

v For a table space partition, whether the COMPRESS attribute
for the partition is YES.

v For a nonpartitioned table space, whether the COMPRESS
attribute is YES for the table space.

Values for the column can be:
Y Compression is defined for the table space
blank No compression

G

PAGESAVE SMALLINT
NOT NULL WITH
DEFAULT

Percentage of pages saved in the table space or partition as a
result of defining the table space with COMPRESS YES or other
compression routines. For example, a value of 25 indicates a
savings of 25 percent, so that the pages required are only 75
percent of what would be required without data compression. The
calculation includes overhead bytes for each row, the bytes
required for dictionary, and the bytes required for the current
FREEPAGE and PCTFREE specification for the table space or
partition. This calculation is based on an average row length, and
the result varies depending on the actual lengths of the rows. The
value is 0 if there are no savings from using data compression, or
if statistics have not been gathered. The value can be negative, if
for example, data compression causes an increase in the number
of pages in the data set.

S

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'.

G

SYSIBM.SYSTABLEPART

1066 SQL Reference

Column name Data type Description Use

GBPCACHE CHAR(1)
NOT NULL WITH
DEFAULT

Group buffer pool cache option specified for this table space or
table space partition.
A Changed and unchanged pages are cached in the group

buffer pool.
N No data is cached in the group buffer pool.
S Only changed system pages, such as space map pages

that do not contain actual data values, are cached in the
group buffer pool.

blank Only changed pages are cached in the group buffer
pool.

G

CHECKRID5B CHAR(5)
NOT NULL WITH
DEFAULT

Blank if the table or partition is not in a check pending status
(CHECKFLAG is blank), or if the table space is not partitioned.
Otherwise, the RID of the first row of the table space partition that
can violate referential constraints, table check constraints, or both;
or the value is X’0000000000’, indicating that any row can violate
referential constraints.

S

TRACKMOD CHAR(1)
NOT NULL WITH
DEFAULT

Whether to track the page modifications in the space map pages:
N No
blank Yes

G

EPOCH INTEGER
NOT NULL WITH
DEFAULT

A number that is incremented whenever an operation that changes
the location of rows in a table occurs.

G

SECQTYI INTEGER
NOT NULL WITH
DEFAULT

Secondary space allocation in units of 4KB storage. If a storage
group is not used, the value is zero.

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the table
space is a LOB table space, the number of LOBs in the table
space. The value is -1 if statistics have not been gathered.

G

IPREFIX CHAR(1)
NOT NULL WITH
DEFAULT 'I'

The first character of the instance qualifier for this index’s data set
name. 'I' or 'J' are the only valid characters for this field. The
default is 'I'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER INDEX statement was
executed for the index. If no ALTER INDEX statement has been
applied, the value is '0001-01-01.00.00.00.000000'.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Number of data sets. The value is -1 if statistics have not been
gathered. This is an updatable column.

G

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

SYSIBM.SYSTABLEPART

Appendix D. DB2 catalog tables 1067

#
#

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

SYSIBM.SYSTABLEPART_HIST table
Contains rows from SYSTABLEPART. Whenever rows are added or changed in
SYSTABLEPART, the rows are also written to the new history table. Rows in this
table can be inserted, updated, and deleted.

Column name Data type Description Use

PARTITION SMALLINT
NOT NULL

Partition number. 0 if table space is not partitioned. G

TSNAME CHAR(8)
NOT NULL

Name of the table space. G

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the table space. G

PQTY INTEGER
NOT NULL

Primary space allocation in units of 4KB storage blocks. The value
of this column is 0 if a storage group is not used. PQTY is based
on a value of PRIQTY in the appropriate CREATE or ALTER
TABLESPACE statement.

G

SECQTYI INTEGER
NOT NULL

Secondary space allocation in units of 4KB storage. If a storage
group is not used, the value is 0.

G

FARINDREF INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated far from their original
page. The value is -1 if statistics have not been gathered. Not
applicable if the table space is a LOB table space.

S

NEARINDREF INTEGER
NOT NULL WITH
DEFAULT -1

Number of rows that have been relocated near their original page.
The value is -1 if statistics have not been gathered. Not applicable
if the table space is a LOB table space.

S

PERCACTIVE SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of data from active tables.
The value is -1 if statistics have not been gathered. The value is
-2 if the table space is a LOB table space.

S

PERCDROP SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of space occupied by rows of dropped tables. The
value is -1 if statistics have not been gathered. The value is 0 for
segmented table spaces. Not applicable if the table is an auxiliary
table.

S

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of kilobytes of DASD storage allocated to the table space
partition. The value is -1 if statistics have not been gathered.

G

PAGESAVE SMALLINT
NOT NULL

Percentage of pages saved in the table space or partition as a
result of defining the table space with COMPRESS YES or other
compression routines. For example, a value of 25 indicates a
savings of 25 percent, so that the pages required are only 75
percent of what would be required without data compression. The
calculation includes overhead bytes for each row, the bytes
required for dictionary, and the bytes required for the current
FREEPAGE and PCTFREE specification for the table space or
partition. This calculation is based on an average row length, and
the result varies depending on the actual lengths of the rows. The
value is 0 if there are no savings from using data compression, or
if statistics have not been gathered. The value can be negative, if
for example, data compression causes an increase in the number
of pages in the data set.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’.

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of rows in the table space or partition, or if the table
space is a LOB table space, the number of LOBS in the table
space. The value is -1 if statistics have not been gathered.

S

EXTENTS INTEGER
NOT NULL WITH
DEFAULT -1

Number of data set extents. The value is -1 if statistics have not
been gathered.

G

SYSIBM.SYSTABLEPART_HIST

1068 SQL Reference

|

|
|
|

|||||

||
|
||

||
|
||

||
|
||

||
|
|
|
|
|

|

||
|
|
|
|

||
|
|

|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|
|

|

||
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|

Column name Data type Description Use

DSNUM INTEGER
NOT NULL WITH
DEFAULT -1

Data set number within the table space. For partitioned table
spaces, this value corresponds to the partition number for a single
partition copy, or 0 for a copy of an entire partitioned table space
or index space. The value is -1 if statistics have not been
gathered.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSTABLEPART_HIST

Appendix D. DB2 catalog tables 1069

||||

||
|
|

|
|
|
|
|

|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSTABLES table
Contains one row for each table, view, or alias.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the table, view, or alias. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table, view, or alias. G

TYPE CHAR(1)
NOT NULL

Type of object:
A Alias
G Created global temporary table
T Table
V View
X Auxiliary table

G

DBNAME CHAR(8)
NOT NULL

For a table, or a view of tables, the name of the database that
contains the table space named in TSNAME. For a created
temporary table, an alias, or a view of a view, the value is
DSNDB06.

G

TSNAME CHAR(8)
NOT NULL

For a table, or a view of one table, the name of the table space
that contains the table. For a view of more than one table, the
name of a table space that contains one of the tables. For a
created temporary table, the value is SYSPKAGE. Although
SYSPKAGE is used as the value, created temporary tables are
not stored in the SYSPKAGE table space.For a view of a view, the
value is SYSVIEWS. For an alias, it is SYSDBAUT.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database; 0 if the row describes a view,
alias, or created temporary table.

S

OBID SMALLINT
NOT NULL

Internal identifier of the table; 0 if the row describes a view, an
alias, or a created temporary table.

S

COLCOUNT SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if the row
describes an alias.

G

EDPROC CHAR(8)
NOT NULL

Name of the edit procedure; blank if the row describes a view or
alias or a table without an edit procedure.

G

VALPROC CHAR(8)
NOT NULL

Name of the validation procedure; blank if the row describes a
view or alias or a table without a validation procedure.

G

CLUSTERTYPE CHAR(1)
NOT NULL

Whether RESTRICT ON DROP applies:
blank No
Y Yes. Neither the table nor any table space or database

that contains the table can be dropped.

G

INTEGER
NOT NULL

Not used N

INTEGER
NOT NULL

Not used N

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the table appear. The
value is -1 if statistics have not been gathered, or the row
describes a view, an alias, a created temporary table, or an
auxiliary table. This is an updatable column.

S

PCTPAGES SMALLINT
NOT NULL

Percentage of active table space pages that contain rows of the
table. A page is termed active if it is formatted for rows, regardless
of whether it contains any. If the table space is segmented, the
percentage is based on the number of active pages in the set of
segments assigned to the table. The value is -1 if statistics have
not been gathered, or the row describes a view, alias, created
temporary table, or auxiliary table. This is an updatable column.

S

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT ON
statement.

G

SYSIBM.SYSTABLES

1070 SQL Reference

#
#
#

Column name Data type Description Use

PARENTS SMALLINT
NOT NULL

Number of relationships in which the table is a dependent. The
value is 0 if the row describes a view, an alias, or a created
temporary table.

G

CHILDREN SMALLINT
NOT NULL

Number of relationships in which the table is a parent. The value
is 0 if the row describes a view, an alias, or a created temporary
table.

G

KEYCOLUMNS SMALLINT
NOT NULL

Number of columns in the table’s primary key. The value is 0 if the
row describes a view, an alias, or a created temporary table.

G

RECLENGTH SMALLINT
NOT NULL

For user tables, the maximum length of any record in the table.
Length is 8+N+L, where:
v The number 8 accounts for the header (6 bytes) and the ID

map entry (2 bytes).
v N is 10 if the table has an edit procedure, or 0 otherwise.
v L is the sum of the maximum column lengths. In determining a

column’s maximum length, take into account whether the
column allows nulls and the data type of the column. If the
column can contain nulls and is not a LOB or ROWID column,
add 1 byte for a null indicator. Use 4 bytes for the length of a
LOB column and 19 bytes for the length of a ROWID column. If
the column has a varying-length data type (for example,
VARCHAR, CLOB, or BLOB), add 2 bytes for a length indicator.
For more information on column lengths, see “Data types” on
page 48.

The value is 0 if the row describes a view, alias, or auxiliary table.
For maximum row and record sizes, see “Maximum record size”
on page 624.

G

STATUS CHAR(1)
NOT NULL

Indicates the status of the table definition:
I The definition of the table is incomplete. The

TABLESTATUS column indicates the reason for the table
definition being incomplete.

X The table has a parent index and the table definition is
complete.

blank The table has no parent index, or is a catalog table, or
the row describes a view or alias. The definition of the
table, view, or alias is complete.

G

KEYOBID SMALLINT
NOT NULL

Internal DB2 identifier of the index that enforces uniqueness of the
table’s primary key; 0 if not applicable.

S

LABEL VARCHAR(30)
NOT NULL

The label as given by a LABEL ON statement; otherwise an empty
string.

G

CHECKFLAG CHAR(1)
NOT NULL WITH
DEFAULT

C The table space that contains the table is in a check
pending status and there are rows in the table that can
violate referential constraints, table check constraints, or
both.

blank The table contains no rows that violate referential
constraints, table check constraints, or both; or the row
describes a view, alias, or created temporary table.

G

CHAR(4)
NOT NULL WITH
DEFAULT
FOR BIT DATA

Not used N

AUDITING CHAR(1)
NOT NULL WITH
DEFAULT

Value of the audit option:
A AUDIT ALL
C AUDIT CHANGE
blank AUDIT NONE, or the row describes a view, an alias, or

a created temporary table.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the table, view,
or alias.

G

SYSIBM.SYSTABLES

Appendix D. DB2 catalog tables 1071

Column name Data type Description Use

LOCATION CHAR(16)
NOT NULL WITH
DEFAULT

Location name of the object of an alias. Blank for a table, a view,
or for an alias that was not defined with a three-part object name.

G

TBCREATOR CHAR(8)
NOT NULL WITH
DEFAULT

For an alias, the authorization ID of the owner of the referred to
table or view; blank otherwise.

G

TBNAME VARCHAR(18)
NOT NULL WITH
DEFAULT

For an alias, the name for the referred to table or view; blank
otherwise.

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the table,
view, or alias

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

For a table, the time when the latest ALTER TABLE statement was
applied. If no ALTER TABLE statement has been applied, or if the
row is for a view or alias, ALTEREDTS has the value of
CREATEDTS.

G

DATACAPTURE CHAR(1)
NOT NULL WITH
DEFAULT

Records the value of the DATA CAPTURE option for a table:
blank No
Y Yes

For a created temporary table, DATACAPTURE is always blank.

G

RBA1 CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was created. Otherwise, RBA1 is
X'000000000000', indicating that the log RBA is not known, or that
the object is a view, an alias, or a created temporary table. In a
data sharing environment, RBA1 is the LRSN (Log Record
Sequence Number) value.

S

RBA2 CHAR(6)
NOT NULL WITH
DEFAULT
FOR BIT DATA

The log RBA when the table was last altered. Otherwise, RBA2 is
X'000000000000' indicating that the log RBA is not known, or that
the object is a view, an alias, or a created temporary table. RBA1
will equal RBA2 if the table has not been altered. In a data sharing
environment, RBA2 is the LRSN (Log Record Sequence Number)
value.

S

PCTROWCOMP SMALLINT
NOT NULL WITH
DEFAULT

Percentage of rows compressed within the total number of active
rows in the table. This includes any row in a table space that is
defined with COMPRESS YES. The value is -1 if statistics have
not been gathered, or the row describes a view, alias, created
temporary table, or auxiliary table. This is an updatable column.

S

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'. For a created temporary
table, the value of STATSTIME is always the default value. This is
an updatable column.

G

CHECKS SMALLINT
NOT NULL WITH
DEFAULT

Number of check constraints defined on the table. The value is 0 if
the row describes a view, an alias, or a created temporary table,
or if no constraints are defined on the table.

G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Total number of rows in the table or total number of LOBs in an
auxiliary table. The value is -1 if statistics have not been gathered
or the row describes a view, alias, or created temporary table. This
is an updatable column.

S

CHECKRID5B CHAR(5)
NOT NULL WITH
DEFAULT

Blank if the table or partition is not in a check pending status
(CHECKFLAG is blank), if the table space is not partitioned, or if
the table is a created temporary table. Otherwise, the RID of the
first row of the table space partition that can violate referential
constraints, table check constraints, or both; or the value is
X’0000000000’, indicating that any row can violate referential
constraints.

S

SYSIBM.SYSTABLES

1072 SQL Reference

|
|
|

|
|
|

Column name Data type Description Use

ENCODING_SCHEME CHAR(1)
NOT NULL WITH
DEFAULT 'E'

Encoding scheme for tables, views, and local aliases:
E EBCDIC
A ASCII
U UNICODE
blank For remote aliases
The value is 'E' for tables in non work file databases and blank for
tables in work file databases created prior to Version 5 or the
default database, DSNDB04.

G

TABLESTATUS VARCHAR(10)
NOT NULL WITH
DEFAULT

Indicates the reason for an incomplete table definition:
L Definition is incomplete because an auxiliary table or

auxiliary index has not been defined for a LOB column.
P Definition is incomplete because the table lacks a

primary index.
R Definition is incomplete because the table lacks a

required index on a row ID.
U Definition is incomplete because the table lacks a

required index on a unique key.
blank Definition is complete.

G

NPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Number of pages used by the table. The value is -1 if statistics
have not been gathered. This is an updatable column.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average length of rows for the tables in the table space. If the
table space is compressed, the value is the compressed row
length. If the table space is not compressed, the value is the
uncompressed row length. The value is -1 if statistics have no t
been gathered.

G

RELCREATED CHAR(1)
NOT NULL WITH
DEFAULT

Release of DB2 that was used to create the object:
blank Created prior to Version 7.
K Created on Version 7

G

SYSIBM.SYSTABLES

Appendix D. DB2 catalog tables 1073

||

||
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|
|
|

|

||
|
|

|
||
||

|

SYSIBM.SYSTABLES_HIST table
Contains rows from SYSTABLES. Whenever rows are added or changed in
SYSTABLES, the rows are also written to the new history table. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the table, view, or alias. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table, view, or alias. G

DBNAME CHAR(8)
NOT NULL

For a table, or a view of tables, the name of the database that
contains the table space named in TSNAME. For a temporary
table, an alias, or a view of a view, the value is DSNDB06.

G

TSNAME CHAR(8)
NOT NULL

For a table, or a view of one table, the name of the table space
that contains the table. For a view of more than one table, the
name of a table space that contains one of the tables. For a
temporary table, the value is SYSPKAGE. For a view of a view,
the value is SYSVIEWS. For an alias, it is SYSDBAUT.

G

COLCOUNT SMALLINT
NOT NULL

Number of columns in the table or view. The value is 0 if the row
describes an alias.

G

PCTPAGES SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of active table space pages that contain rows of the
table. A page is termed active if it is formatted for rows, regardless
of whether it contains any. If the table space is segmented, the
percentage is based on the number of active pages in the set of
segments assigned to the table. The value is -1 if statistics have
not been gathered, or the row describes a view, alias, temporary
table, or auxiliary table.

S

PCTROWCOMP SMALLINT
NOT NULL WITH
DEFAULT -1

Percentage of rows compressed within the total number of active
rows in the table. This includes any row in a table space that is
defined with COMPRESS YES. The value is -1 if statistics have
not been gathered, or the row describes a view, alias, temporary
table, or auxiliary table.

G

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is ’0001-01-01.00.00.00.000000’. For a temporary table, the
value of STATSTIME is always the default value.

G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the table or total number of LOBs in an
auxiliary table. The value is -1 if statistics have not been gathered
or the row describes a view, alias, or temporary table.

S

NPAGESF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of pages on which rows of the partition appear. The
value is -1 if statistics have not been gathered.

S

AVGROWLEN INTEGER
NOT NULL WITH
DEFAULT -1

Average row length of the table specified in the table space. The
value is -1 if statistics have not been gathered.

G

SPACEF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Kilobytes of DASD storage. The value is -1 if statistics have not
been gathered. This is an updatable column.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSTABLES_HIST

1074 SQL Reference

|

|
|
|

|||||

||
|
||

||
|
||

||
|
|
|
|

|

||
|
|
|
|
|
|

|

||
|
|
|
|

||
|
|

|
|
|
|
|
|
|

|

||
|
|

|
|
|
|
|

|

||
|
|
|
|
|

|

||
|
|

|
|
|

|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

|

|
|

SYSIBM.SYSTABLESPACE table
Contains one row for each table space.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the table space. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the table space. G

DBNAME CHAR(8)
NOT NULL

Name of the database that contains the table space. G

DBID SMALLINT
NOT NULL

Internal identifier of the database which contains the table space. S

OBID SMALLINT
NOT NULL

Internal identifier of the table space file descriptor. S

PSID SMALLINT
NOT NULL

Internal identifier of the table space page set descriptor. S

BPOOL CHAR(8)
NOT NULL

Name of the buffer pool used for the table space. G

PARTITIONS SMALLINT
NOT NULL

Number of partitions of the table space; 0 if the table space is not
partitioned.

G

LOCKRULE CHAR(1)
NOT NULL

Lock size of the table space:
A Any
L Large object (LOB)
P Page
R Row
S Table space
T Table

G

PGSIZE SMALLINT
NOT NULL

Size of pages in the table space in kilobytes. G

ERASERULE CHAR(1)
NOT NULL

Whether the data sets are to be erased when dropped. The value
is meaningless if the table space is partitioned.
N No erase
Y Erase

G

STATUS CHAR(1)
NOT NULL

Availability status of the table space:
A Available
C Definition is incomplete because a partitioning index has

not been created.
P Table space is in a check pending status.
S Table space is in a check pending status with the scope

less than the entire table space.
T Definition is incomplete because no table has been

created.

G

IMPLICIT CHAR(1)
NOT NULL

Whether the table space was created implicitly:
N No
Y Yes

G

NTABLES SMALLINT
NOT NULL

Number of tables defined in the table space. G

NACTIVE INTEGER
NOT NULL

Number of active pages in the table space. A page is termed
active if it is formatted for rows, even if it currently contains none.
The value is 0 if statistics have not been gathered. This is an
updatable column.

S

CHAR(8)
NOT NULL

Not used N

CLOSERULE CHAR(1)
NOT NULL

Whether the data sets are candidates for closure when the limit on
the number of open data sets is reached.
N No
Y Yes

G

SYSIBM.SYSTABLESPACE

Appendix D. DB2 catalog tables 1075

Column name Data type Description Use

SPACE INTEGER
NOT NULL

Number of kilobytes of DASD storage allocated to the table space,
as determined by the last execution of the STOSPACE utility. The
value is 0 if the table space is not related to a storage group, or if
STOSPACE has not been run. If the table space is partitioned, the
value is the total kilobytes of DASD storage allocated to all
partitions that are storage group defined.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

VARCHAR(18)
NOT NULL

Internal use only I

CHAR(8)
NOT NULL

Internal use only I

SEGSIZE SMALLINT
NOT NULL WITH
DEFAULT

Number of pages in each segment of a segmented table space.
The value is 0 if the table space is not segmented.

G

CREATEDBY CHAR(8)
NOT NULL WITH
DEFAULT

Primary authorization ID of the user who created the table space. G

STATSTIME TIMESTAMP
NOT NULL WITH
DEFAULT

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics. The default
value is '0001-01-01.00.00.00.000000'. This is an updatable
column.

G

LOCKMAX INTEGER The maximum number of locks per user to acquire for the table or
table space before escalating to the next locking level.
0 Lock escalation does not occur.
n n, where n > 0, is the maximum number of locks (row,

page, or LOB locks for the table or table space) an
application process can acquire before lock escalation
occurs.

-1 Represents LOCKMAX SYSTEM. The value of field
LOCKS PER TABLE(SPACE) on installation panel
DSNTIPJ determines lock escalation. If the value of the
field is 0, lock escalation does not occur. If the value is
n, where n > 0, lock escalation occurs as it does for
LOCKMAX n.

G

TYPE CHAR(1)
NOT NULL WITH
DEFAULT

The type of table space:
blank The table space was created without any of the following

options: DSSIZE, LARGE, LOB, and MEMBER
CLUSTER.

I The table space was defined with the MEMBER
CLUSTER option and is not greater than 64 gigabytes.

K The table space was defined with the MEMBER
CLUSTER option and can be greater than 64 gigabytes.

L The table space can be greater than 64 gigabytes.
O The table space was defined with the LOB option (the

table space is a LOB table space).

G

CREATEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the CREATE statement was executed for the table
space. If the table space was created in a DB2 release prior to
Version 5, the value is '0001-01-01.00.00.00.000000'.

G

ALTEREDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the most recent ALTER TABLESPACE statement was
executed for the table space. If no ALTER TABLESPACE
statement has been applied, ALTEREDTS has the value of
CREATEDTS. If the index was created in a DB2 release prior to
Version 5, the value is '0001-01-01.00.00.00.000000'.

G

SYSIBM.SYSTABLESPACE

1076 SQL Reference

Column name Data type Description Use

ENCODING_SCHEME CHAR(1)
NOT NULL WITH
DEFAULT ’E’

Default encoding scheme for the table space:
E EBCDIC
A ASCII
U UNICODE
blank For tables spaces in a work file database or a TEMP

database (a database that was created AS TEMP, which
is for declared temporary tables.)

The value is 'E' for tables in non work file databases and blank for
tables in work file databases created prior to Version 5 or the
default database, DSNDB04.

G

SBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default SBCS CCSID for the table space. For a table space in a
TEMP database or a database created in a DB2 release prior to
Version 5, the value is 0.

G

DBCS_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default DBCS CCSID for the table space. For a table space in a
TEMP database or a database created in a DB2 release prior to
Version 5, the value is 0.

G

MIXED_CCSID INTEGER
NOT NULL WITH
DEFAULT

Default mixed CCSID for the table space. For a table space in a
TEMP database or ar database created in a DB2 release prior to
Version 5, the value is 0.

G

MAXROWS SMALLINT
NOT NULL
DEFAULT 255

The maximum number of rows that DB2 will place on a data page.
The default value is 255. For a LOB table space, the value is 0 to
indicate that the column is not applicable.

G

LOCKPART CHAR(1)
NOT NULL WITH
DEFAULT

Y LOCKPART YES is specified for the table space.
blank LOCKPART NO is specified, or LOCKPART is not

specified or not a partitioned table space.

G

LOG CHAR(1)
NOT NULL WITH
DEFAULT 'Y'

Whether the changes to a table space are to be logged.
N No, only applies to LOB table spaces
Y Yes

G

NACTIVEF FLOAT
NOT NULL WITH
DEFAULT -1

Number of active pages in the table space. A page is termed
active if it is formatted for rows, even if it currently contains none.
The value is -1 if statistics have not been gathered. This is an
updatable column.

S

DSSIZE INTEGER
NOT NULL WITH
DEFAULT

Maximum size of a data set in kilobytes. G

SYSIBM.SYSTABLESPACE

Appendix D. DB2 catalog tables 1077

||

SYSIBM.SYSTABSTATS table
Contains one row for each partition of a partitioned table space. Rows in this table
can be inserted, updated, and deleted.

Column name Data type Description Use

CARD INTEGER
NOT NULL

Total number of rows in the partition. S

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the partition appear. S

PCTPAGES SMALLINT
NOT NULL

Percentage of total active pages in the partition that contain rows
of the table.

S

NACTIVE INTEGER
NOT NULL

Number of active pages in the partition. S

PCTROWCOMP SMALLINT
NOT NULL

Percentage of rows compressed within the total number of active
rows in the partition. This includes any row in a table space that is
defined with COMPRESS YES.

S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

DBNAME CHAR(8)
NOT NULL

Database that contains the table space named in TSNAME. G

TSNAME CHAR(8)
NOT NULL

Table space that contains the table. G

PARTITION SMALLINT
NOT NULL

Partition number of the table space that contains the table. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table. G

NAME VARCHAR(18)
NOT NULL

Name of the table. G

CARDF FLOAT
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. S

SYSIBM.SYSTABSTATS

1078 SQL Reference

SYSIBM.SYSTABSTATS_HIST table
Whenever rows are added or changed in SYSTABSTATS, the rows are also written
to the new history table. Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

NPAGES INTEGER
NOT NULL

Total number of pages on which rows of the partition appear. S

STATSTIME TIMESTAMP
NOT NULL

If RUNSTATS updated the statistics, the date and time when the
last invocation of RUNSTATS updated the statistics.

G

DBNAME CHAR(8)
NOT NULL

Database that contains the table space named in TSNAME. G

TSNAME CHAR(8)
NOT NULL

Table space that contains the table. G

PARTITION SMALLINT
NOT NULL

Partition number of the table space that contains the table. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the table. G

NAME VARCHAR(18)
NOT NULL

Name of the table. G

CARDF FLOAT(8)
NOT NULL WITH
DEFAULT -1

Total number of rows in the partition. The value is -1 if statistics
have not been gathered.

S

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT ’N’

G

SYSIBM.SYSTABSTATS_HIST

Appendix D. DB2 catalog tables 1079

|

|
|

|||||

||
|
||

||
|
|
|
|

||
|
||

||
|
||

||
|
||

||
|
||

||
|
||

||
|
|

|
|
|

||
|
|

||

|
|

SYSIBM.SYSTRIGGERS table
Contains one row for each trigger.

Column name Data type Description Use

NAME CHAR(8)
NOT NULL

Name of the trigger and trigger package. G

SCHEMA CHAR(8)
NOT NULL

Schema of the trigger. This implicit or explicit qualifier for the
trigger name is also used for the collection ID of the trigger
package.

G

SEQNO SMALLINT
NOT NULL

Sequence number of this row; the first portion of the trigger
definition is in row 1, and successive rows have increasing
SEQNO values.

G

DBID SMALLINT
NOT NULL

Internal identifier of the database for the trigger. G

OBID SMALLINT
NOT NULL

Internal identifier of the trigger. G

OWNER CHAR(8)
NOT NULL

Authorization ID of the owner of the trigger. The value is set to the
current authorization ID (the plan or packge owner for static
CREATE TRIGGER statement; the current SQLID for a dynamic
CREATE TRIGGER statement).

G

CREATEDBY CHAR(8)
NOT NULL

Authorization ID of the owner of the trigger. The value is set to the
current authorization ID (the plan or packge owner for static
CREATE TRIGGER statement; the current SQLID for a dynamic
CREATE TRIGGER statement).

G

TBNAME VARCHAR(18)
NOT NULL

Name of the table to which this trigger applies. G

TBOWNER CHAR(8)
NOT NULL

Qualifier of the name of the table to which this trigger applies. G

TRIGTIME CHAR(1)
NOT NULL

Time when triggered actions are applied to the base table, relative
to the event that activated the trigger:
B Trigger is applied before the event.
A Trigger is applied after the event.

G

TRIGEVENT CHAR(1)
NOT NULL

Operation that activates the trigger:
I Insert
D Delete
U Update

G

GRANULARITY CHAR(1)
NOT NULL

Trigger is executed once per:
S Statement
R Row

G

CREATEDTS TIMESTAMP
NOT NULL

Time when the CREATE statement was executed for this trigger.
The time value is used in resolving functions, distinct types, and
stored procedures. It is also used to order the execution of
multiple triggers.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TEXT VARCHAR(3460)
NOT NULL

Full text of the CREATE TRIGGER statement. G

REMARKS VARCHAR(254)
NOT NULL

A character string provided by the user with the COMMENT ON
statement.

G

TRIGNAME VARCHAR(30)
NOT NULL

Unused G

SYSIBM.SYSTRIGGERS

1080 SQL Reference

||
|
||

SYSIBM.SYSUSERAUTH table
Records the system privileges that are held by users.

Column name Data type Description Use

GRANTOR CHAR(8)
NOT NULL

Authorization ID of the user who granted the privileges. G

GRANTEE CHAR(8)
NOT NULL

Authorization ID of the user that holds the privilege. Could also be
PUBLIC for a grant to PUBLIC.

G

CHAR(12)
NOT NULL

Internal use only I

DATEGRANTED CHAR(6)
NOT NULL

Date the privileges were granted; in the form yymmdd. G

TIMEGRANTED CHAR(8)
NOT NULL

Time the privileges were granted; in the form hhmmssth. G

CHAR(1)
NOT NULL

Not used N

AUTHHOWGOT CHAR(1)
NOT NULL

Authorization level of the user from whom the privileges were
received. This authorization level is not necessarily the highest
authorization level of the grantor.
blank Not applicable
C DBCTL
D DBADM
L SYSCTRL
M DBMAINT
S SYSADM

G

CHAR(1)
NOT NULL

Not used N

BINDADDAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the BIND subcommand with the
ADD option:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

BSDSAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the RECOVER BSDS
command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEDBAAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can create databases and automatically
receive DBADM authority over the new databases:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEDBCAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE DATABASE
statement to create new databases and automatically receive
DBCTRL authority over the new databases:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATESGAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can execute the CREATE STOGROUP
statement to create new storage groups:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

DISPLAYAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the DISPLAY commands:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSIBM.SYSUSERAUTH

Appendix D. DB2 catalog tables 1081

Column name Data type Description Use

RECOVERAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the RECOVER INDOUBT
command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOPALLAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOP command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

STOSPACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can use the STOSPACE utility:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSADMAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system administration authority:
blank Privilege is not held
G Privilege was granted with the GRANT option
Y Privilege was granted without the GRANT option

GRANTEE has the privilege with the GRANT option for a value of
either Y or G.

G

SYSOPRAUTH CHAR(1)
NOT NULL

Whether the GRANTEE has system operator authority:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

TRACEAUTH CHAR(1)
NOT NULL

Whether the GRANTEE can issue the START TRACE and STOP
TRACE commands:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

MON1AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC serviceability data:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

MON2AUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can obtain IFC data:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CREATEALIASAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE can execute the CREATE ALIAS
statement:
blank Privilege is not held
G Privilege held with the GRANT option
Y Privilege held without the GRANT option

G

SYSCTRLAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has SYSCTRL authority:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option
GRANTEE has the privilege with the GRANT option for a value of
either Y or G.

G

BINDAGENTAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has BINDAGENT privilege:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option
See “GRANT (system privileges)” on page 767 for a description of
the BINDAGENT privilege.

G

SYSIBM.SYSUSERAUTH

1082 SQL Reference

Column name Data type Description Use

ARCHIVEAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE is privileged to use the ARCHIVE LOG
command:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

CHAR(1)
NOT NULL WITH
DEFAULT

Not used N

GRANTEDTS TIMESTAMP
NOT NULL WITH
DEFAULT

Time when the GRANT statement was executed. The value is
'1985-04-01.00.00.00.000000' for the one installation row.

G

CREATETMTABAUTH CHAR(1)
NOT NULL WITH
DEFAULT

Whether the GRANTEE has CREATETMTABAUTH privilege:
blank Privilege is not held
G Privilege is held with the GRANT option
Y Privilege is held without the GRANT option

G

SYSIBM.SYSUSERAUTH

Appendix D. DB2 catalog tables 1083

SYSIBM.SYSVIEWDEP table
Records the dependencies of views on tables, functions, and other views.

Column name Data type Description Use

BNAME VARCHAR(18)
NOT NULL

Name of the object on which the view is dependent. If the object
type is a function (BTYPE='F'), the name is the specific name of
the function.

G

BCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of BNAME. For functions, it is the
schema name of the BNAME.

G

BTYPE CHAR(1)
NOT NULL

Type of object:
F Function
T Table
V View

G

DNAME VARCHAR(18)
NOT NULL

Name of the view. G

DCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the view. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

BSCHEMA CHAR(8)
NOT NULL WITH
DEFAULT

Schema of BNAME. G

DTYPE CHAR(1)
NOT NULL WITH
DEFAULT ’V’

Not used. N

SYSIBM.SYSVIEWDEP

1084 SQL Reference

||
|
|

||

SYSIBM.SYSVIEWS table
Contains one or more rows for each view.

Column name Data type Description Use

NAME VARCHAR(18)
NOT NULL

Name of the view. G

CREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the view. G

SEQNO SMALLINT
NOT NULL

Sequence number of this row; the first portion of the view is on
row one and successive rows have increasing values of SEQNO.

G

CHECK CHAR(1)
NOT NULL

Whether the WITH CHECK OPTION clause was specified in the
CREATE VIEW statement:
N No
C Yes with the cascaded semantic
Y Yes with the local semantic
The value is N if the view has no WHERE clause.

G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

TEXT VARCHAR(254)
NOT NULL

Text or portion of the text of the CREATE VIEW statement. G

PATHSCHEMAS VARCHAR(254)
NOT NULL WITH
DEFAULT

SQL path at the time the view was defined. The path is used to
resolve unqualified data type and function names used in the view
definition.

G

RELCREATED CHAR(1)
NOT NULL WITH
DEFAULT

Release of DB2 that was used to create the object:
blank Created prior to Version 7.
K Created on Version 7

G

TYPE CHAR(1)
NOT NULL WITH
DEFAULT ’V’

Not used N

SYSIBM.SYSVIEWS

Appendix D. DB2 catalog tables 1085

||
|
|

|
||
||

|

||
|
|

||

SYSIBM.SYSVOLUMES table
Contains one row for each volume of each storage group.

Column name Data type Description Use

SGNAME CHAR(8)
NOT NULL

Name of the storage group. G

SGCREATOR CHAR(8)
NOT NULL

Authorization ID of the owner of the storage group. G

VOLID CHAR(6)
NOT NULL

Serial number of the volume or * if SMS-managed. G

IBMREQD CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.SYSVOLUMES

1086 SQL Reference

SYSIBM.USERNAMES table
Each row in the table is used to carry out one of the following operations:
v Outbound ID translation
v Inbound ID translation and “come from” checking

Rows in this table can be inserted, updated, and deleted.

Column name Data type Description Use

TYPE CHAR(1)
NOT NULL

How the row is to be used:
O For outbound translation.
I For inbound translation and “come from” checking.

G

AUTHID CHAR(8)
NOT NULL WITH
DEFAULT

Authorization ID to be translated. Applies to any authorization ID if
blank.

G

LINKNAME CHAR(8)
NOT NULL

Identifies the VTAM or TCP/IP network locations associated with
this row. A blank value in this column indicates this name
translation rule applies to any TCP/IP or SNA partner.

If a nonblank LINKNAME is specified, one or both of the following
statements must be true:

v A row exists in SYSIBM.LUNAMES whose LUNAME matches
the value specified in the SYSIBM.USERNAMES LINKNAME
column. This row specifies the VTAM site associated with this
name translation rule.

v A row exists in SYSIBM.IPNAMES whose LINKNAME matches
the value specified in the SYSIBM.USERNAMES LINKNAME
column. This row specifies the TCP/IP host associated with this
name translation rule.

Inbound name translation and “come from” checking are not
performed for TCP/IP clients.

G

NEWAUTHID CHAR(8)
NOT NULL WITH
DEFAULT

Translated value of AUTHID. Blank specifies no translation. G

PASSWORD CHAR(8)
NOT NULL WITH
DEFAULT

Password to accompany an outbound request, if passwords are
not encrypted. If passwords are encrypted, or the row is for
inbound requests, the column is not used.

G

IBMREQD CHAR(1)
NOT NULL WITH
DEFAULT 'N'

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape. For all other values, see
“Release dependency indicators” on page 949.

G

SYSIBM.USERNAMES

Appendix D. DB2 catalog tables 1087

SYSIBM.USERNAMES

1088 SQL Reference

Appendix E. Using the catalog in database design

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Appendix H. Notices” on
page 1117.

Retrieving information from the catalog, using SQL statements, can be helpful in
designing your relational database. Appendix D of DB2 SQL Reference lists all the
DB2 catalog tables and the information stored in them.

The information in the catalog is vital to normal DB2 operation. As the examples in
this chapter show, you can retrieve catalog information, but changing it can have
serious consequences. Therefore you cannot execute INSERT or DELETE
statements that affect the catalog, and only a limited number of columns exist that
you can update. Exceptions to these restrictions are the SYSIBM.SYSSTRINGS,
SYSIBM.SYSPROCEDURES, SYSIBM.SYSCOLDIST, and
SYSIBM.SYSCOLDISTSTATS catalog tables, into which you can insert rows and
proceed to update and delete rows.

To execute the following examples, you need at least the SELECT privilege on the
appropriate catalog tables. Be careful when querying the DB2 catalog because
some catalog queries can result in long table space scans.

Retrieving catalog information about DB2 storage groups
SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES contain information about
DB2 storage groups and the volumes in those storage groups. The following query
shows what volumes are in a DB2 storage group, how much space is used, and
when that space was last calculated.
SELECT SGNAME,VOLID,SPACE,SPCDATE

FROM SYSIBM.SYSVOLUMES,SYSIBM.SYSSTOGROUP
WHERE SGNAME=NAME
ORDER BY SGNAME;

Retrieving catalog information about a table
SYSIBM.SYSTABLES contains a row for every table, view, and alias in your DB2
system. Each row tells you whether the object is a table, a view, or an alias, its
name, who created it, what database it belongs to, what table space it belongs to,
and other information. SYSTABLES also has a REMARKS column in which you can
store your own information about the table in question. See “Adding and retrieving
comments” on page 1095 for more information about how to do this.

This statement displays all the information for the project activity sample table:
SELECT *

FROM SYSIBM.SYSTABLES
WHERE NAME = 'PROJACT'
AND CREATOR = 'DSN8710';

Retrieving catalog information about aliases
SYSIBM.SYSTABLES describes the aliases you create. It has three columns used
only for aliases:

v LOCATION contains your subsystem’s location name for the remote system, if
the object on which the alias is defined resides at a remote subsystem.

© Copyright IBM Corp. 1982, 2001 1089

v TBCREATOR contains the owner of the table or view.

v TBNAME contains the name of the table or the view.

These sample user-defined functions make it easy to find information about aliases.
See DB2 SQL Reference for more information.

v TABLE_NAME returns the name of a table, view, or undefined object found after
resolving aliases for a user-specified object.

v TABLE_SCHEMA returns the schema name of a table, view, or undefined object
found after resolving aliases for a user-specified object.

v TABLE_LOCATION returns the location name of a table, view, or undefined
object found after resolving aliases for a user-specified object.

The NAME and CREATOR columns of SYSTABLES contain the name and owner of
the alias, and three other columns contain the following information for aliases:
v TYPE is A.
v DBNAME is DSNDB06.
v TSNAME is SYSDBAUT.

If similar tables at different locations have names with the same second and third
parts, you can retrieve the aliases for them with a query like this one:
SELECT LOCATION, CREATOR, NAME

FROM SYSIBM.SYSTABLES
WHERE TBCREATOR='DSN8710' AND TBNAME='EMP'

AND TYPE='A';

Retrieving catalog information about columns
SYSIBM.SYSCOLUMNS has one row for each column of every table and view.
Query it, for example, if you cannot remember the column names of a table or view.

This statement retrieves information about columns in the sample department table:
SELECT NAME, TBNAME, COLTYPE, LENGTH, NULLS, DEFAULT

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME='DEPT'
AND TBCREATOR = 'DSN8710';

The result is shown below; for each column, the following information about each
column is given:
v The column name
v The name of the table that contains it
v Its data type
v Its length attribute
v Whether it allows nulls
v Whether it allows default values
NAME TBNAME COLTYPE LENGTH NULLS DEFAULT
DEPTNO DEPT CHAR 3 N N
DEPTNAME DEPT VARCHAR 36 N N
MGRNO DEPT CHAR 6 Y N
ADMRDEPT DEPT CHAR 3 N N

For LOB columns, the LENGTH column shows the length of the pointer to the LOB.
For an example of a query showing the actual LOB length, see “Retrieving catalog
information about LOBs” on page 1093.

1090 SQL Reference

Retrieving catalog information about indexes
SYSIBM.SYSINDEXES contains a row for every index, including indexes on catalog
tables. This example retrieves a row about an index named XEMPL2.
SELECT *

FROM SYSIBM.SYSINDEXES
WHERE NAME = 'XEMPL2'
AND CREATOR = 'DSN8710';

A table can have more than one index. To display information about all the indexes
of a table, enter a statement like this one:
SELECT *

FROM SYSIBM.SYSINDEXES
WHERE TBNAME = 'EMP'
AND TBCREATOR = 'DSN8710';

Retrieving catalog information about views
For every view you create, DB2 stores descriptive information in several catalog
tables. The following actions occur in the catalog after the execution of CREATE
VIEW:

v A row is inserted into SYSIBM.SYSTABLES.

v A row is inserted into SYSIBM.SYSTABAUTH to record the owner’s privileges on
the view.

v For each column of the view, a row is inserted into SYSIBM.SYSCOLUMNS.

v One or more rows are inserted into the SYSIBM.SYSVIEWS table to record the
text of the CREATE VIEW statement.

v For each table or view on which the view is dependent, a row is inserted into
SYSIBM.SYSVIEWDEP to record the dependency.

v A row is inserted into SYSIBM.SYSVTREE, and possibly into
SYSIBM.SYSVLTREE, to record the parse tree of the view (an internal
representation of its logic).

Users might want a view of one or more of those tables, containing information
about their own tables and views.

Retrieving catalog information about authorizations
SYSIBM.SYSTABAUTH contains information about the privileges held by
authorization IDs over tables and views. Query it to learn who can access your
data. The following query retrieves the names of all users who have been granted
access to the DSN8710.DEPT table.
SELECT GRANTEE

FROM SYSIBM.SYSTABAUTH
WHERE TTNAME = 'DEPT'

AND GRANTEETYPE <> 'P'
AND TCREATOR = 'DSN8710';

GRANTEE is the name of the column that contains authorization IDs for users of
tables. TTNAME and TCREATOR specify the DSN8710.DEPT table. The clause
GRANTEETYPE <> ’P’ ensures that you retrieve the names only of users (not
application plans or packages) that have authority to access the table.

Appendix E. Using the catalog in database design 1091

Retrieving catalog information about parent keys
SYSIBM.SYSCOLUMNS identifies columns of a parent key in column KEYSEQ; a
nonzero value indicates the place of a column in the parent key. To retrieve the
creator, database, and names of the columns in the parent key of the sample
project activity table using SQL statements, execute:
SELECT TBCREATOR, TBNAME, NAME, KEYSEQ

FROM SYSIBM.SYSCOLUMNS
WHERE TBCREATOR = 'DSN8710'
AND TBNAME = 'PROJACT'
AND KEYSEQ > 0

ORDER BY KEYSEQ;

SYSIBM.SYSINDEXES identifies the primary index of a table by the value P in
column UNIQUERULE. To find the name, creator, database, and index space of the
primary index on the project activity table, execute:
SELECT TBCREATOR, TBNAME, NAME, CREATOR, DBNAME, INDEXSPACE

FROM SYSIBM.SYSINDEXES
WHERE TBCREATOR = 'DSN8710'
AND TBNAME = 'PROJACT'
AND UNIQUERULE = 'P';

Note: It is not always possible to retrieve information about unique keys created
before Version 7. Information can be retrieved for unique keys created in
Version 7 and for unique keys created before Version 7 if they are not
involved in referential integrity.

Retrieving catalog information about foreign keys
SYSIBM.SYSRELS contains information about referential constraints, and each
constraint is uniquely identified by the creator and name of the dependent table and
the constraint name (RELNAME). SYSIBM.SYSFOREIGNKEYS contains
information about the columns of the foreign key that defines the constraint. To
retrieve the constraint name, column names, and parent table names for every
relationship in which the project table is a dependent, execute:
SELECT A.CREATOR, A.TBNAME, A.RELNAME, B.COLNAME, B.COLSEQ,

A.REFTBCREATOR, A.REFTBNAME
FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B
WHERE A.CREATOR = 'DSN8710'
AND B.CREATOR = 'DSN8710'
AND A.TBNAME = 'PROJ'
AND B.TBNAME = 'PROJ'
AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLSEQ;

You can use the same tables to find information about the foreign keys of tables to
which the project table is a parent, as follows:
SELECT A.RELNAME, A.CREATOR, A.TBNAME, B.COLNAME, B.COLNO

FROM SYSIBM.SYSRELS A, SYSIBM.SYSFOREIGNKEYS B
WHERE A.REFTBCREATOR = 'DSN8710'
AND A.REFTBNAME = 'PROJ'
AND A.RELNAME = B.RELNAME

ORDER BY A.RELNAME, B.COLNO;

1092 SQL Reference

|
|
|
|

Retrieving catalog information about check pending
SYSIBM.SYSTABLESPACE indicates that a table space is in check-pending status
by a value in column STATUS: P if the entire table space has that status, S if the
status has a scope of less than the entire space. To list all table spaces whose use
is restricted for any reason, issue this command:
-DISPLAY DATABASE (*) SPACENAM(*) RESTRICT

To retrieve the names of table spaces in check-pending status only, with the names
of the tables they contain, execute:
SELECT A.DBNAME, A.NAME, B.CREATOR, B.NAME

FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLES B
WHERE A.DBNAME = B.DBNAME
AND A.NAME = B.TSNAME
AND (A.STATUS = 'P' OR A.STATUS = 'S')

ORDER BY 1, 2, 3, 4;

Retrieving catalog information about table check constraints
Information about check constraints is stored in the DB2 catalog in:

v SYSIBM.SYSCHECKS, which contains one row for each check constraint defined
on a table

v SYSIBM.SYSCHECKDEP, which contains one row for each reference to a
column in a check constraint

The following query shows all table check constraints on all tables named
SIMPDEPT and SIMPEMPL in order by column name within table owner. It shows
the name, authorization ID of the creator, and text for each constraint. A constraint
that uses more than one column name appears more than once in the result.
CREATE TABLE SIMPDEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(12) CONSTRAINT CC1 CHECK (DEPTNAME IS NOT NULL),
MGRNO CHAR(6),
MGRNAME CHAR(6));

SELECT A.TBOWNER, A.TBNAME, B.COLNAME,
A.CHECKNAME, A.CREATOR, A.CHECKCONDITION
FROM SYSIBM.SYSCHECKS A, SYSIBM.SYSCHECKDEP B
WHERE A.TBOWNER = B.TBOWNER

AND A.TBNAME = B.TBNAME
AND B.TBNAME = 'SIMPDEPT'
AND A.CHECKNAME = B.CHECKNAME
ORDER BY TBOWNER, TBNAME, COLNAME;

Retrieving catalog information about LOBs
SYSIBM.SYSAUXRELS contains information about the relationship between a base
table and an auxiliary table. For example, this query returns information about the
name of the LOB columns for the employee table and its associated auxiliary table
owner and name:
SELECT COLNAME, PARTITION, AUXTBOWNER, AUXTBNAME

FROM SYSIBM.SYSAUXRELS
WHERE TBNAME = 'EMP' AND TBOWNER = 'DSN8710';

Information about the length of a LOB is in the LENGTH2 column of
SYSCOLUMNS. You can query information about the length of the column as it is
returned to an application with this query:

Appendix E. Using the catalog in database design 1093

SELECT NAME, TBNAME, COLTYPE, LENGTH2, NULLS, DEFAULT
FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME='DEPT'
AND TBCREATOR = 'DSN8710';

Retrieving catalog information about user-defined functions and stored
procedures

SYSIBM.SYSROUTINES describes user-defined functions and stored procedures.
You can use this example to find packages with stored procedure that were created
prior to Version 6 and then migrated to SYSIBM.SYSROUTINES:
SELECT SCHEMA, NAME FROM SYSIBM.SYSROUTINES

WHERE ROUTINETYPE = 'P';

You can use this query to retrieve information about user-defined functions:
SELECT SCHEME, NAME, FUNCTION_TYPE, PARM_COUNT FROM SYSIBM.SYSROUTINES

WHERE ROUTINETYPE='F';

Stored procedures created before Version 6 have different authorization
requirements than those created in Version 6. See DB2 Application Programming
and SQL Guide for more information.

Retrieving catalog information about triggers
SYSIBM.SYSTRIGGERS contains information about the triggers defined in your
databases. To find all the triggers defined on a particular table, their characteristics,
and to determine the order they are fired in, issue this query:
SELECT DISTINCT SCHEMA, NAME, TRIGTIME, TRIGEVENT, GRANULARITY, CREADEDTS

FROM SYSIBM.SYSTRIGGERS
WHERE TBNAME = 'EMP' AND TBOWNER = 'DSN8710';

Issue this query to retrieve the text of a particular trigger:
SELECT TEXT, SEQNO

FROM SYSIBM.SYSTRIGGERS
WHERE SCHEMA = schema_name

AND NAME = trigger_name
ORDER BY SEQNO;

Or to determine triggers that must be rebound because they are invalidated after
objects are dropped or altered, issue this query:
SELECT COLLID, NAME

FROM SYSIBM.SYSPACKAGE
WHERE TYPE = 'T'

AND (VALID = 'N' OR OPERATIVE = 'N');

Retrieving catalog information about distinct types
Information about distinct types is in SYSIBM.SYSDATATYPES and
SYSIBM.SYSRESAUTH. This query returns the source of a distinct type:
SELECT SOURCESCHEMA, SOURCETYPE

FROM SYSIBM.SYSDATATYPES
WHERE NAME = 'MONEY' AND SCHEMA = 'USER1B';

Issue this query to determine privileges on distinct types for user USER1B:
SELECT GRANTOR, NAME, DATEGRANTED
FROM SYSIBM.SYSRESAUTH
WHERE OBTYPE = 'D' AND GRANTEE = 'USER1B';

1094 SQL Reference

Adding and retrieving comments
After you create a table, view, index, or alias, you can provide explanatory
information about it for future reference—information such as the purpose of the
table, who uses it, and anything unusual about it. You can store a comment about
the table or the view as a whole, and you can also include a comment for each
column. You can also create comments on user-defined functions, stored
procedures, and triggers. A comment must not exceed 254 bytes.

A comment is especially useful if your names do not clearly indicate the contents of
columns or tables. In that case, use a comment to describe the specific contents of
the column or table.

Below are two examples of COMMENT ON:
COMMENT ON TABLE DSN8710.EMP IS

'Employee table. Each row in this table represents one
employee of the company.';

COMMENT ON COLUMN DSN8710.PROJ.PRSTDATE IS
'Estimated project start date. The format is DATE.';

After you execute a COMMENT ON statement, your comments are stored in the
REMARKS column of SYSIBM.SYSTABLES or SYSIBM.SYSCOLUMNS. (Any
comment that is already present in the row is replaced by the new one.) The next
two examples retrieve the comments that are added by the previous COMMENT
ON statements.
SELECT REMARKS

FROM SYSIBM.SYSTABLES
WHERE NAME = 'EMP'
AND CREATOR = 'DSN8710';

SELECT REMARKS
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = 'PRSTDATE' AND TBNAME = 'PROJ'
AND TBCREATOR = 'DSN8710';

Verifying the accuracy of the database definition
You can use the catalog to verify the accuracy of your database definition. After you
have created the objects in your database, display selected information from the
catalog to check that no errors are in your CREATE statements. By examining the
catalog tables, you can verify that your tables are in the correct table space, your
table spaces are in the correct storage group, and so on.

Appendix E. Using the catalog in database design 1095

1096 SQL Reference

Appendix F. SQL reserved words

Table 78 on page 1098 lists the words that cannot be used as ordinary identifiers in
some contexts because they might be interpreted as SQL keywords. For example,
ALL cannot be a column name in a SELECT statement. Each word, however, can
be used as a delimited identifier in contexts where it otherwise cannot be used as
an ordinary identifier. For example, if the quotation mark (") is the escape character
that begins and ends delimited identifiers, “ALL” can appear as a column name in a
SELECT statement. In addition, some sections of this book might indicate words
that cannot be used in the specific context that is being described.

© Copyright IBM Corp. 1982, 2001 1097

Table 78. SQL reserved words

ADD
AFTER
ALL
ALLOCATE
ALLOW
ALTER
AND
ANY
APPLICATION
AS
ASSOCIATE
ASUTIME
AUDIT
AUX
AUXILIARY
BEFORE
BEGIN
BETWEEN
BUFFERPOOL
BY
CALL
CAPTURE
CASCADED
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLOSE
CLUSTER
COLLECTION
COLLID
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTINUE
CREATE
CURRENT
CURRENT_DATE
CURRENT_LC_CTYPE
CURRENT_PATH
CURRENT_TIME

CURRENT_TIMESTAMP
CURSOR
DATA
DATABASE
DAY
DAYS
DBINFO
DB2SQL
DECLARE
DEFAULT
DELETE
DESCRIPTOR
DETERMINISTIC
DISALLOW
DISTINCT
DO
DOUBLE
DROP
DSNHATTR
DSSIZE
DYNAMIC
EDITPROC
ELSE
ELSEIF
ENCODING
END
END-EXEC1

ERASE
ESCAPE
EXCEPT
EXECUTE
EXISTS
EXIT
EXTERNAL
FENCED
FETCH
FIELDPROC
FINAL
FOR
FROM
FULL
FUNCTION
GENERAL
GENERATED
GET
GLOBAL
GO

GOTO
GRANT
GROUP
HANDLER
HAVING
HOUR
HOURS
IF
IMMEDIATE
IN
INDEX
INHERIT
INNER
INOUT
INSENSITIVE
INSERT
INTO
IS
ISOBID
JAR
JAVA
JOIN
KEY
LABEL
LANGUAGE
LC_CTYPE
LEAVE
LEFT
LIKE
LOCAL
LOCALE
LOCATOR
LOCATORS
LOCK
LOCKMAX
LOCKSIZE
LONG
LOOP
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MODIFIES
MONTH
MONTHS
NO
NOT

NULL
NULLS
NUMPARTS
OBID
OF
ON
OPEN
OPTIMIZATION
OPTIMIZE
OR
ORDER
OUT
OUTER
PACKAGE
PARAMETER
PART
PATH
PIECESIZE
PLAN
PRECISION
PREPARE
PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM
PSID
QUERYNO
READS
REFERENCES
RELEASE
RENAME
REPEAT
RESTRICT
RESULT
RESULT_SET_LOCATOR
RETURN
RETURNS
REVOKE
RIGHT
ROLLBACK
RUN
SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS

SECQTY
SECURITY
SELECT
SENSITIVE
SET
SIMPLE
SOME
SOURCE
SPECIFIC
STANDARD
STATIC
STAY
STOGROUP
STORES
STYLE
SUBPAGES
SYNONYM
SYSFUN
SYSIBM
SYSPROC
SYSTEM
TABLE
TABLESPACE
THEN
TO
TRIGGER
UNDO
UNION
UNIQUE
UNTIL
UPDATE
USER
USING
VALIDPROC
VALUES
VARIANT
VCAT
VIEW
VOLUMES
WHEN
WHERE
WHILE
WITH
WLM
YEAR
YEARS

Note: 1COBOL only

IBM SQL has additional reserved words that DB2 for OS/390 and z/OS does not
enforce. Therefore, we suggest that you do not use these additional reserved words
as ordinary identifiers in names that have a continuing use. See IBM SQL
Reference for a list of the words.

SQL reserved words

1098 SQL Reference

Appendix G. Sample user-defined functions

This appendix describes the sample user-defined functions that are provided with
DB2. You can use the functions in the following ways:

v In your applications just as you would use other user-defined functions. Use the
functions only if installation job DSNTEJ2U, which prepares the functions for use,
has been run. Because the external programs that implement the logic of the
sample functions are written in C and C⁺⁺, the installation job requires that your
site has IBM C/C⁺⁺ for OS/390. For information on installation job DSNTEJ2U,
see DB2 Installation Guide.

v As examples to help you define and implement your own user-defined functions.
Data set prefix.SDSNSAMP contains the code for the sample functions.

Table 79 lists the sample user-defined functions. The detailed descriptions of the
functions that follow the table include their external program names and specific
names. The functions are in schema DSN8.

Table 79. DB2 sample user-defined functions

Function Name Description Page

ALTDATE Returns the current date or a user-specified date in a user-specified
format

1100

ALTTIME Returns the current time or a user-specified time in a user-specified
format

1103

CURRENCY Returns a floating-point number as a currency value 1105

DAYNAME Returns the name of the day of the week on which a date in ISO format
falls

1107

MONTHNAME Returns the name of the month in which a date in ISO format falls 1108

TABLE_LOCATION Returns the location name of a table or view after resolving any aliases 1109

TABLE_NAME Returns the unqualified name of a table or view after resolving any
aliases

1111

TABLE_SCHEMA Returns the schema name of a table or view after resolving any aliases 1113

WEATHER Shows how to use a user-defined table function to make non-relational
data available for SQL manipulation

1115

© Copyright IBM Corp. 1982, 2001 1099

ALTDATE

The schema is DSN8.

The ALTDATE function returns the current date in one of the following formats or
converts a user-specified date from one format to another:

D MONTH YY D MONTH YYYY DD MONTH YY DD MONTH YYYY
D.M.YY D.M.YYYY DD.MM.YY DD.MM.YYYY
D-M-YY D-M-YYYY DD-MM-YY DD-MM-YYYY
D/M/YY D/M/YYYY DD/MM/YY DD/MM/YYYY
M/D/YY M/D/YYYY MM/DD/YY MM/DD/YYYY
YY/M/D YYYY/M/D YY/MM/DD YYYY/MM/DD
YY.M.D YYYY.M.D YY.MM.DD YYYY.MM.DD

YYYY-M-D YYYY-MM-DD
YYYY-D-XX YYYY-DD-XX
YYYY-XX-D YYYY-XX-DD

where:

D: Suppress leading zero if the day is less than 10
DD: Retain leading zero if the day is less than 10
M: Suppress leading zero if the month is less than 10
MM: Retain leading zero if the month is less than 10
MONTH: Use English-language name of month
XX: Use a capital Roman numeral for month
YY: Use a year format without century
YYYY: Use a year format with century

The ALTDATE function demonstrates how you can create an overloaded
function—a function name for which there are multiple function instances. Each
instance supports a different parameter list enabling you to group related but
distinct functions in a single user-defined function. The ALTDATE function has two
forms.

Form 1: ALTDATE(output format)
This form of the function converts the current date into the specified format.

output format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

The result of the function has a VARCHAR data type and an actual length that
is not greater than 17 bytes.

Form 2: ALTDATE(input date, input format, output format)
This form of the function converts a date (input date) in one user-specified
format (input format) into another format (output format).

input date
The argument must be a date or a character string representation of a date
in the format specified by input format. The character string must have a
data type of VARCHAR and an actual length that is not greater than 17
bytes.

�� ALTDATE(output format)
input date, input format,

��

ALTDATE

1100 SQL Reference

input format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

output format
A character string that matches one of the 34 date formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 13 bytes.

The result of the function has a VARCHAR data type and an actual length that
is not greater than 17 bytes.

Table 80 shows the external and specific names for the two forms of the function,
which are based on the input to the function.

Table 80. External program and specific names for ALTDATE

Conversion
type

Input arguments External
name

Specific name

Current date Output format (VARCHAR) DSN8DUAD DSN8.DSN8DUADV

User-specified
date

Input date (VARCHAR)
Input format (VARCHAR)
Output format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDVVV

Input date (DATE)
Input format (VARCHAR)
Output format (VARCHAR)

DSN8DUCD DSN8.DSN8DUCDDVV

Example 1: Convert the current date into format ’DD MONTH YY’, a format that will
include any leading zero for the month, the name of the month in English, and the
year without the two digits for the century.

VALUES DSN8.ALTDATE('DD MONTH YY');

Example 2: Convert the current date into format ’D.M.YYYY’, a format that will
suppress any leading zero for the day or month and include the year with the
century.

VALUES DSN8.ALTDATE('D.M.YYYY');

Example 3: Convert the current date into format ’YYYY-XX-DD’, a format that will
include the century, the month of the year as a roman numeral, and the day of the
month with any leading zero.

VALUES DSN8.ALTDATE('YYYY-XX-DD');

Example 4: Convert a date in the format of ’DD MONTH YYYY’ to a date in the
format of ’YYYY/MM/DD’.

VALUES DSN8.ALTDATE('11 November 1918',
'DD MONTH YYYY',
'YYYY/MM/DD');

The result of the above example is 1918/11/18.

Example 5: Convert the date that employee 000130 was hired, a date in ISO
format, into the format of ’D.M.YY’.

SELECT FIRSTNME || ' '
|| LASTNAME || ' was hired on '

ALTDATE

Appendix G. Sample user-defined functions 1101

|| DSN8.ALTDATE(HIREDATE,
'YYYY-MM-DD',
'D.M.YY')

FROM EMP
WHERE EMPNO = '000130';

Assuming that the HIREDATE is 1971-07-28, the above example returns: DELORES
QUINTANA was hired on 28.7.71.

ALTDATE

1102 SQL Reference

ALTTIME

The schema is DSN8.

The ALTTIME function returns the current time in one of the following formats or
converts a user-specified time from one of the formats to another:

H:MM AM/PM HH:MM AM/PM
HH:MM:SS AM/PM HH:MM:SS
H.MM HH.MM
H.MM.SS HH.MM.SS

where:

H: Suppress leading zero if the hour is less than 10
HH: Retain leading zero if the hour is less than 10
M: Suppress leading zero if the minute is less than 10
MM: Retain leading zero if the minute is less than 10
AM/PM: Return time in 12-hour clock format, else 24-hour

The ALTTIME function demonstrates how you can create an overloaded function—a
function name for which there are multiple function instances. Each instance
supports a different parameter list enabling you to group related but distinct
functions in a single user-defined function. The ALTIME function has two forms.

Form 1: ALTTIME(output format)
This form of the function converts the current time into the specified format.

output format
A character string that matches one of the 8 time formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

The result of the function has a VARCHAR data type and an actual length that
is not greater than 11 bytes.

Form 2: ALTTIME(input time, input format, output format)
This form of the function converts a time (input date) in one user-specified
format (input format) into another format (output format).

input time
The argument must be a time or a character string representation of a time
in the format specified by input format. A character string argument must
have a data type of VARCHAR and an actual length that is not greater than
11 bytes.

input format
A character string that matches one of the 8 time formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

output format
A character string that matches one of the 8 time formats that are shown
above. The character string must have a data type of VARCHAR and an
actual length that is not greater than 14 bytes.

�� ALTTIME(output format)
input time, input format,

��

ALTTIME

Appendix G. Sample user-defined functions 1103

The result of the function has a VARCHAR data type and an actual length that
is not greater than 11 bytes.

Table 81 shows the external program and specific names for the two forms of the
function, which are based on the input to the function.

Table 81. External and specific names for ALTTIME

Conversion
type

Input arguments External
name

Specific name

Current time Output format (VARCHAR) DSN8DUAT DSN8.DSN8DUATV

User-specified
time

Input time (VARCHAR)
Input format (VARCHAR)
Output format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTVVV

Input date (TIME)
Input format (VARCHAR)
Output format (VARCHAR)

DSN8DUCT DSN8.DSN8DUCTTVV

Example 1: Convert the current time into a 12-hour clock format without seconds,
’H.MM AM/PM’.

VALUES DSN8.ALTTIME('H:MM AM/PM');

Example 2: Convert the current time into a 24-hour clock format without seconds,
’HH.MM’.

VALUES DSN8.ALTTIME('HH.MM');

Example 3: Convert the current time into a 24-hour clock format with seconds,
’HH.MM.SS’.

VALUES DSN8.ALTTIME('HH.MM.SS');

Example 4: Convert ’00:00:00’, a time in 24-hour clock format with seconds, to a
time in 12-hour clock format without seconds.

VALUES DSN8.ALTTIME('00:00:00','HH:MM:SS','HH:MM AM/PM');

The function returns 12:00 AM.

Example 5: Convert ’00:00:00’, a time in 24-hour clock format with seconds, to a
time in 12-hour clock format without seconds and without any leading zero on the
hour.

VALUES DSN8.ALTTIME('06.42.37','HH.MM.SS','H:MM AM/PM');

The function returns 6:42 AM.

ALTTIME

1104 SQL Reference

CURRENCY

The schema is DSN8.

The CURRENCY function returns a value that is formatted as an amount with a
user-specified currency symbol and, if specified, one of three symbols that indicate
debit or credit.

input amount
An expression that specifies the value to be formatted. The expression must be
a floating-point value.

currency symbol
A character string that specifies the currency symbol. The string must have a
data type of VARCHAR and an actual length that is not greater than 2 bytes.

credit/debit indicator
A character string that specifies the symbol that is included with the result to
indicate whether the value is negative or positive. The string must have a data
type of VARCHAR and an actual length that is not greater than 5 bytes. If
credit/debit indicator is not specified or is the value null, the result is formatted
without an indicator symbol. You can specify the following symbols:

CR/DB
Bank style. Negative input values are appended with "DB"; positive
input values are appended with "CR".

+/- Arithmetic style. Negative input values are prefixed with a minus sign
"-"; positive values are formatted without symbols.

(/) Accounting style. Negative input values are enclosed in parentheses "(
)"; positive values are formatted without symbols.

The result of the function is a character string with a data type of VARCHAR and an
actual length that is not greater than 19 bytes.

The CURRENCY function uses the C language functions strfmon to facilitate
formatting of money amounts and setlocale to initialize strfmon for local
conventions. If setlocale fails, the CURRENCY function returns an error.

Table 82 shows the external program and specific names for CURRENCY. The
specific names differ depending on the input to the function.

Table 82. External program and specific names for CURRENCY

Input arguments External name Specific name

input amount
currency symbol

DSN8DUCY DSN8.DSN8DUCYFV

input amount
currency symbol
debit/credit indicator

DSN8DUCY DSN8.DSN8DUCYFVV

�� CURRENCY(input amount, currency symbol)
, credit/debit indicator

��

CURRENCY

Appendix G. Sample user-defined functions 1105

Example 1: Express -1234.56 as an amount in US dollars, using the bank style
debit/credit indicator to indicate whether the value is negative or positive.

VALUES DSN8.CURRENCY(-1234.56,'$','CR/DB');

The result of the function is $1,234.56 DB.

Example 2: Express -1234.56 as an amount in Deutsche marks, using the
accounting style debit/credit indicator to indicate whether the value is negative or
positive.

VALUES DSN8.CURRENCY(-1234.56,'DM','(/)');

The result of the function is (DM 1,234.56).

Example 3: Express -1234.56 as an amount in Canadian dollars, using the
accounting style debit/credit indicator to indicate whether the value is negative or
positive.

VALUES DSN8.CURRENCY(-1234.56,'CD','+/-');

The result of the function is -CD 1,234.56.

CURRENCY

1106 SQL Reference

DAYNAME

The schema is DSN8.

The DAYNAME function returns the name of the weekday on which a given date
falls. The name is returned in English.

input date
A valid date or valid character string representation of a date. A character string
representation The string must have a data type of VARCHAR and an actual
length that is not greater than 10 bytes. The date must be in ISO format.

The result of the function is a character string with a data type of VARCHAR and an
actual length that is not greater than 9 bytes.

The DAYNAME function uses the IBM C⁺⁺ class IDate.

Table 83 shows the external and specific names for DAYNAME. The specific names
differ depending on the data type of the input argument.

Table 83. External and specific names for DAYNAME

Input arguments External name Specific name

input date (VARCHAR) DSN8EUDN DSN8.DSN8EUDNV

input date (DATE) DSN8EUDN DSN8.DSN8EUDND

Example 1: For the current date, find the day of the week.
VALUES DSN8.DAYNAME(CURRENT DATE);

Example 2: Find the day of the week on which leap year falls in the year 2000.
VALUES DSN8.DAYNAME('2000-02-29');

The result of the function is Tuesday.

Example 3: Find the day of the week on which Delores Quintana, employee number
000130, was hired.

SELECT FIRSTNME || ' '
|| LASTNAME || ' was hired on '
|| DSN8.DAYNAME(HIREDATE) || ', '
|| CHAR(HIREDATE)

FROM EMP
WHERE EMPNO = '000130';

The result of the function is DELORES QUINTANA was hired on Wednesday,
1971-07-28.

�� DAYNAME(input date) ��

DAYNAME

Appendix G. Sample user-defined functions 1107

MONTHNAME

The schema is DSN8.

The MONTHNAME function returns the calendar name of the month in which a
given date falls. The name is returned in English.

input date
A valid date or valid character string representation of a date. A character string
representation must have a data type of VARCHAR and an actual length that is
no greater than 10 bytes. The date must be in ISO format.

The result of the function is a character string with a data type of VARCHAR and an
actual length that is not greater than 9 bytes.

The MONTHNAME function uses the IBM C⁺⁺ class IDate.

Table 84 shows the external and specific names for MONTHNAME. The specific
names differ depending on the data type of the input argument.

Table 84. External and specific names for MONTHNAME

Input arguments External name Specific name

input date (VARCHAR) DSN8EUMN DSN8.DSN8EUMNV

input date (DATE) DSN8EUMN DSN8.DSN8EUMND

Example 1: For the current date, find the name of the month.
VALUES DSN8.MONTHNAME(CURRENT DATE);

Example 2: Find the month of the year in which Delores Quintana, employee
number 000130, was hired.

SELECT FIRSTNME || ' '
|| LASTNAME || ' was hired in the month of '
|| DSN8.MONTHNAME(HIREDATE)
|| CHAR(HIREDATE)

FROM EMP
WHERE EMPNO = '000130';

The result of the function is DELORES QUINTANA was hired in the month of July.

�� MONTHNAME(input date) ��

MONTHNAME

1108 SQL Reference

TABLE_LOCATION

The schema is DSN8.

The TABLE_LOCATION function searches for an object and returns the location
name of the object after any alias chains have been resolved. The starting point of
the resolution is the object that is specified by object name and, if specified, object
schema and location name. If the starting point does not refer to an alias, the
location name of the starting point is returned. The resulting name can be of a
table, view, or undefined object. The function returns a blank if there is no location
name.

object name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object schema
A character expression that represents the schema that is used to qualify the
value specified in object name before resolution. object schema must have a
data type of VARCHAR and an actual length that is no greater than 8 bytes.

If object schema is not specified or is null, the default schema is used for the
qualifier.

object location
A character expression that represents the location that is used to qualify the
value specified in object name before resolution. object location must have a
data type of VARCHAR and an actual length that is no greater than 16 bytes.

If object location is not specified or is null, the location name is equivalent to
“any”.

The result of the function has a data type of VARCHAR and an actual length that is
no greater than 16 bytes. If object name can be null, the result can be null; if object
name is null, the result is the null value.

Table 85 shows the external and specific names for TABLE_LOCATION. The
specific names differ depending on the number of input arguments to the function.

Table 85. External and specific names for TABLE_LOCATION

Input arguments External name Specific name

object name (VARCHAR) DSN8DUTI DSN8.DSN8DUTILV

object name (VARCHAR)
schema name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVV

object name (VARCHAR)
schema name (VARCHAR)
location name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTILVVV

�� TABLE_LOCATION(object name)
, object schema

, location name

��

TABLE_LOCATION

Appendix G. Sample user-defined functions 1109

Example: Assume that:

v DSN8.ALIAS_RS_SYSTABLES is an alias of SYSIBM.SYSTABLES at location
name REMOTE_SITE.

v The current SQLID is DSN8.

Use TABLE_LOCATION to find the location name where the base object for
ALIAS_OF_SYSTABLES resides.

VALUES DSN8.TABLE_LOCATION('ALIAS_RS_SYSTABLES');

The result of the function is REMOTE_SITE.

TABLE_LOCATION

1110 SQL Reference

TABLE_NAME

The schema is DSN8.

The TABLE_NAME function searches for an object and returns the unqualified
name of the object after any alias chains have been resolved. The starting point of
the resolution is the object that is specified by object name and, if specified, object
schema and location name. If the starting point does not refer to an alias, the
unqualified name of the starting point is returned. The resulting name can be of a
table, view, or undefined object.

object name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object schema
A character expression that represents the schema that is used to qualify the
value specified in object name before resolution. object schema must have a
data type of VARCHAR and an actual length that is no greater than 8 bytes.

If object schema is not specified or is null, the default schema is used for the
qualifier.

object location
A character expression that represents the location that is used to qualify the
value specified in object name before resolution. object location must have a
data type of VARCHAR and an actual length than is no greater than 16 bytes.

If object location is not specified or is null, the location name is equivalent to
“any”.

The result of the function has a data type of VARCHAR and an actual length that is
no greater than 18 bytes. If object name can be null, the result can be null; if object
name is null, the result is the null value.

Table 86 shows the external and specific names for TABLE_NAME. The specific
names differ depending on the number of input arguments to the function.

Table 86. External and specific names for TABLE_NAME

Input arguments External name Specific name

object name (VARCHAR) DSN8DUTI DSN8.DSN8DUTINV

object name (VARCHAR)
schema name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVV

object name (VARCHAR)
schema name (VARCHAR)
location name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTINVVV

�� TABLE_NAME(object name)
, object schema

, location name

��

TABLE_NAME

Appendix G. Sample user-defined functions 1111

Example: Assume that:

v DSN8.VIEW_OF_SYSTABLES is a view of SYSIBM.SYSTABLES.

v DSN8.ALIAS_OF_VIEW is an alias of DSN8.VIEW_OF_SYSTABLES.

v The current SQLID is DSN8.

Use TABLE_NAME to find the name of the base object for ALIAS_OF_VIEW.
VALUES DSN8.TABLE_NAME('ALIAS_OF_SYSVIEW');

The result of the function is VIEW_OF_SYSTABLES.

TABLE_NAME

1112 SQL Reference

TABLE_SCHEMA

The schema is DSN8.

The TABLE_SCHEMA function searches for an object and returns the schema
name of the object after any synonyms or alias chains have been resolved. The
starting point of the resolution is the object that is specified by objectname and
objectschema. If the starting point does not refer to an alias or synonym, the
schema name of the starting point is returned. The resulting schema name can be
of a table, view, or undefined object.

object name
A character expression that specifies the unqualified name to be resolved. The
unqualified name is usually of an existing alias. object name must have a data
type of VARCHAR and an actual length that is no greater than 18 bytes.

object schema
A character expression that represents the schema that is used to qualify the
value specified in object name before resolution. object schema must have a
data type of VARCHAR and an actual length that is no greater than 8 bytes.

If object schema is not specified or is null, the default schema is used for the
qualifier.

object location
A character expression that represents the location that is used to qualify the
value specified in object name before resolution. object location must have a
data type of VARCHAR (and an actual length that is no greater than 16 bytes.

If object location is not specified or is null, the location name is equivalent to
“any”.

The result of the function has a data type of VARCHAR and an actual length that is
no greater than 8 bytes. If object name can be null, the result can be null; if object
name is null, the result is the null value.

Table 87 shows the external and specific names for TABLE_SCHEMA. The specific
names differ depending on the number of input arguments.

Table 87. External and specific names for function TABLE_SCHEMA

Input arguments External name Specific name

object name (VARCHAR) DSN8DUTI DSN8.DSN8DUTISV

object name (VARCHAR)
schema name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVV

object name (VARCHAR)
schema name (VARCHAR)
location name (VARCHAR)

DSN8DUTI DSN8.DSN8DUTISVVV

�� TABLE_SCHEMA(object name)
, object schema

, location name

��

TABLE_SCHEMA

Appendix G. Sample user-defined functions 1113

Example: Assume that:

v DSN8.ALIAS_OF_SYSTABLES is an alias of SYSIBM.SYSTABLES.

v The current SQLID is DSN8.

Find the name of the schema of the base table for ALIAS_OF_SYSTABLES.
VALUES DSN8.TABLE_SCHEMA('ALIAS_OF_SYSTABLES');

The result of the function is SYSIBM.

TABLE_SCHEMA

1114 SQL Reference

WEATHER

The schema is DSN8.

Unlike the other sample user-defined functions, which are scalar functions,
WEATHER is a table function. WEATHER shows how to use a table function to
make non-relational data available to a client for manipulation by SQL. The
WEATHER function is provided primarily to help you design and implement table
functions.

The WEATHER function returns information from a TSO data set as a DB2 table.
The TSO data set contains sample weather statistics for various cities in the United
States. The statistics are returned to the client with a row for each city and a
column for each statistic.

input data set name
The name of the TSO data set that contains sample weather statistics. The
name is a character string with a data type of VARCHAR and an actual length
that is not greater than 44 bytes.

The result of the function is a DB2 table with the following columns. Each column
can be null.
name of city VARCHAR(30)
temperature in Fahrenheit INTEGER
percent humidity INTEGER
wind direction VARCHAR(5)
wind velocity INTEGER
barometer FLOAT
forecast VARCHAR(25)

The external program name for the function is DSN8DUWF, and the specific name
is DSN8.DSN8DUWF.

Example: Find the name of and the forecast for the cities that have a temperature
less than 25 degrees.

SELECT CITY, FORECAST
FROM TABLE(DSN8.WEATHER('prefix.SDSNIVPD(DSN8LWC)')) AS W
WHERE TEMP_IN_F < 25
ORDER BY CITY;

This example returns:
Bessemer, MI Slight chance of snow
Cheyenne, WY Continued cooling
Helena, MT Heavy snow
Pierre, SD Continued cold

�� WEATHER(input data set name) RETURNS TABLE(name of city)
temperature in fahrenheit
percent humidity
wind direction
wind velocity
barometer
forecast

��

WEATHER

Appendix G. Sample user-defined functions 1115

WEATHER

1116 SQL Reference

Appendix H. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1982, 2001 1117

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming interface information
This book is intended to help you to code SQL statements. This book primarily
documents General-use Programming Interface and Associated Guidance
Information provided by IBM DATABASE 2 Universal Database Server for OS/390
and z/OS (DB2 for OS/390 and z/OS).

General-use programming interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390 and z/OS.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this
IBM software product. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed to run
with new product releases or versions, or as a result of service.

1118 SQL Reference

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by an introductory statement to a chapter or section or by
the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AD/Cycle
AIX
APL2
AS/400
BookManager
CICS
CICS/ESA
CICS/MVS
COBOL/370
C/370
DATABASE 2
DataHub
DataPropagator
DB2
DB2 Connect
DB2 Extenders
DB2 Universal Database
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMS/MVS
DFSORT
Distributed Relational

Database Architecture
DRDA

Enterprise Storage Server
Enterprise System/3090
Enterprise System/9000
IBM
IMS
IMS/ESA
Language Environment
MVS/DFP
MVS/ESA
MVS/XA
Net.Data
Operating System/390
OS/2
OS/390
OS/400
Parallel Sysplex
QMF
RACF
RAMAC
SAA
SecureWay
SQL/DS
System/370
System/390
VTAM
WebSphere

Lotus and Notes are trademarks of Lotus Development Corporation in the United
States, or other countries, or both

Tivoli and NetView are trademarks of Tivoli Systems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Appendix H. Notices 1119

Other company, product, and service names may be trademarks or service marks
of others.

1120 SQL Reference

Glossary

The following terms and abbreviations are defined
as they are used in the DB2 library.

A
abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with DB2. A complete list
of DB2 abend reason codes and their explanations is
contained in DB2 Messages and Codes.

abnormal end of task (abend). Termination of a task,
job, or subsystem because of an error condition that
recovery facilities cannot resolve during execution.

access method services. The facility that is used to
define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that
is specified in SQL statements. An access path can be
indexed or sequential.

active log. The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer fit on the active log.

active member state. A state of a member of a data
sharing group. An active member is identified with a
group by XCF, which associates the member with a
particular task, address space, and MVS system. A
member that is not active has either a failed member
state or a quiesced member state.

after trigger. A trigger that is defined with the trigger
activation time AFTER.

agent. As used in DB2, the structure that associates
all processes that are involved in a DB2 unit of work. An
allied agent is generally synonymous with an allied
thread. System agents are units of work that process
independently of the allied agent, such as prefetch
processing, deferred writes, and service tasks.

alias. An alternative name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied thread. A thread that originates at the local DB2
subsystem and that can access data at a remote DB2
subsystem.

allocated cursor. A cursor that is defined for stored
procedure result sets by using the SQL ALLOCATE
CURSOR statement.

already verified. An LU 6.2 security option that allows
DB2 to provide the user’s verified authorization ID when
allocating a conversation. The user is not validated by
the partner DB2 subsystem.

ambiguous cursor. A database cursor that is not
defined with the FOR FETCH ONLY clause or the FOR
UPDATE OF clause, is not defined on a read-only result
table, is not the target of a WHERE CURRENT clause
on an SQL UPDATE or DELETE statement, and is in a
plan or package that contains either PREPARE or
EXECUTE IMMEDIATE SQL statements.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. American National Standards Institute.

API. Application programming interface.

APPL. A VTAM® network definition statement that is
used to define DB2 to VTAM as an application program
that uses SNA LU 6.2 protocols.

application. A program or set of programs that
performs a task; for example, a payroll application.

application-directed connection. A connection that
an application manages using the SQL CONNECT
statement.

application plan. The control structure that is
produced during the bind process. DB2 uses the
application plan to process SQL statements that it
encounters during statement execution.

application process. The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application programming interface (API). A
functional interface that is supplied by the operating
system or by a separately orderable licensed program
that allows an application program that is written in a
high-level language to use specific data or functions of
the operating system or licensed program.

application requester. The component on a remote
system that generates DRDA requests for data on
behalf of an application. An application requester
accesses a DB2 database server using the DRDA
application-directed protocol.

application server. The target of a request from a
remote application. In the DB2 environment, the

© Copyright IBM Corp. 1982, 2001 1121

|
|
|

|
|
|
|
|

|
|

application server function is provided by the distributed
data facility and is used to access DB2 data from
remote applications.

archive log. The portion of the DB2 log that contains
log records that have been copied from the active log.

ASCII. An encoding scheme that is used to represent
strings in many environments, typically on PCs and
workstations. Contrast with EBCDIC and Unicode.

attachment facility. An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute. A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee’s attributes.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges is
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

auxiliary index. An index on an auxiliary table in
which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside
the table in which they are defined. Contrast with base
table.

B
base table. (1) A table that is created by the SQL
CREATE TABLE statement and that holds persistent
data. Contrast with result table and temporary table.

(2) A table containing a LOB column definition. The
actual LOB column data is not stored with the base
table. The base table contains a row identifier for each
row and an indicator column for each of its LOB
columns. Contrast with auxiliary table.

base table space. A table space that contains base
tables.

basic predicate. A predicate that compares two
values.

before trigger. A trigger that is defined with the trigger
activation time BEFORE.

binary integer. A basic data type that can be further
classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes
where the size of the value ranges from 0 bytes to
2 GB−1. Such a string does not have an associated
CCSID.

binary string. A sequence of bytes that is not
associated with a CCSID. For example, the BLOB data
type is a binary string.

bind. The process by which the output from the SQL
precompiler is converted to a usable control structure,
often called an access plan, application plan, or
package. During this process, access paths to the data
are selected and some authorization checking is
performed. The types of bind are:

automatic bind. (More correctly, automatic rebind) A
process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL statements are
bound after they have been precompiled. All static
SQL statements are prepared for execution at the
same time.

bit data. Data that is character type CHAR or
VARCHAR and is not associated with a coded character
set.

BLOB. Binary large object.

BMP. Batch Message Processing (IMS).

bootstrap data set (BSDS). A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive
log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart and
checkpoint records.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy
the buffering requirements for one or more table spaces
or indexes.

built-in function. A function that DB2 supplies.
Contrast with user-defined function.

C
cache structure. A coupling facility structure that
stores data that can be available to all members of a
Sysplex. A DB2 data sharing group uses cache
structures as group buffer pools.

call level interface (CLI). A callable application
programming interface (API) for database access, which
is an alternative to using embedded SQL. In contrast to

archive log • call level interface (CLI)

1122 SQL Reference

|
|
|

|
|
|

embedded SQL, DB2 ODBC (which is based on the CLI
architecture) does not require the user to precompile or
bind applications, but instead provides a standard set of
functions to process SQL statements and related
services at run time.

cascade delete. The way in which DB2 enforces
referential constraints when it deletes all descendent
rows of a deleted parent row.

CASE expression. Allows an expression to be
selected based on the evaluation of one or more
conditions.

cast function. A function that is used to convert
instances of a (source) data type into instances of a
different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

castout. The DB2 process of writing changed pages
from a group buffer pool to DASD.

catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

CDRA. Character data representation architecture.

Character Data Representation Architecture
(CDRA). An architecture that is used to achieve
consistent representation, processing, and interchange
of string data.

character large object (CLOB). A sequence of bytes
representing single-byte characters or a mixture of
single- and double-byte characters where the size of the
value can be up to 2 GB−1. In general, character large
object values are used whenever a character string
might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent
bit data, single-byte characters, or a mixture of
single-byte and multibyte characters.

check constraint. See table check constraint.

check integrity. The condition that exists when each
row in a table conforms to the table check constraints
that are defined on that table. Maintaining check
integrity requires DB2 to enforce table check constraints
on operations that add or change data.

check pending. A state of a table space or partition
that prevents its use by some utilities and some SQL

statements because of rows that violate referential
constraints, table check constraints, or both.

checkpoint. A point at which DB2 records internal
status information on the DB2 log; the recovery process
uses this information if DB2 abnormally terminates.

CICS. Represents (in this publication) one of the
following products:

CICS Transaction Server for OS/390: Customer
Information Control System Transaction Server for
OS/390
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture
CICS/MVS: Customer Information Control
System/Multiple Virtual Storage

CICS attachment facility. A DB2 subcomponent that
uses the MVS subsystem interface (SSI) and cross
storage linkage to process requests from CICS to DB2
and to coordinate resource commitment.

clause. In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

CLI. Call level interface.

client. See requester.

CLOB. Character large object.

clustering index. An index that determines how rows
are physically ordered in a table space.

coded character set. A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID). A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding
scheme identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

code page. A set of assignments of characters to
code points. In EBCDIC, for example, the character 'A'
is assigned code point X'C1', and character 'B' is
assigned code point X'C2'. Within a code page, each
code point has only one specific meaning.

code point. In CDRA, a unique bit pattern that
represents a character in a code page.

collection. A group of packages that have the same
qualifier.

column. The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

cascade delete • column

Glossary 1123

|
|
|

|
|
|
|
|

|
|

column function. An operation that derives its result
by using values from one or more rows. Contrast with
scalar function.

"come from" checking. An LU 6.2 security option
that defines a list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command. A DB2 operator command or a DSN
subcommand. A command is distinct from an SQL
statement.

commit. The operation that ends a unit of work by
releasing locks so that the database changes that are
made by that unit of work can be perceived by other
processes.

commit point. A point in time when data is considered
consistent.

committed phase. The second phase of the multisite
update process that requests all participants to commit
the effects of the logical unit of work.

communications database (CDB). A set of tables in
the DB2 catalog that are used to establish
conversations with remote database management
systems.

comparison operator. A token (such as =, >, <) that
is used to specify a relationship between two values.

composite key. An ordered set of key columns of the
same table.

concurrency. The shared use of resources by more
than one application process at the same time.

connection. In SNA, the existence of a
communication path between two partner LUs that
allows information to be exchanged (for example, two
DB2 subsystems that are connected and
communicating by way of a conversation).

consistency token. A timestamp that is used to
generate the version identifier for an application. See
also version.

constant. A language element that specifies an
unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, table check constraint, and uniqueness
constraint.

conversation. Communication, which is based on LU
6.2 or Advanced Program-to-Program Communication
(APPC), between an application and a remote
transaction program over an SNA logical unit-to-logical
unit (LU-LU) session that allows communication while
processing a transaction.

correlated subquery. A subquery (part of a WHERE
or HAVING clause) that is applied to a row or group of
rows of a table or view that is named in an outer
subselect statement.

correlation ID. An identifier that is associated with a
specific thread. In TSO, it is either an authorization ID
or the job name.

correlation name. An identifier that designates a
table, a view, or individual rows of a table or view within
a single SQL statement. It can be defined in any FROM
clause or in the first clause of an UPDATE or DELETE
statement.

cost category. A category into which DB2 places cost
estimates for SQL statements at the time the statement
is bound. A cost estimate can be placed in either of the
following cost categories:
v A: Indicates that DB2 had enough information to

make a cost estimate without using default values.
v B: Indicates that some condition exists for which DB2

was forced to use default values for its estimate.

The cost category is externalized in the
COST_CATEGORY column of the
DSN_STATEMNT_TABLE when a statement is
explained.

created temporary table. A table that holds temporary
data and is defined with the SQL statement CREATE
GLOBAL TEMPORARY TABLE. Information about
created temporary tables is stored in the DB2 catalog,
so this kind of table is persistent and can be shared
across application processes. Contrast with declared
temporary table. See also temporary table.

CS. Cursor stability.

current data. Data within a host structure that is
current with (identical to) the data within the base table.

cursor. A named control structure that an application
program uses to point to a row of interest within some
set of rows, and to retrieve rows from the set, possibly
making updates or deletions.

cursor stability (CS). The isolation level that provides
maximum concurrency without the ability to read
uncommitted data. With cursor stability, a unit of work
holds locks only on its uncommitted changes and on the
current row of each of its cursors.

cycle. A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
table is a descendent of the last table. A self-referencing
table is a cycle with a single member.

D
DASD. Direct access storage device.

column function • DASD

1124 SQL Reference

database. A collection of tables, or a collection of table
spaces and index spaces.

database access thread. A thread that accesses data
at the local subsystem on behalf of a remote
subsystem.

database administrator (DBA). An individual who is
responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

database descriptor (DBD). An internal
representation of a DB2 database definition, which
reflects the data definition that is in the DB2 catalog.
The objects that are defined in a database descriptor
are table spaces, tables, indexes, index spaces, and
relationships.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and the access to the data
stored within it.

database request module (DBRM). A data set
member that is created by the DB2 precompiler and that
contains information about SQL statements. DBRMs are
used in the bind process.

database server. The target of a request from a local
application or an intermediate database server. In the
DB2 environment, the database server function is
provided by the distributed data facility to access DB2
data from local applications, or from a remote database
server that acts as an intermediate database server.

DATABASE 2 Interactive (DB2I). The DB2 facility that
provides for the execution of SQL statements, DB2
(operator) commands, programmer commands, and
utility invocation.

data currency. The state in which data that is
retrieved into a host variable in your program is a copy
of data in the base table.

data sharing. The ability of two or more DB2
subsystems to directly access and change a single set
of data.

data sharing group. A collection of one or more DB2
subsystems that directly access and change the same
data while maintaining data integrity.

data sharing member. A DB2 subsystem that is
assigned by XCF services to a data sharing group.

data type. An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

date. A three-part value that designates a day, month,
and year.

date duration. A decimal integer that represents a
number of years, months, and days.

datetime value. A value of the data type DATE, TIME,
or TIMESTAMP.

DBA. Database administrator.

DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and
contain descriptions of DB2 objects, such as tables,
views, and indexes.

DB2 command. An instruction to the DB2 subsystem
allowing a user to start or stop DB2, to display
information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2 for VSE & VM. The IBM DB2 relational database
management system for the VSE and VM operating
systems.

DB2I. DATABASE 2 Interactive.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

declarations generator (DCLGEN). A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that
conform to the table. The declarations are generated
from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

declared temporary table. A table that holds
temporary data and is defined with the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. Information
about declared temporary tables is not stored in the
DB2 catalog, so this kind of table is not persistent and
can only be used by the application process that issued
the DECLARE statement. Contrast with created
temporary table. See also temporary table.

default value. A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

deferred embedded SQL. SQL statements that are
neither fully static nor fully dynamic. Like static
statements, they are embedded within an application,
but like dynamic statements, they are prepared during
the execution of the application.

database • deferred embedded SQL

Glossary 1125

|
|
|
|
|
|

delete-connected. A table that is a dependent of table
P or a dependent of a table to which delete operations
from table P cascade.

delete rule. The rule that tells DB2 what to do to a
dependent row when a parent row is deleted. For each
relationship, the rule might be CASCADE, RESTRICT,
SET NULL, or NO ACTION.

delete trigger. A trigger that is defined with the
triggering SQL operation DELETE.

delimited identifier. A sequence of characters that are
enclosed within double quotation marks ("). The
sequence must consist of a letter followed by zero or
more characters, each of which is a letter, digit, or the
underscore character (_).

delimiter token. A string constant, a delimited
identifier, an operator symbol, or any of the special
characters that are shown in syntax diagrams.

dependent. An object (row, table, or table space) that
has at least one parent. The object is also said to be a
dependent (row, table, or table space) of its parent. See
parent row, parent table, parent table space.

dependent row. A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at
least one referential constraint.

descendent. An object that is a dependent of an
object or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another
row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of
another table, or a table that is a descendent of a
dependent table.

deterministic function. A user-defined function whose
result is dependent on the values of the input
arguments. That is, successive invocations with the
same input values produce the same answer.
Sometimes referred to as a not-variant function.
Contrast this with an not-deterministic function
(sometimes called a variant function), which might not
always produce the same result for the same inputs.

dimension. A data category such as time, products, or
markets. The elements of a dimension are referred to
as members. Dimensions offer a very concise, intuitive
way of organizing and selecting data for retrieval,
exploration, and analysis. See also dimension table.

dimension table. The representation of a dimension in
a star schema. Each row in a dimension table
represents all of the attributes for a particular member
of the dimension. See also dimension, star schema, and
star join.

direct access storage device (DASD). A device in
which access time is independent of the location of the
data.

directory. The DB2 system database that contains
internal objects such as database descriptors and
skeleton cursor tables.

distinct type. A user-defined data type that is
internally represented as an existing type (its source
type), but is considered to be a separate and
incompatible type for semantic purposes.

distributed data facility (DDF). A set of DB2
components through which DB2 communicates with
another RDBMS.

Distributed Relational Database Architecture
(DRDA). A connection protocol for distributed relational
database processing that is used by IBM’s relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

DNS. Domain name server.

domain name. The name by which TCP/IP
applications refer to a TCP/IP host within a TCP/IP
network.

domain name server (DNS). A special TCP/IP
network server that manages a distributed directory that
is used to map TCP/IP host names to IP addresses.

double-byte character large object (DBCLOB). A
sequence of bytes representing double-byte characters
where the size of the values can be up to 2 GB. In
general, double-byte character large object values are
used whenever a double-byte character string might
exceed the limits of the VARGRAPHIC type.

double-byte character set (DBCS). A set of
characters, which are used by national languages such
as Japanese and Chinese, that have more symbols
than can be represented by a single byte. Each
character is 2 bytes in length. Contrast with single-byte
character set and multibyte character set.

double-precision floating point number. A 64-bit
approximate representation of a real number.

DRDA. Distributed Relational Database Architecture.

DRDA access. An open method of accessing
distributed data that you can use to can connect to
another database server to execute packages that were
previously bound at the server location. You use the
SQL CONNECT statement or an SQL statement with a
three-part name to identify the server. Contrast with
private protocol access.

delete-connected • DRDA access

1126 SQL Reference

|
|
|
|
|
|

|
|
|
|
|
|
|

DSN. (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration. A number that represents an interval of time.
See date duration, labeled duration, and time duration.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program’s execution.

E
EA-enabled table space. A table space or index
space that is enabled for extended addressability and
that contains individual partitions (or pieces, for LOB
table spaces) that are greater than 4 GB.

EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme that is used to represent
character data in the OS/390, MVS, VM, VSE, and
OS/400® environments. Contrast with ASCII and
Unicode.

EDM pool. A pool of main storage that is used for
database descriptors, application plans, authorization
cache, application packages, and dynamic statement
caching.

embedded SQL. SQL statements that are coded
within an application program. See static SQL.

encoding scheme. A set of rules to represent
character data (ASCII, EBCDIC, or Unicode).

equijoin. A join operation in which the join-condition
has the form expression = expression.

escape character. The symbol that is used to enclose
an SQL delimited identifier. The escape character is the
double quotation mark ("), except in COBOL
applications, where the user assigns the symbol, which
is either a double quotation mark or an apostrophe (').

EUR. IBM European Standards.

exclusive lock. A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with share lock.

executable statement. An SQL statement that can be
embedded in an application program, dynamically
prepared and executed, or issued interactively.

exit routine. A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

exposed name. A correlation name or a table or view
name for which a correlation name is not specified.
Names specified in a FROM clause are exposed or
non-exposed.

expression. An operand or a collection of operators
and operands that yields a single value.

external function. A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function, built-in
function, and SQL function.

external procedure. An application program written by
a user that can be invoked with the SQL CALL
statement written in a programming language. Contrast
with SQL procedure.

external routine. A user-defined function or stored
procedure that is based on code that is written in an
external programming language.

F
failed member state. A state of a member of a data
sharing group. When a member fails, the XCF
permanently records the failed member state. This state
usually means that the member’s task, address space,
or MVS system terminated before the state changed
from active to quiesced.

fallback. The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

field procedure. A user-written exit routine that is
designed to receive a single value and transform
(encode or decode) it in any way the user can specify.

filter factor. A number between zero and one that
estimates the proportion of rows in a table for which a
predicate is true.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key. A column or set of columns in a
dependent table of a constraint relationship. The key
must have the same number of columns, with the same
descriptions, as the primary key of the parent table.
Each foreign key value must either match a parent key
value in the related parent table or be null.

free space. The total amount of unused space in a
page; that is, the space that is not used to store records
or control information is free space.

full outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of both
tables. See also join.

DSN • full outer join

Glossary 1127

|
|
|
|
|

|
|

fullselect. A subselect, a values-clause, or a number
of both that are combined by set operators. Fullselect
specifies a result table. If UNION is not used, the result
of the fullselect is the result of the specified subselect.

function. A mapping, embodied as a program (the
function body), invocable by means of zero or more
input values (arguments), to a single value (the result).
See also column function and scalar function.

Functions can be user-defined, built-in, or generated by
DB2. (See built-in function, cast function, external
function, sourced function, SQL function, and
user-defined function.)

function definer. The authorization ID of the owner of
the schema of the function that is specified in the
CREATE FUNCTION statement.

function implementer. The authorization ID of the
owner of the function program and function package.

function package. A package that results from binding
the DBRM for a function program.

function resolution. The process, internal to the
DBMS, by which a function invocation is bound to a
particular function instance. This process uses the
function name, the data types of the arguments, and a
list of the applicable schema names (called the SQL
path) to make the selection. This process is sometimes
called function selection.

function selection. See function resolution.

function signature. The logical concatenation of a
fully qualified function name with the data types of all of
its parameters.

G
GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

GBP-dependent. The status of a page set or page set
partition that is dependent on the group buffer pool.
Either read/write interest is active among DB2
subsystems for this page set, or the page set has
changed pages in the group buffer pool that have not
yet been cast out to DASD.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive mode
locks on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache
structure that is used by a data sharing group to cache
data and to ensure that the data is consistent for all
members.

group name. The MVS XCF identifier for a data
sharing group.

group restart. A restart of at least one member of a
data sharing group after the loss of either locks or the
shared communications area.

H
host. The set of programs and resources that are
available on a given TCP/IP instance.

host identifier. A name that is declared in the host
program.

host language. A programming language in which you
can embed SQL statements.

host program. An application program that is written
in a host language and that contains embedded SQL
statements.

host structure. In an application program, a structure
that is referenced by embedded SQL statements.

host variable. In an application program, an
application variable that is referenced by embedded
SQL statements.

I
ICF. Integrated catalog facility.

identity column. A column that provides a way for
DB2 to automatically generate a numeric value for each
row. The generated values are unique if cycling is not
used. Identity columns are defined with the AS
IDENTITY clause. Uniqueness of values can be
ensured by defining a single-column unique index using
the identity column. A table can have no more than one
identity column.

image copy. An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS. Information Management System.

independent. An object (row, table, or table space)
that is neither a parent nor a dependent of another
object.

index. A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access
to data and can enforce uniqueness on the rows in a
table.

index key. The set of columns in a table that is used
to determine the order of index entries.

index partition. A VSAM data set that is contained
within a partitioning index space.

fullselect • index partition

1128 SQL Reference

index space. A page set that is used to store the
entries of one index.

indicator column. A 4-byte value that is stored in a
base table in place of a LOB column.

indicator variable. A variable that is used to represent
the null value in an application program. If the value for
the selected column is null, a negative value is placed
in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if an individual unit of recovery is to
be committed or rolled back. At emergency restart, if
DB2 lacks the information it needs to make this
decision, the status of the unit of recovery is indoubt
until DB2 obtains this information from the coordinator.
More than one unit of recovery can be indoubt at
restart.

indoubt resolution. The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inner join. The result of a join operation that includes
only the matched rows of both tables being joined. See
also join.

inoperative package. A package that cannot be used
because one or more user-defined functions or
procedures that the package depends on were dropped.
Such a package must be explicitly rebound. Contrast
with invalid package.

insensitive cursor. A cursor that is not sensitive to
inserts, updates, or deletes that are made to the
underlying rows of a result table after the result table
has materialized.

insert trigger. A trigger that is defined with the
triggering SQL operation INSERT.

inter-DB2 R/W interest. A property of data in a table
space, index, or partition that has been opened by more
than one member of a data sharing group and that has
been opened for writing by at least one of those
members.

intermediate database server. The target of a
request from a local application or a remote application
requester that is forwarded to another database server.
In the DB2 environment, the remote request is
forwarded transparently to another database server if
the object that is referenced by a three-part name does
not reference the local location.

internal resource lock manager (IRLM). An MVS
subsystem that DB2 uses to control communication and
database locking.

invalid package. A package that depends on an
object (other than a user-defined function) that is
dropped. Such a package is implicitly rebound on
invocation. Contrast with inoperative package.

invariant character set. (1) A character set, such as
the syntactic character set, whose code point
assignments do not change from code page to code
page. (2) A minimum set of characters that is available
as part of all character sets.

IP address. A 4-byte value that uniquely identifies a
TCP/IP host.

IRLM. Internal resource lock manager.

ISO. International Standards Organization.

isolation level. The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, read stability, repeatable
read, and uncommitted read.

J
Japanese Industrial Standards Committee (JISC).
An organization that issues standards for coding
character sets.

Java® Archive (JAR). A file format that is used for
aggregating many files into a single file.

JIS. Japanese Industrial Standard.

join. A relational operation that allows retrieval of data
from two or more tables based on matching column
values. See also equijoin, full outer join, inner join, left
outer join, outer join, and right outer join.

K
KB. Kilobyte (1024 bytes).

key. A column or an ordered collection of columns
identified in the description of a table, index, or
referential constraint.

keyword. In SQL, a name that identifies an option
used in an SQL statement.

L
labeled duration. A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

large object (LOB). A sequence of bytes representing
bit data, single-byte characters, double-byte characters,
or a mixture of single- and double-byte characters. A
LOB can be up to 2 GB−1 byte in length. See also
BLOB, CLOB, and DBCLOB.

index space • large object (LOB)

Glossary 1129

|
|
|
|
|
|
|

leaf page. A page that contains pairs of keys and
RIDs and that points to actual data. Contrast with
nonleaf page.

left outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined, and that preserves the unmatched rows of the
first table. See also join.

L-lock. Logical lock.

LOB. Large object.

LOB locator. A mechanism that allows an application
program to manipulate a large object value in the
database system. A LOB locator is a fullword integer
value that represents a single LOB value. An application
program retrieves a LOB locator into a host variable and
can then apply SQL operations to the associated LOB
value using the locator.

LOB table space. A table space that contains all the
data for a particular LOB column in the related base
table.

local. A way of referring to any object that the local
DB2 subsystem maintains. A local table, for example, is
a table that is maintained by the local DB2 subsystem.
Contrast with remote.

local subsystem. The unique RDBMS to which the
user or application program is directly connected (in the
case of DB2, by one of the DB2 attachment facilities).

location. The unique name of a database server. An
application uses the location name to access a DB2
database server.

lock. A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is
held.

lock escalation. The promotion of a lock from a row,
page, or LOB lock to a table space lock because the
number of page locks that are concurrently held on a
given resource exceeds a preset limit.

locking. The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode. A representation for the type of access
that concurrently running programs can have to a
resource that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2
lock.

lock promotion. The process of changing the size or
mode of a DB2 lock to a higher level.

lock size. The amount of data controlled by a DB2
lock on table data; the value can be a row, a page, a
LOB, a partition, a table, or a table space.

log. A collection of records that describe the events
that occur during DB2 execution and that indicate their
sequence. The information thus recorded is used for
recovery in the event of a failure during DB2 execution.

logical index partition. The set of all keys that
reference the same data partition.

logical lock (L-lock). The lock type that transactions
use to control intra- and inter-DB2 data concurrency
between transactions. Contrast with physical lock
(P-lock).

logical unit. An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW). The processing that a
program performs between synchronization points.

log initialization. The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record sequence number (LRSN). A number that
DB2 generates and associates with each log record.
DB2 also uses the LRSN for page versioning. The
LRSNs that a particular DB2 data sharing group
generates form a strictly increasing sequence for each
DB2 log and a strictly increasing sequence for each
page across the DB2 group.

log truncation. A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data is to be written.

long string. A string whose actual length, or a
varying-length string whose maximum length, is greater
than 255 bytes or 127 double-byte characters. Any LOB
column, LOB host variable, or expression that evaluates
to a LOB is considered a long string.

LRSN. Log record sequence number.

LU name. Logical unit name, which is the name by
which VTAM refers to a node in a network. Contrast
with location name.

LUW. Logical unit of work.

M
member name. The MVS XCF identifier for a
particular DB2 subsystem in a data sharing group.

migration. The process of converting a DB2
subsystem with a previous release of DB2 to an
updated or current release. In this process, you can

leaf page • migration

1130 SQL Reference

|
|
|

acquire the functions of the updated or current release
without losing the data you created on the previous
release.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

mode name. A VTAM name for the collection of
physical and logical characteristics and attributes of a
session.

multisite update. Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

MVS. Multiple Virtual Storage.

MVS/ESA™. Multiple Virtual Storage/Enterprise
Systems Architecture.

MVS/XA™. Multiple Virtual Storage/Extended
Architecture.

N
nested table expression. A fullselect in a FROM
clause (surrounded by parentheses).

nonleaf page. A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

nonpartitioning index. Any index that is not a
partitioning index.

not-deterministic function. A user-defined function
whose result is not solely dependent on the values of
the input arguments. That is, successive invocations
with the same argument values can produce a different
answer. this type of function is sometimes called a
variant function. Contrast this with a deterministic
function (sometimes called a not-variant function), which
always produces the same result for the same inputs.

not-variant function. See deterministic function.

NUL. In C, a single character that denotes the end of
the string.

null. A special value that indicates the absence of
information.

NULLIF. A scalar function that evaluates two passed
expressions, returning either NULL if the arguments are
equal or the value of the first argument if they are not.

NUL-terminated host variable. A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator. In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
ODBC. Open Database Connectivity.

OBID. Data object identifier.

Open Database Connectivity (ODBC). A Microsoft®

database application programming interface (API) for C
that allows access to database management systems
by using callable SQL. ODBC does not require the use
of an SQL preprocessor. In addition, ODBC provides an
architecture that lets users add modules called
database drivers, which link the application to their
choice of database management systems at run time.
This means that applications no longer need to be
directly linked to the modules of all the database
management systems that are supported.

ordinary identifier. An uppercase letter followed by
zero or more characters, each of which is an uppercase
letter, a digit, or the underscore character. An ordinary
identifier must not be a reserved word.

ordinary token. A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

OS/390. Operating System/390®.

outer join. The result of a join operation that includes
the matched rows of both tables that are being joined
and preserves some or all of the unmatched rows of the
tables that are being joined. See also join.

overloaded function. A function name for which
multiple function instances exist.

P
package. An object containing a set of SQL
statements that have been statically bound and that is
available for processing. A package is sometimes also
called an application package.

package list. An ordered list of package names that
may be used to extend an application plan.

package name. The name of an object that is created
by a BIND PACKAGE or REBIND PACKAGE command.
The object is a bound version of a database request
module (DBRM). The name consists of a location name,
a collection ID, a package ID, and a version ID.

page. A unit of storage within a table space (4 KB, 8
KB, 16 KB, or 32 KB) or index space (4 KB). In a table
space, a page contains one or more rows of a table. In
a LOB table space, a LOB value can span more than
one page, but no more than one LOB value is stored on
a page.

mixed data string • page

Glossary 1131

page set. Another way to refer to a table space or
index space. Each page set consists of a collection of
VSAM data sets.

parallel I/O processing. A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel) on multiple data partitions.

parameter marker. A question mark (?) that appears
in a statement string of a dynamic SQL statement. The
question mark can appear where a host variable could
appear if the statement string were a static SQL
statement.

parameter-name. A long identifier that names a
parameter that can be referenced in a procedure or
user-defined function.

parent key. A primary key or unique key in the parent
table of a referential constraint. The values of a parent
key determine the valid values of the foreign key in the
referential constraint.

parent row. A row whose primary key value is the
foreign key value of a dependent row.

parent table. A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space. A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

partition. A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 GB, depending on the number of partitions in the
partitioned page set. All partitions of a given page set
have the same maximum size.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, which are
called members. Each partition can contain a program,
part of a program, or data. The term partitioned data set
is synonymous with program library.

partitioned table space. A table space that is
subdivided into parts (based on index key range), each
of which can be processed independently by utilities.

path. See SQL path.

PDS. Partitioned data set.

piece. A data set of a nonpartitioned page set.

plan. See application plan.

plan allocation. The process of allocating DB2
resources to a plan in preparation for execution.

plan name. The name of an application plan.

point of consistency. A time when all recoverable
data that an application accesses is consistent with
other data. The term point of consistency is
synonymous with sync point or commit point.

precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

predicate. An element of a search condition that
expresses or implies a comparison operation.

prefix. A code at the beginning of a message or
record.

prepare. The first phase of a two-phase commit
process in which all participants are requested to
prepare for commit.

prepared SQL statement. A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

primary authorization ID. The authorization ID used
to identify the application process to DB2.

primary index. An index that enforces the uniqueness
of a primary key.

primary key. In a relational database, a unique,
nonnull key that is part of the definition of a table. A
table cannot be defined as a parent unless it has a
unique key or primary key.

private connection. A communications connection
that is specific to DB2.

private protocol access. A method of accessing
distributed data by which you can direct a query to
another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private
connection of the application process. See also private
connection.

privilege. The capability of performing a specific
function, sometimes on a specific object. The term
includes:

explicit privileges, which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges, which accompany the ownership
of an object, such as the privilege to drop a
synonym one owns, or the holding of an authority,
such as the privilege of SYSADM authority to
terminate any utility job.

page set • privilege

1132 SQL Reference

privilege set. For the installation SYSADM ID, the set
of all possible privileges. For any other authorization ID,
the set of all privileges that are recorded for that ID in
the DB2 catalog.

process. In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an application
process, a process involves the execution of one or
more programs. The execution of an SQL statement is
always associated with some process. The means of
initiating and terminating a process are dependent on
the environment.

program. A single compilable collection of executable
statements in a programming language.

protected conversation. A VTAM conversation that
supports two-phase commit flows.

Q
QMF™. Query Management Facility.

query. A component of certain SQL statements that
specifies a result table.

query block. The part of a query that is represented
by one of the FROM clauses. Each FROM clause can
have multiple query blocks, depending on DB2’s internal
processing of the query.

quiesced member state. A state of a member of a
data sharing group. An active member becomes
quiesced when a STOP DB2 command takes effect
without a failure. If the member’s task, address space,
or MVS system fails before the command takes effect,
the member state is failed.

R
RACF. Resource Access Control Facility, which is a
component of the SecureWay Security Server for
OS/390.

RDB. Relational database.

RDBMS. Relational database management system.

RDBNAM. Relational database name.

read stability (RS). An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently executing
application processes. Under level RS, an application
that issues the same query more than once might read
additional rows that were inserted and committed by a
concurrently executing application process.

rebind. The creation of a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table that

your application accesses, you must rebind the
application in order to take advantage of that index.

record. The storage representation of a row or other
data.

recovery. The process of rebuilding databases after a
system failure.

recovery log. A collection of records that describes
the events that occur during DB2 execution and
indicates their sequence. The recorded information is
used for recovery in the event of a failure during DB2
execution.

referential constraint. The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity. The state of a database in which
all values of all foreign keys are valid. Maintaining
referential integrity requires the enforcement of
referential constraints on all operations that change the
data in a table upon which the referential constraints are
defined.

referential structure. A set of tables and relationships
that includes at least one table and, for every table in
the set, all the relationships in which that table
participates and all the tables to which it is related.

relational database (RDB). A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system (RDBMS).
A collection of hardware and software that organizes
and provides access to a relational database.

relational database name (RDBNAM). A unique
identifier for an RDBMS within a network. In DB2, this
must be the value in the LOCATION column of table
SYSIBM.LOCATIONS in the CDB. DB2 publications
refer to the name of another RDBMS as a LOCATION
value or a location name.

relationship. A defined connection between the rows
of a table or the rows of two tables. A relationship is the
internal representation of a referential constraint.

remote. Any object that is maintained by a remote
DB2 subsystem (that is, by a DB2 subsystem other than
the local one). A remote view, for example, is a view
that is maintained by a remote DB2 subsystem.
Contrast with local.

remote subsystem. Any RDBMS, except the local
subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and might even operate on the
same processor under the same MVS system.

privilege set • remote subsystem

Glossary 1133

reoptimization. The DB2 process of reconsidering the
access path of an SQL statement at run time; during
reoptimization, DB2 uses the values of host variables,
parameter markers, or special registers.

repeatable read (RR). The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows referenced by the
program cannot be changed by other programs until the
program reaches a commit point.

request commit. The vote that is submitted to the
prepare phase if the participant has modified data and
is prepared to commit or roll back.

requester. The source of a request to access data at
a remote server. In the DB2 environment, the requester
function is provided by the distributed data facility.

resource. The object of a lock or claim, which could
be a table space, an index space, a data partition, an
index partition, or a logical partition.

resource limit facility (RLF). A portion of DB2 code
that prevents dynamic manipulative SQL statements
from exceeding specified time limits. The resource limit
facility is sometimes called the governor.

result set. The set of rows that a stored procedure
returns to a client application.

result set locator. A 4-byte value that DB2 uses to
uniquely identify a query result set that a stored
procedure returns.

result table. The set of rows that are specified by a
SELECT statement.

right outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of the second
join operand. See also join.

RLF. Resource limit facility.

rollback. The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

routine. A term that refers to either a user-defined
function or a stored procedure.

row. The horizontal component of a table. A row
consists of a sequence of values, one for each column
of the table.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely
identifies a row. This value is stored with the row and
never changes.

row trigger. A trigger that is defined with the trigger
granularity FOR EACH ROW.

row-value-expression. A comma-separated list of
value expressions enclosed in parentheses.

RS. Read stability.

S
savepoint. A named entity that represents the state of
data and schemas at a particular point in time within a
unit of work. SQL statements exist to set a savepoint,
release a savepoint, and restore data and schemas to
the state that the savepoint represents. The restoration
of data and schemas to a savepoint is usually referred
to as rolling back to a savepoint.

SBCS. Single-byte character set.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments that are
enclosed in parentheses. Contrast with column function.

schema. A logical grouping for user-defined functions,
distinct types, triggers, and stored procedures. When an
object of one of these types is created, it is assigned to
one schema, which is determined by the name of the
object. For example, the following statement creates a
distinct type T in schema C:

CREATE DISTINCT TYPE C.T ...

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID. An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

segmented table space. A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

self-referencing constraint. A referential constraint
that defines a relationship in which a table is a
dependent of itself.

self-referencing table. A table with a self-referencing
constraint.

sensitive cursor. A cursor that is sensitive to changes
made to the database after the result table has
materialized.

sequential prefetch. A mechanism that triggers
consecutive asynchronous I/O operations. Pages are
fetched before they are required, and several pages are
read with a single I/O operation.

reoptimization • sequential prefetch

1134 SQL Reference

|
|
|

|
|
|
|
|
|
|

serial cursor. A cursor that can be moved only in a
forward direction.

server. The target of a request from a remote
requester. In the DB2 environment, the server function
is provided by the distributed data facility, which is used
to access DB2 data from remote applications.

share lock. A lock that prevents concurrently
executing application processes from changing data, but
not from reading data. Contrast with exclusive lock.

shift-in character. A special control character (X'0F')
that is used in EBCDIC systems to denote that the
subsequent bytes represent SBCS characters. See also
shift-out character.

shift-out character. A special control character (X'0E')
that is used in EBCDIC systems to denote that the
subsequent bytes, up to the next shift-in control
character, represent DBCS characters. See also shift-in
character.

short string. A string whose actual length, or a
varying-length string whose maximum length, is 255
bytes (or 127 double-byte characters) or less.
Regardless of length, a LOB string is not a short string.

sign-on. A request that is made on behalf of an
individual CICS or IMS application process by an
attachment facility to enable DB2 to verify that it is
authorized to use DB2 resources.

simple table space. A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS). A set of characters
in which each character is represented by a single byte.
Contrast with double-byte character set or multibyte
character set.

single-precision floating point number. A 32-bit
approximate representation of a real number.

SMF. System management facility.

SMS. Storage Management Subsystem.

socket. A callable TCP/IP programming interface that
is used by TCP/IP network applications to communicate
with remote TCP/IP partners.

sourced function. A function that is implemented by
another built-in or user-defined function that is already
known to the database manager. This function can be a
scalar function or a column (aggregating) function; it
returns a single value from a set of values (for example,
MAX or AVG). Contrast with built-in function, external
function, and SQL function.

source program. A set of host language statements
and SQL statements that is processed by an SQL
precompiler.

source type. An existing type that is used to internally
represent a distinct type.

space. A sequence of one or more blank characters.

special register. A storage area that DB2 defines for
an application process to use for storing information that
can be referenced in SQL statements. Examples of
special registers are USER and CURRENT DATE.

specific function name. A particular user-defined
function that is known to the database manager by its
specific name. Many specific user-defined functions can
have the same function name. When a user-defined
function is defined to the database, every function is
assigned a specific name that is unique within its
schema. Either the user can provide this name, or a
default name is used.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQLCA. SQL communication area.

SQL communication area (SQLCA). A structure that
is used to provide an application program with
information about the execution of its SQL statements.

SQLDA. SQL descriptor area.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQL/DS™. Structured Query Language/Data System.
This product is now obsolete and has been replaced by
DB2 for VSE & VM.

SQL escape character. The symbol that is used to
enclose an SQL delimited identifier. This symbol is the
double quotation mark ("). See also escape character.

SQL function. A user-defined function in which the
CREATE FUNCTION statement contains the source
code. The source code is a single SQL expression that
evaluates to a single value. The SQL user-defined
function can return only one parameter.

SQL ID. SQL authorization ID.

SQL path. An ordered list of schema names that are
used in the resolution of unqualified references to
user-defined functions, distinct types, and stored
procedures. In dynamic SQL, the current path is found
in the CURRENT PATH special register. In static SQL, it
is defined in the PATH bind option.

serial cursor • SQL path

Glossary 1135

|
|
|
|

|
|
|
|

SQL procedure. A user-written program that can be
invoked with the SQL CALL statement. Contrast with
external procedure.

SQL Processor Using File Input (SPUFI). SQL
Processor Using File Input. A facility of the TSO
attachment subcomponent that enables the DB2I user
to execute SQL statements without embedding them in
an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL routine. A user-defined function or stored
procedure that is based on code that is written in SQL.

SQL string delimiter. A symbol that is used to
enclose an SQL string constant. The SQL string
delimiter is the apostrophe ('), except in COBOL
applications, where the user assigns the symbol, which
is either an apostrophe or a double quotation mark (").

SSI. Subsystem interface (in MVS).

star join. A method of joining a dimension column of a
fact table to the key column of the corresponding
dimension table. See also join, dimension, and star
schema.

star schema. The combination of a fact table (which
contains most of the data) and a number of dimension
tables. See also star join, dimension, and dimension
table.

statement string. For a dynamic SQL statement, the
character string form of the statement.

statement trigger. A trigger that is defined with the
trigger granularity FOR EACH STATEMENT.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables that are
specified by the statement might change).

storage group. A named set of disks on which DB2
data can be stored.

stored procedure. A user-written application program
that can be invoked through the use of the SQL CALL
statement.

string. See character string or graphic string.

strong typing. A process that guarantees that only
user-defined functions and operations that are defined
on a distinct type can be applied to that type. For
example, you cannot directly compare two currency
types, such as Canadian dollars and U.S. dollars. But
you can provide a user-defined function to convert one
currency to the other and then do the comparison.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a
relational database.

subject table. The table for which a trigger is created.
When the defined triggering event occurs on this table,
the trigger is activated.

subpage. The unit into which a physical index page
can be divided.

subquery. A SELECT statement within the WHERE or
HAVING clause of another SQL statement; a nested
SQL statement.

subselect. That form of a query that does not include
ORDER BY clause, UPDATE clause, or UNION
operators.

substitution character. A unique character that is
substituted during character conversion for any
characters in the source program that do not have a
match in the target coding representation.

subsystem. A distinct instance of a relational
database management system (RDBMS).

sync point. See commit point.

synonym. In SQL, an alternative name for a table or
view. Synonyms can be used only to refer to objects at
the subsystem in which the synonym is defined.

syntactic character set. A set of 81 graphic
characters that are registered in the IBM registry as
character set 00640. This set was originally
recommended to the programming language community
to be used for syntactic purposes toward maximizing
portability and interchangeability across systems and
country boundaries. It is contained in most of the
primary registered character sets, with a few exceptions.
See also invariant character set.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

system conversation. The conversation that two DB2
subsystems must establish to process system
messages before any distributed processing can begin.

system-directed connection. A connection that an
RDBMS manages by processing SQL statements with
three-part names.

T
table. A named data object consisting of a specific
number of columns and some number of unordered
rows. See also base table or temporary table.

SQL procedure • table

1136 SQL Reference

|
|
|

table check constraint. A user-defined constraint that
specifies the values that specific columns of a base
table can contain.

table function. A function that receives a set of
arguments and returns a table to the SQL statement
that references the function. A table function can be
referenced only in the FROM clause of a subselect.

table locator. A mechanism that allows access to
trigger transition tables in the FROM clause of SELECT
statements, the subselect of INSERT statements, or
from within user-defined functions. A table locator is a
fullword integer value that represents a transition table.

table space. A page set that is used to store the
records in one or more tables.

TB. Terabyte (1 099 511 627 776 bytes).

TCP/IP. A network communication protocol that
computer systems use to exchange information across
telecommunication links.

TCP/IP port. A 2-byte value that identifies an end user
or a TCP/IP network application within a TCP/IP host.

temporary table. A table that holds temporary data;
for example, temporary tables are useful for holding or
sorting intermediate results from queries that contain a
large number of rows. The two kinds of temporary table,
which are created by different SQL statements, are the
created temporary table and the declared temporary
table. Contrast with result table. See also created
temporary table and declared temporary table.

thread. The DB2 structure that describes an
application’s connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

three-part name. The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name, separated by a period.

time. A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration. A decimal integer that represents a
number of hours, minutes, and seconds.

Time-Sharing Option (TSO). An option in MVS that
provides interactive time sharing from remote terminals.

timestamp. A seven-part value that consists of a date
and time. The timestamp is expressed in years, months,
days, hours, minutes, seconds, and microseconds.

trace. A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

transaction program name. In SNA LU 6.2
conversations, the name of the program at the remote
logical unit that is to be the other half of the
conversation.

transition table. A temporary table that contains all
the affected rows of the subject table in their state
before or after the triggering event occurs. Triggered
SQL statements in the trigger definition can reference
the table of changed rows in the old state or the new
state.

transition variable. A variable that contains a column
value of the affected row of the subject table in its state
before or after the triggering event occurs. Triggered
SQL statements in the trigger definition can reference
the set of old values or the set of new values.

trigger. A set of SQL statements that are stored in a
DB2 database and executed when a certain event
occurs in a DB2 table.

trigger activation. The process that occurs when the
trigger event that is defined in a trigger definition is
executed. Trigger activation consists of the evaluation of
the triggered action condition and conditional execution
of the triggered SQL statements.

trigger activation time. An indication in the trigger
definition of whether the trigger should be activated
before or after the triggered event.

trigger body. The set of SQL statements that is
executed when a trigger is activated and its triggered
action condition evaluates to true.

trigger cascading. The process that occurs when the
triggered action of a trigger causes the activation of
another trigger.

triggered action. The SQL logic that is performed
when a trigger is activated. The triggered action
consists of an optional triggered action condition and a
set of triggered SQL statements that are executed only
if the condition evaluates to true.

triggered action condition. An optional part of the
triggered action. This Boolean condition appears as a
WHEN clause and specifies a condition that DB2
evaluates to determine if the triggered SQL statements
should be executed.

triggered SQL statements. The set of SQL
statements that is executed when a trigger is activated
and its triggered action condition evaluates to true.
Triggered SQL statements are also called the trigger
body.

trigger granularity. A characteristic of a trigger, which
determines whether the trigger is activated:

Only once for the triggering SQL statement
Once for each row that the SQL statement modifies

table check constraint • trigger granularity

Glossary 1137

triggering event. The specified operation in a trigger
definition that causes the activation of that trigger. The
triggering event is comprised of a triggering operation
(INSERT, UPDATE, or DELETE) and a subject table on
which the operation is performed.

triggering SQL operation. The SQL operation that
causes a trigger to be activated when performed on the
subject table.

trigger package. A package that is created when a
CREATE TRIGGER statement is executed. The
package is executed when the trigger is activated.

TSO. Time-Sharing Option.

typed parameter marker. A parameter marker that is
specified along with its target data type. It has the
general form:

CAST(? AS data-type)

type 1 indexes. Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast with
type 2 indexes. As of Version 7, type 1 indexes are no
longer supported.

type 2 indexes. Indexes that are created on a release
of DB2 after Version 6 or that are specified as type 2
indexes in Version 4 or later.

U
UCS-2. Universal Character Set, coded in 2 octets,
which means that characters are represented in 16-bits
per character.

UDF. User-defined function.

UDT. User-defined data type. In DB2 for OS/390 and
z/OS, the term distinct type is used instead of
user-defined data type. See distinct type.

uncommitted read (UR). The isolation level that
allows an application to read uncommitted data.

underlying view. The view on which another view is
directly or indirectly defined.

Unicode. A standard that parallels the ISO-10646
standard. Several implementations of the Unicode
standard exist, all of which have the ability to represent
a large percentage of the characters contained in the
many scripts that are used throughout the world.

union. An SQL operation that combines the results of
two select statements. Unions are often used to merge
lists of values that are obtained from several tables.

unique constraint. An SQL rule that no two values in
a primary key, or in the key of a unique index, can be
the same.

unique index. An index which ensures that no
identical key values are stored in a table.

unit of recovery. A recoverable sequence of
operations within a single resource manager, such as
an instance of DB2. Contrast with unit of work.

unit of work. A recoverable sequence of operations
within an application process. At any time, an
application process is a single unit of work, but the life
of an application process can involve many units of
work as a result of commit or rollback operations. In a
multisite update operation, a single unit of work can
include several units of recovery. Contrast with unit of
recovery.

untyped parameter marker. A parameter marker that
is specified without its target data type. It has the form
of a single question mark (?).

update trigger. A trigger that is defined with the
triggering SQL operation UPDATE.

UR. Uncommitted read.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is
defined to DB2 by using the CREATE FUNCTION
statement and that can be referenced thereafter in SQL
statements. A user-defined function can be an external
function, a sourced function, or an SQL function.
Contrast with built-in function.

UT. Utility-only access.

UTF-8. Unicode Transformation Format, 8-bit encoding
form, which is designed for ease of use with existing
ASCII-based systems. The CCSID value for data in
UTF-8 format is 1208. DB2 for OS/390 and z/OS
supports UTF-8 in mixed data fields.

UTF-16. Unicode Transformation Format, 16-bit
encoding form, which is designed to provide code
values for over a million characters and a superset of
UCS-2. The CCSID value for data in UTF-16 format is
1200. DB2 for OS/390 and z/OS supports UTF-16 in
graphic data fields.

V
value. The smallest unit of data that is manipulated in
SQL.

variable. A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

variant function. See not-deterministic function.

varying-length string. A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

triggering event • varying-length string

1138 SQL Reference

|
|
|
|
|

version. A member of a set of similar programs,
DBRMs, packages, or LOBs.

A version of a program is the source code that is
produced by precompiling the program. The program
version is identified by the program name and a
timestamp (consistency token).
A version of a DBRM is the DBRM that is produced
by precompiling a program. The DBRM version is
identified by the same program name and timestamp
as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.
A version of a LOB is a copy of a LOB value at a
point in time. The version number for a LOB is
stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one or
more tables. A view can include all or some of the
columns that are contained in tables on which it is
defined.

view check option. An option that specifies whether
every row that is inserted or updated through a view
must conform to the definition of that view. A view check
option can be specified with the WITH CASCADED
CHECK OPTION, WITH CHECK OPTION, or WITH
LOCAL CHECK OPTION clauses of the CREATE VIEW
statement.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed- and
varying-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.

VSAM. Virtual storage access method.

VTAM. Virtual Telecommunication Access Method (in
MVS).

Z
z/OS. An operating system for the eServer product line
that supports 64-bit real storage.

version • z/OS

Glossary 1139

1140 SQL Reference

Bibliography

DB2 Universal Database Server for OS/390 and
z/OS Version 7 product libraries:

DB2 for OS/390 and z/OS

v DB2 Administration Guide, SC26-9931

v DB2 Application Programming and SQL Guide,
SC26-9933

v DB2 Application Programming Guide and
Reference for Java, SC26-9932

v DB2 Command Reference, SC26-9934

v DB2 Data Sharing: Planning and Administration,
SC26-9935

v DB2 Data Sharing Quick Reference Card,
SX26-3846

v DB2 Diagnosis Guide and Reference,
LY37-3740

v DB2 Diagnostic Quick Reference Card,
LY37-3741

v DB2 Image, Audio, and Video Extenders
Administration and Programming, SC26-9947

v DB2 Installation Guide, GC26-9936

v DB2 Licensed Program Specifications,
GC26-9938

v DB2 Master Index, SC26-9939

v DB2 Messages and Codes, GC26-9940

v DB2 ODBC Guide and Reference, SC26-9941

v DB2 Reference for Remote DRDA Requesters
and Servers, SC26-9942

v DB2 Reference Summary, SX26-3847

v DB2 Release Planning Guide, SC26-9943

v DB2 SQL Reference, SC26-9944

v DB2 Text Extender Administration and
Programming, SC26-9948

v DB2 Utility Guide and Reference, SC26-9945

v DB2 What's New? GC26-9946

v DB2 XML Extender for OS/390 and z/OS
Administration and Programming, SC27-9949

v DB2 Program Directory, GI10-8182

DB2 Administration Tool

v DB2 Administration Tool for OS/390 and z/OS
User’s Guide, SC26-9847

DB2 Buffer Pool Tool

v DB2 Buffer Pool Tool for OS/390 and z/OS
User’s Guide and Reference, SC26-9306

DB2 DataPropagator™

v DB2 UDB Replication Guide and Reference,
SC26-9920

Net.Data®

The following books are available at this Web site:
http://www.ibm.com/software/net.data/library.html
v Net.Data Library: Administration and

Programming Guide for OS/390 and z/OS
v Net.Data Library: Language Environment

Interface Reference
v Net.Data Library: Messages and Codes
v Net.Data Library: Reference

DB2 PM for OS/390

v DB2 PM for OS/390 Batch User's Guide,
SC27-0857

v DB2 PM for OS/390 Command Reference,
SC27-0855

v DB2 PM for OS/390 Data Collector Application
Programming Interface Guide, SC27-0861

v DB2 PM for OS/390 General Information,
GC27-0852

v DB2 PM for OS/390 Installation and
Customization, SC27-0860

v DB2 PM for OS/390 Messages, SC27-0856

v DB2 PM for OS/390 Online Monitor User's
Guide, SC27-0858

v DB2 PM for OS/390 Report Reference Volume
1, SC27-0853

v DB2 PM for OS/390 Report Reference Volume
2, SC27-0854

v DB2 PM for OS/390 Using the Workstation
Online Monitor, SC27-0859

v DB2 PM for OS/390 Program Directory,
GI10-8223

Query Management Facility (QMF)
v Query Management Facility: Developing QMF

Applications, SC26-9579
v Query Management Facility: Getting Started

with QMF on Windows, SC26-9582
v Query Management Facility: High Peformance

Option User’s Guide for OS/390 and z/OS,
SC26-9581

v Query Management Facility: Installing and
Managing QMF on OS/390 and z/OS,
GC26-9575

© Copyright IBM Corp. 1982, 2001 1141

v Query Management Facility: Installing and
Managing QMF on Windows, GC26-9583

v Query Management Facility: Introducing QMF,
GC26-9576

v Query Management Facility: Messages and
Codes, GC26-9580

v Query Management Facility: Reference,
SC26-9577

v Query Management Facility: Using QMF,
SC26-9578

Ada/370
v IBM Ada/370 Language Reference, SC09-1297
v IBM Ada/370 Programmer's Guide, SC09-1414
v IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2®

v APL2 Programming Guide, SH21-1072
v APL2 Programming: Language Reference,

SH21-1061
v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400®

The following books are available at this Web site:
www.as400.ibm.com/infocenter
v DB2 Universal Database for AS/400 Database

Programming
v DB2 Universal Database for AS/400

Performance and Query Optimization
v DB2 Universal Database for AS/400 Distributed

Data Management
v DB2 Universal Database for AS/400 Distributed

Data Programming
v DB2 Universal Database for AS/400 SQL

Programming Concepts
v DB2 Universal Database for AS/400 SQL

Programming with Host Languages
v DB2 Universal Database for AS/400 SQL

Reference

BASIC
v IBM BASIC/MVS Language Reference,

GC26-4026
v IBM BASIC/MVS Programming Guide,

SC26-4027

BookManager® READ/MVS
v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

SAA® AD/Cycle® C/370™

v IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1841

v IBM SAA AD/Cycle C/370 Programming Guide
for Language Environment/370, SC09-1840

v IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

v SAA CPI C Reference, SC09-1308

Character Data Representation Architecture
v Character Data Representation Architecture

Overview, GC09-2207
v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS/ESA
v CICS/ESA Application Programming Guide,

SC33-1169
v CICS External Interfaces Guide, SC33-1944
v CICS for MVS/ESA Application Programming

Reference, SC33-1170
v CICS for MVS/ESA CICS-RACF Security Guide,

SC33-1185
v CICS for MVS/ESA CICS-Supplied

Transactions, SC33-1168
v CICS for MVS/ESA Customization Guide,

SC33-1165
v CICS for MVS/ESA Data Areas, LY33-6083
v CICS for MVS/ESA Installation Guide,

SC33-1163
v CICS for MVS/ESA Intercommunication Guide,

SC33-1181
v CICS for MVS/ESA Messages and Codes,

GC33-1177
v CICS for MVS/ESA Operations and Utilities

Guide, SC33-1167
v CICS/ESA Performance Guide, SC33-1183
v CICS/ESA Problem Determination Guide,

SC33-1176
v CICS for MVS/ESA Resource Definition Guide,

SC33-1166
v CICS for MVS/ESA System Definition Guide,

SC33-1164
v CICS for MVS/ESA System Programming

Reference, GC33-1171

CICS Transaction Server for OS/390

v CICS Application Programming Guide,
SC33-1687

v CICS External Interfaces Guide, SC33-1703

v CICS DB2 Guide, SC33-1939

v CICS Resource Definition Guide, SC33-1684

IBM C/C++ for MVS/ESA
v IBM C/C++ for MVS/ESA Library Reference,

SC09-1995
v IBM C/C++ for MVS/ESA Programming Guide,

SC09-1994

Bibliography

1142 SQL Reference

IBM COBOL
v IBM COBOL Language Reference, SC26-4769
v IBM COBOL for MVS & VM Programming

Guide, SC26-4767

IBM COBOL for OS/390 & VM Programming
Guide, SC26-9049

Conversion Guide
v IMS-DB and DB2 Migration and Coexistence

Guide, GH21-1083

Cooperative Development Environment
v CoOperative Development Environment/370:

Debug Tool, SC09-1623

DataPropagator NonRelational
v DataPropagator NonRelational MVS/ESA

Administration Guide, SH19-5036
v DataPropagator NonRelational MVS/ESA

Reference, SH19-5039

Data Facility Data Set Services
v Data Facility Data Set Services: User's Guide

and Reference, SC26-4388

Database Design
v DB2 Design and Development Guide by

Gabrielle Wiorkowski and David Kull, Addison
Wesley, ISBN 0-20158-049-7

v Handbook of Relational Database Design by C.
Fleming and B. Von Halle, Addison Wesley,
ISBN 0-20111-434-8

DataHub®

v IBM DataHub General Information, GC26-4874

Data Refresher
v Data Refresher Relational Extract Manager for

MVS GI10-9927

DB2 Connect®

v DB2 Connect Enterprise Edition for OS/2 and
Windows: Quick Beginnings, GC09-2953

v DB2 Connect Enterprise Edition for UNIX:
Quick Beginnings, GC09-2952

v DB2 Connect Personal Edition Quick
Beginnings, GC09-2967

v DB2 Connect User's Guide, SC09-2954

DB2 Red Books
v DB2 UDB Server for OS/390 Version 6

Technical Update, SG24-6108-00

DB2 Server for VSE & VM
v DB2 Server for VM: DBS Utility, SC09-2394

v DB2 Server for VSE: DBS Utility, SC09-2395

DB2 Universal Database for UNIX®, Windows®,
OS/2®

v DB2 UDB Administration Guide: Planning,
SC09-2946

v DB2 UDB Administration Guide:
Implementation, SC09-2944

v DB2 UDB Administration Guide: Performance,
SC09-2945

v DB2 UDB Administrative API Reference,
SC09-2947

v DB2 UDB Application Building Guide,
SC09-2948

v DB2 UDB Application Development Guide,
SC09-2949

v DB2 UDB CLI Guide and Reference,
SC09-2950

v DB2 UDB SQL Getting Started, SC09-2973
v DB2 UDB SQL Reference Volume 1,

SC09-2974
v DB2 UDB SQL Reference Volume 2,

SC09-2975

Device Support Facilities
v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety
of components of DFSMS, including
DFSMS/MVS®, DFSMSdfp™, DFSMSdss™,
DFSMShsm™, and MVS/DFP™.
v DFSMS/MVS: Access Method Services for the

Integrated Catalog, SC26-4906
v DFSMS/MVS: Access Method Services for

VSAM Catalogs, SC26-4905
v DFSMS/MVS: Administration Reference for

DFSMSdss, SC26-4929
v DFSMS/MVS: DFSMShsm Managing Your Own

Data, SH21-1077
v DFSMS/MVS: Diagnosis Reference for

DFSMSdfp, LY27-9606
v DFSMS/MVS Storage Management Library:

Implementing System-Managed Storage,
SC26–3123

v DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

v DFSMS/MVS: Managing Catalogs, SC26-4914
v DFSMS/MVS: Program Management,

SC26-4916
v DFSMS/MVS: Storage Administration Reference

for DFSMSdfp, SC26-4920
v DFSMS/MVS: Using Advanced Services,

SC26-4921

Bibliography

Bibliography 1143

v DFSMS/MVS: Utilities, SC26-4926
v MVS/DFP: Using Data Sets, SC26-4749

DFSORT™

v DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database Architecture™

v Data Stream and OPA Reference, SC31-6806
v IBM SQL Reference, SC26-8416
v Open Group Technical Standard

The Open Group presently makes the following
DRDA® books available through its Web site at:
www.opengroup.org
– DRDA Version 2 Vol. 1: Distributed

Relational Database Architecture (DRDA)
– DRDA Version 2 Vol. 2: Formatted Data

Object Content Architecture
– DRDA Version 2 Vol. 3: Distributed Data

Management Architecture

Domain Name System
v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O’Reilly, ISBN 1-56592-512-2

Education
v IBM Dictionary of Computing, McGraw-Hill,

ISBN 0-07031-489-6
v 1999 IBM All-in-One Education and Training

Catalog, GR23-8105

Enterprise System/9000® and Enterprise
System/3090™

v Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System
Manager Planning Guide, GA22-7123

High Level Assembler
v High Level Assembler for MVS and VM and

VSE Language Reference, SC26-4940
v High Level Assembler for MVS and VM and

VSE Programmer's Guide, SC26-4941

Parallel Sysplex® Library
v OS/390 Parallel Sysplex Application Migration,

GC28-1863
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1862
v OS/390 Parallel Sysplex Overview: An

Introduction to Data Sharing and Parallelism,
GC28-1860

v OS/390 Parallel Sysplex Systems Management,
GC28-1861

v OS/390 Parallel Sysplex Test Report,
GC28-1963

v System/390 9672/9674 System Overview,
GA22-7148

ICSF/MVS
v ICSF/MVS General Information, GC23-0093

IMS
v IMS Batch Terminal Simulator General

Information, GH20-5522
v IMS Administration Guide: System, SC26-9420
v IMS Administration Guide: Transaction

Manager, SC26-9421
v IMS Application Programming: Database

Manager, SC26-9422
v IMS Application Programming: Design Guide,

SC26-9423
v IMS Application Programming: Transaction

Manager, SC26-9425
v IMS Command Reference, SC26-9436
v IMS Customization Guide, SC26-9427
v IMS Install Volume 1: Installation and

Verification, GC26-9429
v IMS Install Volume 2: System Definition and

Tailoring, GC26-9430
v IMS Messages and Codes, GC27-1120
v IMS Utilities Reference: System, SC26-9441

ISPF
v ISPF V4 Dialog Developer's Guide and

Reference, SC34-4486
v ISPF V4 Messages and Codes, SC34-4450
v ISPF V4 Planning and Customizing, SC34-4443
v ISPF V4 User's Guide, SC34-4484

Language Environment®

v Debug Tool User's Guide and Reference,
SC09-2137

National Language Support
v IBM National Language Support Reference

Manual Volume 2, SE09-8002

NetView®

v NetView Installation and Administration Guide,
SC31-8043

v NetView User's Guide, SC31-8056

Microsoft ODBC
v Microsoft ODBC 3.0 Software Development Kit

and Programmer's Reference, Microsoft Press,
ISBN 1-57231-516-4

OS/390
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Run-Time Library Reference,

SC28-1663

Bibliography

1144 SQL Reference

v OS/390 C/C++ User's Guide, SC09-2361
v OS/390 eNetwork Communications Server: IP

Configuration, SC31-8513
v OS/390 Hardware Configuration Definition

Planning, GC28-1750
v OS/390 Information Roadmap, GC28-1727
v OS/390 Introduction and Release Guide,

GC28-1725
v OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
v OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
v OS/390 Language Environment for OS/390 &

VM Concepts Guide, GC28-1945
v OS/390 Language Environment for OS/390 &

VM Customization, SC28-1941
v OS/390 Language Environment for OS/390 &

VM Debugging Guide, SC28-1942
v OS/390 Language Environment for OS/390 &

VM Programming Guide, SC28-1939
v OS/390 Language Environment for OS/390 &

VM Programming Reference, SC28-1940
v OS/390 MVS Diagnosis: Procedures,

LY28-1082
v OS/390 MVS Diagnosis: Reference, SY28-1084
v OS/390 MVS Diagnosis: Tools and Service

Aids, LY28-1085
v OS/390 MVS Initialization and Tuning Guide,

SC28-1751
v OS/390 MVS Initialization and Tuning

Reference, SC28-1752
v OS/390 MVS Installation Exits, SC28-1753
v OS/390 MVS JCL Reference, GC28-1757
v OS/390 MVS JCL User's Guide, GC28-1758
v OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
v OS/390 MVS Planning: Operations, GC28-1760
v OS/390 MVS Planning: Workload Management,

GC28-1761
v OS/390 MVS Programming: Assembler

Services Guide, GC28-1762
v OS/390 MVS Programming: Assembler

Services Reference, GC28-1910
v OS/390 MVS Programming: Authorized

Assembler Services Guide, GC28-1763
v OS/390 MVS Programming: Authorized

Assembler Services Reference, Volumes 1-4,
GC28-1764, GC28-1765, GC28-1766,
GC28-1767

v OS/390 MVS Programming: Callable Services
for High-Level Languages, GC28-1768

v OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

v OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

v OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

v OS/390 MVS Programming: Workload
Management Services, GC28-1773

v OS/390 MVS Routing and Descriptor Codes,
GC28-1778

v OS/390 MVS Setting Up a Sysplex, GC28-1779
v OS/390 MVS System Codes, GC28-1780
v OS/390 MVS System Commands, GC28-1781
v OS/390 MVS System Messages Volume 1,

GC28-1784
v OS/390 MVS System Messages Volume 2,

GC28-1785
v OS/390 MVS System Messages Volume 3,

GC28-1786
v OS/390 MVS System Messages Volume 4,

GC28-1787
v OS/390 MVS System Messages Volume 5,

GC28-1788
v OS/390 MVS Using the Subsystem Interface,

SC28-1789
v OS/390 Security Server External Security

Interface (RACROUTE) Macro Reference,
GC28-1922

v OS/390 Security Server (RACF) Auditor's
Guide, SC28-1916

v OS/390 Security Server (RACF) Command
Language Reference, SC28-1919

v OS/390 Security Server (RACF) General User's
Guide, SC28-1917

v OS/390 Security Server (RACF) Introduction,
GC28-1912

v OS/390 Security Server (RACF) Macros and
Interfaces, SK2T-6700 (OS/390 Collection Kit),
SK27-2180 (OS/390 Security Server Information
Package)

v OS/390 Security Server (RACF) Security
Administrator's Guide, SC28-1915

v OS/390 Security Server (RACF) System
Programmer's Guide, SC28-1913

v OS/390 SMP/E Reference, SC28-1806
v OS/390 SMP/E User's Guide, SC28-1740
v OS/390 Support for Unicode: Using Conversion

Services, SC33-7050
v OS/390 RMF User's Guide, SC28-1949
v OS/390 TSO/E CLISTS, SC28-1973
v OS/390 TSO/E Command Reference,

SC28-1969
v OS/390 TSO/E Customization, SC28-1965
v OS/390 TSO/E Messages, GC28-1978
v OS/390 TSO/E Programming Guide,

SC28-1970
v OS/390 TSO/E Programming Services,

SC28-1971
v OS/390 TSO/E REXX Reference, SC28-1975
v OS/390 TSO/E User's Guide, SC28-1968

Bibliography

Bibliography 1145

v OS/390 DCE Administration Guide, SC28-1584
v OS/390 DCE Introduction, GC28-1581
v OS/390 DCE Messages and Codes, SC28-1591
v OS/390 UNIX System Services Command

Reference, SC28-1892
v OS/390 UNIX System Services Messages and

Codes, SC28-1908
v OS/390 UNIX System Services Planning,

SC28-1890
v OS/390 UNIX System Services User's Guide,

SC28-1891
v OS/390 UNIX System Services Programming:

Assembler Callable Services Reference,
SC28-1899

IBM VisualAge PL/I for OS/390
v IBM VisualAge PL/I for OS/390 Language

Reference, SC26-9476
v IBM VisualAge PL/I for OS/390 Programming

Guide, SC26-9473

OS PL/I
v OS PL/I Programming Language Reference,

SC26-4308
v OS PL/I Programming Guide, SC26-4307

Prolog
v IBM SAA AD/Cycle Prolog/MVS & VM

Programmer's Guide, SH19-6892

RAMAC® and Enterprise Storage Server™

v IBM RAMAC Virtual Array, SG24-4951
v RAMAC Virtual Array: Implementing

Peer-to-Peer Remote Copy, SG24-5338
v Enterprise Storage Server Introduction and

Planning, GC26-7294

Remote Recovery Data Facility
v Remote Recovery Data Facility Program

Description and Operations, LY37-3710

Storage Management
v DFSMS/MVS Storage Management Library:

Implementing System-Managed Storage,
SC26-3123

v MVS/ESA Storage Management Library:
Leading a Storage Administration Group,
SC26-3126

v MVS/ESA Storage Management Library:
Managing Data, SC26-3124

v MVS/ESA Storage Management Library:
Managing Storage Groups, SC26-3125

v MVS Storage Management Library: Storage
Management Subsystem Migration Planning
Guide, SC26-4659

System/370™ and System/390
v ESA/370 Principles of Operation, SA22-7200
v ESA/390 Principles of Operation, SA22-7201
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1210

System Network Architecture (SNA)
v SNA Formats, GA27-3136
v SNA LU 6.2 Peer Protocols Reference,

SC31-6808
v SNA Transaction Programmer's Reference

Manual for LU Type 6.2, GC30-3084
v SNA/Management Services Alert

Implementation Guide, GC31-6809

TCP/IP
v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134
v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105
v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

VS COBOL II
v VS COBOL II Application Programming Guide

for MVS and CMS, SC26-4045
v VS COBOL II Application Programming:

Language Reference, GC26-4047
v VS COBOL II Installation and Customization for

MVS, SC26-4048

VS Fortran
v VS Fortran Version 2: Language and Library

Reference, SC26-4221
v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

VTAM
v Planning for NetView, NCP, and VTAM,

SC31-8063
v VTAM for MVS/ESA Diagnosis, LY43-0069
v VTAM for MVS/ESA Messages and Codes,

SC31-6546
v VTAM for MVS/ESA Network Implementation

Guide, SC31-6548
v VTAM for MVS/ESA Operation, SC31-6549
v VTAM for MVS/ESA Programming, SC31-6550
v VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
v VTAM for MVS/ESA Resource Definition

Reference, SC31-6552

Bibliography

1146 SQL Reference

Index

Special Characters
− (minus sign) 113
% (percent sign) as escape character 137, 140
* (asterisk)

COUNT_BIG function 158
COUNT function 158
multiply sign 113
use in subselect 302

: (colon)
preceding a host variable 101

, (comma) as decimal point 147
/ (divide sign) 113
! (exclamation mark) as not sign 129
. (period) as decimal point 147
+ (plus sign) 113
+ (plus sign) as escape character 137, 140
? (question mark) 722
_ (underscore character) as escape character 137,

140
’string’ clause

ALTER FUNCTION statement 349
ALTER PROCEDURE statement 381
CREATE FUNCTION statement 491
CREATE PROCEDURE statement 574, 590

|| (vertical bars) 111

A
ABS function 171
ACCESSPATH column

SYSPACKSTMT catalog table 1026
SYSSTMT catalog table 1056

ACOS function 172
ACQUIRE

column of SYSPLAN catalog table 1031
ADD

clause of ALTER TABLE statement 403
ADD_MONTHS function 173
ADD VOLUMES clause of ALTER STOGROUP

statement 395
AFTER clause of CREATE TRIGGER statement 649
alias

creating 466
description 41
dropping 711
naming convention 34
qualifying a column name 95
referencing another DB2 16
retrieving catalog information about 1089
unqualified name 39

ALIAS clause
COMMENT statement 446
CREATE ALIAS statement 466
DROP statement 711
LABEL ON statement 784

ALL
clause of RELEASE statement 806

ALL (continued)
clause of subselect 301
keyword

AVG function 159
column functions 158
COUNT function 160
MAX function 163
MIN function 164
SUM function 167

quantified predicate 131
ALL PRIVILEGES clause

GRANT statement 770
REVOKE statement 834

ALL SQL clause of RELEASE statement 806
ALLOCATE CURSOR statement

description 338
example 339

ALLOW PARALLEL clause
ALTER FUNCTION statement 355
CREATE FUNCTION statement 497

alphabetic extender 31, 34
ALTDATE function 1100
ALTER DATABASE statement

description 340
example 342

ALTER FUNCTION (external scalar) statement
description 343
example 358

ALTER FUNCTION (SQL scalar) statement
description 359
example 365

ALTER INDEX statement
description 366
example 377

ALTER privilege
GRANT statement 770
REVOKE statement 834

ALTER PROCEDURE (external) statement
description 378
example 388

ALTER PROCEDURE (SQL) statement
description 389
example 394

ALTER STOGROUP statement
description 395
example 397

ALTER TABLE statement
description 398
example 417

ALTER TABLESPACE statement
description 419
example 429

ALTERAUTH column of SYSTABAUTH catalog
table 1062

ALTEREDTS column
SYSDATABASE catalog table 988
SYSINDEXES catalog table 999
SYSINDEXPART catalog table 1003

© Copyright IBM Corp. 1982, 2001 X-1

ALTEREDTS column (continued)
SYSJAROBJECTS catalog table 1011
SYSROUTINES catalog table 1047
SYSSEQUENCES catalog table 1053
SYSSTOGROUP catalog table 1058
SYSTABLEPART catalog table 1067
SYSTABLES catalog table 1072
SYSTABLESPACE catalog table 1076

ALTERIN privilege
GRANT statement 765
REVOKE statement 829

ALTERINAUTH column of SYSSCHEMAAUTH catalog
table 1052

ALTTIME function 1103
AND

truth table 144
ANY

quantified predicate 131
USING clause of DESCRIBE statement 696
USING clause of PREPARE statement 794

APOST option
precompiler 148

apostrophe
string delimiter precompiler option 148

APOSTSQL option
precompiler 148

application plan
description 14
invalidated

ALTER TABLE statement 416
privileges

GRANT statement 764
REVOKE statement 828

application process 11
application program

recovery 11
SQLCA 923
SQLDA 931

ARCHIVE privilege
GRANT statement 767
REVOKE statement 831

ARCHIVEAUTH column of SYSUSERAUTH catalog
table 1083

arithmetic operators 113
AS clause

CREATE VIEW statement 660
naming result columns 302
use in subselect 302

AS DEFINITION ONLY clause
DECLARE GLOBAL TEMPORARY TABLE

statement 676
AS IDENTITY clause

ALTER TABLE statement 406
CREATE TABLE statement 612
DECLARE GLOBAL TEMPORARY TABLE

statement 675
AS LOCATOR clause

CREATE FUNCTION statement 488, 510, 527
CREATE PROCEDURE statement 572

AS TEMP clause of CREATE DATABASE
statement 472

AS WORKFILE clause of CREATE DATABASE
statement 472

ASC clause
CREATE INDEX statement 554
of select-statement 323

ASCII
definition 21
effect on DBCS characters 49

ASIN function 175
assembler application program

host variable
EXECUTE IMMEDIATE statement 725
referencing 99

INCLUDE SQLCA 927
INCLUDE SQLDA 942
varying-length string variables 52

assignment
compatibility rules 64
datetime values 70
distinct type values 71
IEEE floating-point numbers 67
numbers 66
retrieval rules 69
row ID values 71
statement

example 890
SQL procedure 889

storage rules 68
strings, basic rules for 68

ASSOCIATE LOCATORS statement
description 430
example 432

asterisk (*)
COUNT_BIG function 161
COUNT function 160
multiply sign 113
use in subselect 302

ASUTIME clause
ALTER FUNCTION statement 357
ALTER PROCEDURE statement 386, 392
CREATE FUNCTION statement 499, 518
CREATE PROCEDURE statement 579, 592

ASUTIME column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1046

ATAN function 176
ATAN2 function 178
ATANH function 177
ATTRIBUTES clause

PREPARE statement 794
AUDIT

clause of ALTER TABLE statement 414
clause of CREATE TABLE statement 621

auditing
ALTER TABLE statement 414
CREATE TABLE statement 621

AUDITING column of SYSTABLES catalog table 1071
AUTHHOWGOT column

SYSDBAUTH catalog table 991
SYSPACKAUTH catalog table 1022
SYSPLANAUTH catalog table 1035

X-2 SQL Reference

AUTHHOWGOT column (continued)
SYSRESAUTH catalog table 1042
SYSROUTINEAUTH catalog table 1043
SYSSCHEMAAUTH catalog table 1052
SYSTABAUTH catalog table 1062
SYSUSERAUTH catalog table 1081

AUTHID
column of MODESELECT catalog table 966
column of SYSCOPY catalog table 987
column of SYSPROCEDURES catalog table 1038
column of USERNAMES catalog table 1087

authority
retrieving catalog information 1091

authorization
clause of CONNECT (type 1) statement 457
clause of CONNECT (type 2) statement 463

authorization ID
description 42
primary

description 42
resulting from errors 846
secondary

description 42
translating

concepts 47
AUX clause of CREATE AUXILIARY TABLE

statement 469
AUXILIARY clause of CREATE AUXILIARY TABLE

statement 469
auxiliary table

CREATE AUXILIARY TABLE statement 468
description 4

AUXRELOBID column of SYSAUXRELS catalog
table 967

AUXTBNAME column of SYSAUXRELS catalog
table 967

AUXTBOWNER column of SYSAUXRELS catalog
table 967

AVG function 159
AVGROWLEN column

SYSTABLES catalog table 1073
SYSTABLES_HIST catalog table 1074

AVGSIZE column
SYSLOBSTATS catalog table 1015
SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1031

B
base table

definition 4
basic operations in SQL 64
basic predicate 129
BCREATOR column

SYSPLANDEP catalog table 1036
SYSVIEWDEP catalog table 1084

BEGIN DECLARE SECTION statement
description 433
example 433

BETWEEN predicate 133
binary large object (BLOB) 53

BINARY LARGE OBJECT data type 53
binary string

description 53
bind behavior for dynamic SQL statements 44
BIND_OPTS column

SYSJAVAOPTS catalog table 1012
SYSROUTINES_OPTS catalog table 1050

BIND PACKAGE subcommand of DSN
options

QUALIFIER 39, 40
BIND PLAN subcommand of DSN

options
QUALIFIER 39, 40

BIND privilege
GRANT statement 762, 764
REVOKE statement 826, 828

bind process 43
BINDADD privilege

binding a package 46
GRANT statement 767
REVOKE statement 831

BINDADDAUTH column of SYSUSERAUTH catalog
table 1081

BINDAGENT privilege
GRANT statement 767
REVOKE statement 831

BINDAGENTAUTH column of SYSUSERAUTH catalog
table 1082

BINDAUTH column
SYSPACKAUTH catalog table 1022
SYSPLANAUTH catalog table 1035

BINDDATE column of SYSPLAN catalog table 1031
BINDERROR column of SYSPACKSTMT catalog

table 1025
binding

description 2
process 43

BINDTIME column
SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1031

bit data
conversion restrictions 24

BIT data
description 49

BLOB (binary large object)
data type 608

description 53
description 53
function 179
host variable 101
locator 102
restrictions 54

BLOB LARGE OBJECT data type 608
BNAME column

SYSCONSTDEP catalog table 983
SYSPACKDEP catalog table 1023
SYSPLANDEP catalog table 1036
SYSVIEWDEP catalog table 1084

BOTH
USING clause of DESCRIBE statement 696

BOUNDBY column of SYSPLAN catalog table 1032

Index X-3

BOUNDTS column
SYSPLAN catalog table 1033

BPOOL column
SYSDATABASE catalog table 988
SYSINDEXES catalog table 998
SYSTABLESPACE catalog table 1075

BQUALIFIER column of SYSPACKDEP catalog
table 1023

BSCHEMA column
SYSCONSTDEP catalog table 983
SYSVIEWDEP catalog table 1084

BSDS (bootstrap data set)
privilege

granting 767
revoking 831

BSDSAUTH column of SYSUSERAUTH catalog
table 1081

BSEQUENCEID column of SYSSEQUENCEDEP
catalog table 1054

BTYPE column
SYSCONSTDEP catalog table 983
SYSPACKDEP catalog table 1023
SYSPLANDEP catalog table 1036
SYSVIEWDEP catalog table 1084

buffer pool
naming convention 35

BUFFERPOOL clause
ALTER DATABASE statement 340
ALTER INDEX statement 368
ALTER TABLESPACE statement 421
CREATE DATABASE statement 471
CREATE INDEX statement 561
CREATE TABLESPACE statement 640

BUFFERPOOL privilege
GRANT statement 773
REVOKE statement 837

BUILDDATE column
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051

BUILDNAME column
SYSJAVAOPTS catalog table 1012
SYSROUTINES_OPTS catalog table 1050

BUILDOWNER column
SYSJAVAOPTS catalog table 1012
SYSROUTINES_OPTS catalog table 1050

BUILDSCHEMA column
SYSJAVAOPTS catalog table 1012
SYSROUTINES_OPTS catalog table 1050

BUILDSTATUS column
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051

BUILDTIME column
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051

built-in data type 48
built-in function 104, 153
BY clause of REVOKE statement 812

C
C application program

host variable
EXECUTE IMMEDIATE statement 725
referencing 99

INCLUDE SQLCA 926
INCLUDE SQLDA 942
varying-length string 52

CACHE column of SYSSEQUENCES catalog
table 1053

CACHESIZE
column of SYSPLAN catalog table 1032

CALL statement
description 434
example 441, 892
SQL procedure 891

CALLED ON NULL INPUT clause
ALTER FUNCTION statement 352, 365
CREATE FUNCTION statement 494, 513, 542

capturing changed data
ALTER TABLE statement 414
CREATE TABLE statement 622

CARD column
SYSTABLEPART catalog table

description 1065
SYSTABSTATS catalog table

description 1078
CARDF column

SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART catalog table 1067
SYSTABLEPART_HIST catalog table 1068
SYSTABLES catalog table 1072
SYSTABLES_HIST catalog table 1074
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

CARDINALITY column
SYSROUTINES catalog table 1049

CASCADE delete rule
ALTER TABLE statement 411
CREATE TABLE statement 617
description 7

cascade revoke 813
CASE expression

description 123
result data type 77

CASE statement
example 894
SQL procedure 893

cast function 105
CAST_FUNCTION column

SYSPARMS catalog table 1028
SYSROUTINES catalog table 1045

CAST_FUNCTION_ID column of SYSPARMS catalog
table 1029

CAST specification
definition 125
NULL 126

X-4 SQL Reference

CAST specification (continued)
parameter marker 126

casts
data types 62

catalog, DB2
constraint information 1093
database design 1089, 1095
description 10
retrieving information from 1089
tables 949

catalog name
naming convention 35
VCAT clause

ALTER INDEX statement 371
CREATE INDEX statement 555
CREATE TABLESPACE statement 632, 635

catalog tables
description 10, 949
indexes 950
IPNAMES 960
LOCATIONS 961
LULIST 962
LUMODES 963
LUNAMES 964
MODESELECT 966
release dependency indicators 949
retrieving information about

parent keys 1092
status 1093

SQL statements allowed 955
SYSAUXRELS 967, 1093
SYSCHECKDEP 968
SYSCHECKS 969
SYSCHECKS2 970
SYSCOLAUTH 971
SYSCOLDIST

contents 972
SYSCOLDISTSTATS

contents 974
SYSCOLSTATS

contents 975
SYSCOLUMNS

contents 976
updated by COMMENT ON statement 1095
updated by CREATE VIEW statement 1091

SYSCOLUMNS_HIST
contents 981

SYSCONSTDEP 983
SYSCOPY

contents 984
SYSDATABASE

contents 988
SYSDATATYPES 990, 1094
SYSDBAUTH 991
SYSDBRM 993
SYSDUMMY1 995
SYSFIELDS 996
SYSFOREIGNKEYS 997, 1092
SYSINDEXES

contents 998

catalog tables (continued)
SYSINDEXES_HIST

contents 1001
SYSINDEXPART

contents 1002
SYSINDEXPART_HIST 1005
SYSINDEXSTATS

contents 1006
SYSINDEXSTATS_HIST 1007
SYSJARCLASS_SOURCE 1008
SYSJARCONTENTS 1009
SYSJARDATA_SOURCE 1010
SYSJAROBJECTS 1011
SYSJAVAOPTS 1012
SYSKEYCOLUSE 1013
SYSKEYS 1014
SYSLOBSTATS 1015
SYSLOBSTATS_HIST 1016
SYSPACKAGE 1017
SYSPACKAUTH 1022
SYSPACKDEP 1023
SYSPACKLIST 1024
SYSPACKSTMT 1025
SYSPARMS 1028
SYSPKSYSTEM 1030
SYSPLAN 1031
SYSPLANAUTH

contents 1035
SYSPLANDEP

contents 1036
SYSPLSYSTEM 1037
SYSPROCEDURES

contents 1038
SYSRELS

contents 1041
describes referential constraints 1092

SYSRESAUTH 1042
SYSROUTINEAUTH 1043
SYSROUTINES 1094

contents 1044
SYSROUTINES_OPTS 1050
SYSROUTINES_SRC 1051
SYSSCHEMAAUTH 1052
SYSSEQUENCES 1053
SYSSEQUENCESDEP 1054
SYSSTMT 1055
SYSSTOGROUP

contents 1058
sample query 1089

SYSSTRINGS
contents 1059

SYSSYNONYMS 1061
SYSTABAUTH

contents 1062
table authorizations 1091
updated by CREATE VIEW statement 1091
view authorizations 1091

SYSTABCONST
contents 1064

SYSTABLEPART
contents 1065

Index X-5

catalog tables (continued)
SYSTABLEPART_HIST

contents 1068
SYSTABLES

contents 1070
rows maintained 1089
updated by COMMENT ON statement 1095
updated by CREATE VIEW statement 1091

SYSTABLES_HIST
contents 1074

SYSTABLESPACE
contents 1075

SYSTABSTATS
contents 1078

SYSTABSTATS_HIST
contents 1079

SYSTRIGGERS 1080, 1094
SYSUSERAUTH 1081
SYSVIEWDEP

contents 1084
updated by CREATE VIEW statement 1091

SYSVIEWS 1085
SYSVOLUMES 1086
table space 950
USERNAMES 1087

CCSID
clause of ALTER DATABASE statement 341
clause of ALTER TABLESPACE statement 428
clause of CREATE DATABASE statement 472
clause of CREATE DISTINCT TYPE statement 476
clause of CREATE FUNCTION statement 488, 509,

526, 539
clause of CREATE GLOBAL TEMPORARY TABLE

statement 547
clause of CREATE PROCEDURE statement 572,

589
clause of CREATE TABLE statement 622
clause of CREATE TABLESPACE statement 642
clause of DECLARE GLOBAL TEMPORARY TABLE

statement 678
column of SYSPARMS catalog table 1029

CCSID (coded character set identifier)
definition 20
description 21
system 23

CCSID_ENCODING function 180
CEIL function 181
CEILING function 181
CHAR

data type 51
function 182

CHAR LARGE OBJECT data type 51, 608
CHAR VARYING data type 51, 607
character 31
character conversion

ASCII 21
assignment rules 70
character set 21
code page 21
code point 21
coded character set 21

character conversion (continued)
comparison rules 73
concatenation rules 318
contracting conversion 25
description 20
EBCDIC 21
encoding scheme 21
expanding conversion 24
substitution byte 22
SYSIBM.SYSSTRINGS catalog table 1059
UCS-2 22
Unicode 22
UNION and UNION ALL rules 318
UTF-16 22
UTF-8 22

CHARACTER data type
CREATE TABLE statement 607
description 51

character large object (CLOB) 53
CHARACTER LARGE OBJECT data type 51, 608
character set 21
character string

assignment 68
comparison 73
constants 80
description 49
empty 49

CHARACTER VARYING data type 51, 607
CHARSET column

SYSDBRM catalog table 993
SYSPACKAGE catalog table 1018

CHECK
clause of ALTER TABLE statement 412
clause of CREATE TABLE statement 618
column of SYSVIEWS catalog table 1085

check constraint
description 9

check pending status
retrieving catalog information 1093

CHECKCONDITION column
SYSCHECKS catalog table 969

CHECKFLAG column
SYSTABLEPART catalog table 1066
SYSTABLES catalog table 1071

CHECKNAME column
SYSCHECKDEP catalog table 968
SYSCHECKS catalog table 969
SYSCHECKS2 catalog table 970

CHECKRID5B column
SYSTABLEPART catalog table 1067
SYSTABLES catalog table 1072

CHECKS column
SYSTABLES catalog table 1072

CHILDREN column of SYSTABLES catalog table 1071
CLASS column

SYSJARCONTENTS catalog table 1009
SYSROUTINES catalog table 1049

CLASS_SOURCE column
SYSJARCLASS_SOURCE catalog table 1008
SYSJARCONTENTS catalog table 1009

X-6 SQL Reference

CLASS_SOURCE_ROWID column
SYSJARCONTENTS catalog table 1009

CLOB (character large object)
description 51, 53, 608
function 188
host variable 101
locator 102
restrictions 54

CLOSE
clause of ALTER INDEX statement 369
clause of ALTER TABLESPACE statement 422
clause of CREATE INDEX statement

description 561
clause of CREATE TABLESPACE statement

description 641
statement

description 442
example 442

closed state of cursor 790
CLOSERULE column

SYSINDEXES catalog table 999
SYSTABLESPACE catalog table 1075

CLUSTER clause
CREATE INDEX statement 559

CLUSTERED column of SYSINDEXES catalog table
description 998

CLUSTERING column
SYSINDEXES_HIST catalog table 1001

CLUSTERING column of SYSINDEXES catalog table
description 998

CLUSTERRATIO column
SYSINDEXES catalog table 999
SYSINDEXSTATS catalog table 1006

CLUSTERRATIOF column
SYSINDEXES catalog table 1000
SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

CLUSTERTYPE column of SYSTABLES catalog
table 1070

CNAME column
SYSPKSYSTEM catalog table 1030
SYSPLSYSTEM catalog table 1037

COALESCE function 77, 189, 219
COBOL application program

host structure 103
host variable

description 99
EXECUTE IMMEDIATE statement 725

INCLUDE SQLCA 928
varying-length string 52

code page 21
code point 21
coded character set 21
COLCARDDATA column of SYSCOLSTATS catalog

table 975
COLCARDF column

SYSCOLUMNS catalog table 980
SYSCOLUMNS_HIST catalog table 982

COLCOUNT column
SYSINDEXES catalog table 998

COLCOUNT column (continued)
SYSRELS catalog table 1041
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074

COLGROUPCOLNO column
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974

collection, package
granting privileges 752
revoking privileges 816
SET CURRENT PACKAGESET statement 856

COLLID clause
ALTER FUNCTION statement 356
ALTER PROCEDURE statement 385, 391
CREATE FUNCTION statement 498, 517
CREATE PROCEDURE statement 578, 592

COLLID column
SYSCOLAUTH catalog table 971
SYSPACKAGE catalog table 1017
SYSPACKAUTH catalog table 1022
SYSPACKLIST catalog table 1024
SYSPACKSTMT catalog table 1025
SYSPKSYSTEM catalog table 1030
SYSPROCEDURES catalog table 1038
SYSROUTINEAUTH catalog table 1043
SYSROUTINES catalog table 1044
SYSTABAUTH catalog table 1063

COLNAME column
SYSAUXRELS catalog table 967
SYSCHECKDEP catalog table 968
SYSCOLAUTH catalog table 971
SYSFOREIGNKEYS catalog table 997
SYSKEYCOLUSE catalog table 1013
SYSKEYS catalog table 1014

COLNO column
SYSCOLUMNS catalog table 976
SYSCOLUMNS_HIST catalog table 981
SYSFIELDS catalog table 996
SYSFOREIGNKEYS catalog table 997
SYSKEYCOLUSE catalog table 1013
SYSKEYS catalog table 1014

colon
host variable in SQL 101

COLSEQ column
SYSFOREIGNKEYS catalog table 997
SYSKEYCOLUSE catalog table 1013
SYSKEYS catalog table 1014

COLSTATUS column of SYSCOLUMNS catalog
table 980

COLTYPE column
SYSCOLUMNS_HIST catalog table 981

COLTYPE column of SYSCOLUMNS catalog
table 976

column
controlling changes 9
derived

CREATE VIEW statement 660
functions 153
INSERT statement 779

Index X-7

column (continued)
derived (continued)

null value 303
string comparison 73
UPDATE statement 875

description 4
name

ambiguous reference 96
correlated reference 97
in a result 303
undefined reference 96

retrieving
catalog information 1090
comments 1095

rules 317
COLUMN clause

COMMENT statement 447
LABEL ON statement 785

COLVALUE column
SYSCOLDIST catalog table

description 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table

description 974
COMMA

column of SYSDBRM catalog table 993
column of SYSPACKAGE catalog table 1018
option of precompiler 147

comment
adding 444
replacing 444
SQL 151

COMMENT ON statement
column name qualification 95
examples 1095
storing 1095

COMMENT statement
description 444
example 449

commit
description 11

COMMIT ON RETURN clause
ALTER PROCEDURE statement 387, 393
CREATE PROCEDURE statement 580, 594

COMMIT_ON_RETURN column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1047

COMMIT statement
description 451
example 452

comparison
compatibility rules 64
datetime values 75
distinct type values 75
numbers 72
row ID values 75
strings 73

compatibility
data types 64
rules 64

COMPILE_OPTS column
SYSROUTINES_OPTS catalog table 1050

compound statement
example 899
order of statements in 898
SQL procedure 895

COMPRESS
clause of ALTER TABLESPACE statement 426
clause of CREATE TABLESPACE statement 642
column of SYSTABLEPART catalog table 1066

CONCAT
function 191
operator 111

concatenation
CONCAT function 191
operator 111

concurrency
application 11
LOCK TABLE statement 786

CONNECT
option of precompiler 145
statement

differences, type 1 and type 2 453
type 1 456
type 2 462

connected state 19
connection

DB2 private protocol 16
SQL 17

connection exit routine
description 90

connection state
application process 17, 458
CONNECT (Type 1) statement 458
SET CONNECTION statement 848
SQL 17

constant
character string 80
datetime 81
decimal 80
floating-point 80
graphic string 81
hexadecimal 80
integer 79

CONSTNAME column
SYSKEYCOLUSE catalog table 1013
SYSTABCONST catalog table 1064

constraint
description 6
unique 6

CONSTRAINT clause
ALTER TABLE statement 408, 409, 412
CREATE TABLE statement 609, 615, 616

CONSTRAINT
clause of CREATE TABLE statement 618

CONTAINS SQL clause
ALTER FUNCTION statement 352, 365
ALTER PROCEDURE statement 384, 391
CREATE FUNCTION statement 494, 514, 541
CREATE PROCEDURE statement 577, 591

X-8 SQL Reference

CONTINUE
clause of WHENEVER statement 885

CONTINUE handler
SQL procedure 898

CONTOKEN column
SYSCOLAUTH catalog table 971
SYSPACKAGE catalog table 1017
SYSPACKSTMT catalog table 1025
SYSPKSYSTEM catalog table 1030
SYSROUTINEAUTH catalog table 1043
SYSTABAUTH catalog table 1063

control character 32
conversion of numbers

errors 846
precision 67
scale 67

CONVERT TO clause
ALTER INDEX statement 366

CONVLIMIT column of LUMODES catalog table
description 963

COPY
clause of ALTER INDEX statement 369
clause of CREATE INDEX statement 561
column of SYSINDEXES catalog table 1000

COPY privilege
GRANT statement 762
REVOKE statement 826

COPYAUTH column of SYSPACKAUTH catalog
table 1022

COPYLRSN column of SYSINDEXES catalog
table 1000

COPYPAGESF column of SYSCOPY catalog
table 986

correlated reference
correlation name

defining 95
FROM clause of subselect 304
naming convention 35
qualifying a column name 95

description 97
HAVING clause 311
WHERE clause 310

COS function 192
COSH function 193
COUNT_BIG function 161
COUNT function 160
CPAGESF column of SYSCOPY catalog table 987
CREATE ALIAS statement

description 466
example 467

CREATE AUXILIARY TABLE statement
description 468
example 470

CREATE DATABASE statement
description 471
example 473

CREATE DISTINCT TYPE statement
description 474
example 480

CREATE FUNCTION (external scalar) statement
description 482

CREATE FUNCTION (external scalar) statement
(continued)

example 502
CREATE FUNCTION (external table) statement

description 504
example 520

CREATE FUNCTION (sourced) statement
description 521
example 534

CREATE FUNCTION (SQL scalar) statement
description 535
example 544

CREATE FUNCTION statement 481
CREATE GLOBAL TEMPORARY TABLE statement

description 545
example 549

CREATE IN privilege
binding a package 46
GRANT statement 752
REVOKE statement 816

CREATE INDEX statement
description 550
example 563

CREATE PROCEDURE (SQL) statement
description 584
example 595

CREATE PROCEDURE statement
assignment statement 889
description 566
example 582
SQL procedure body 888

CREATE STOGROUP statement
description 596
example 598

CREATE SYNONYM statement
description 599
example 599

CREATE TABLE statement
description 601
example 627

CREATE TABLESPACE statement
description 629
example 644

CREATE TRIGGER statement
description 647
example 656

CREATE VIEW statement
description 658
example 663
use 10

CREATEALIAS privilege
GRANT statement 767
REVOKE statement 831

CREATEALIASAUTH column of SYSUSERAUTH
catalog table 1082

CREATEDBA privilege
GRANT statement 767
REVOKE statement 832

CREATEDBAAUTH column of SYSUSERAUTH catalog
table 1081

Index X-9

CREATEDBC privilege
GRANT statement 768
REVOKE statement 832

CREATEDBCAUTH column of SYSUSERAUTH catalog
table 1081

CREATEDBY column
SYSDATABASE catalog table 988
SYSDATATYPES catalog table 990
SYSINDEXES catalog table 999
SYSROUTINES catalog table 1044
SYSSEQUENCES catalog table 1053
SYSSTOGROUP catalog table 1058
SYSSYNONYMS catalog table 1061
SYSTABLES catalog table 1071
SYSTABLESPACE catalog table 1076
SYSTRIGGERS catalog table 1080

CREATEDTS column
SYSCOLUMNS catalog table 980
SYSDATABASE catalog table 988
SYSDATATYPES catalog table 990
SYSINDEXES catalog table 999
SYSJAROBJECTS catalog table 1011
SYSROUTINES catalog table 1047
SYSSEQUENCES catalog table 1053
SYSSTOGROUP catalog table 1058
SYSSYNONYMS catalog table 1061
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1072
SYSTABLESPACE catalog table 1076
SYSTRIGGERS catalog table 1080

CREATEIN privilege
GRANT statement 765
REVOKE statement 829

CREATEINAUTH column of SYSSCHEMAAUTH catalog
table 1052

CREATESG privilege
GRANT statement 768
REVOKE statement 832

CREATESGAUTH column of SYSUSERAUTH catalog
table 1081

CREATESTMT column
SYSROUTINES_SRC catalog table 1051

CREATETAB privilege
GRANT statement 753
REVOKE statement 817

CREATETABAUTH column of SYSDBAUTH catalog
table 991

CREATETMTAB privilege
GRANT statement 768
REVOKE statement 832

CREATETMTABAUTH column of SYSUSERAUTH
catalog table 1083

CREATETS privilege
GRANT statement 753
REVOKE statement 817

CREATETSAUTH column of SYSDBAUTH catalog
table 991

CREATOR column
SYSCHECKS catalog table 969
SYSCOLAUTH catalog table 971
SYSDATABASE catalog table 988

CREATOR column (continued)
SYSFOREIGNKEYS catalog table 997
SYSINDEXES catalog table 998
SYSINDEXES_HIST catalog table 1001
SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1031
SYSRELS catalog table 1041
SYSSTOGROUP catalog table 1058
SYSSYNONYMS catalog table 1061
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABLESPACE catalog table 1075
SYSVIEWS catalog table 1085

CURRENCY function 1105
CURRENT

clause of RELEASE statement 805
CURRENT APPLICATION ENCODING SCHENE

special register 85
current connection state 18
CURRENT DATE special register 86
CURRENT DEGREE special register

assigning a value 851
description 86
setting 851

CURRENT LC_CTYPE special register
description 86

CURRENT LOCALE LC_CTYPE special register
assigning a value 853
description 86

CURRENT OF clause
DELETE statement 690

CURRENT OPTIMIZATION HINT special register
assigning a value 855
description 87

CURRENT PACKAGESET special register
assigning a value 856
description 87
stored procedures 857

CURRENT PATH special register
assigning a value 865
description 88

CURRENT PRECISION special register
assigning a value 858
description 88

CURRENT RULES special register
assigning a value 859
description 89

current server
description 454
designating

CONNECT (Type 1) statement 456
CONNECT (Type 2) statement 462

CURRENT SERVER special register
description 90

CURRENT SQLID special register
assigning a value 860
description 90
initial value 44

CURRENT TIME special register
description 90

X-10 SQL Reference

CURRENT TIMESTAMP special register
description 91

CURRENT TIMEZONE special register 91
CURRENTSERVER

column of SYSPLAN catalog table 1032
option of BIND PLAN subcommand 455
option of REBIND PLAN subcommand 455

cursor
closed state 790
closing

CLOSE statement 442
CONNECT (Type 1) statement 456
CONNECT (Type 2) statement 462
error in FETCH 746
error in UPDATE 877

INSENSITIVE 666, 794
open state 746
opening

errors 790
OPEN statement 788

SCROLL 667, 795
SENSITIVE 666, 795
STATIC 666
using

current row 746
DECLARE CURSOR statement 665
FETCH statement 739
positions 746

cursor-name clause
DECLARE CURSOR statement 666
FETCH statement 744

CYCLE column of SYSSEQUENCES catalog
table 1053

D
DATA CAPTURE clause

ALTER TABLE statement 414
CREATE TABLE statement 622

data compression
COMPRESS clause

ALTER TABLESPACE statement 426
CREATE TABLESPACE statement 642

data type
built-in 48
casting between 62
character string 49
compatibility matrix 65
CREATE TABLE statement 606
datetime 56
distinct 60
graphic string 52
list of built-in types 48
name, unqualified 40
naming convention

built-in 35
distinct type 36

numeric 55
promotion 61
result column 303
results of an operation 77

data type (continued)
row ID 60
string restrictions 54
unqualified name 40

database
altering

ALTER DATABASE statement 340
creating 471
default database 38
description 10
designing

using catalog 1089
dropping 712
DSNDB04 (default database) 38
implementing a design 1095
limits 909
naming convention 35
privileges

granting 753
revoking 817

DATABASE
clause of ALTER DATABASE statement 340
clause of DROP statement 712
clause of GRANT statement 754
clause of REVOKE statement 818

DATACAPTURE column of SYSTABLES catalog
table 1072

DATATYPEID column
DATATYPES catalog table 990
SYSCOLUMNS catalog table 980
SYSPARMS catalog table 1028
SYSSEQUENCES catalog table 1053

date
arithmetic 118
data type 56
duration 117
strings 58, 59

DATE
data type

CREATE TABLE statement 609
function 194

DATE FORMAT field of panel DSNTIP4 150
DATE

data type
description 56

date routine
CHAR function 182

DATEGRANTED column
SYSCOLAUTH catalog table 971
SYSDBAUTH catalog table 991
SYSPLANAUTH catalog table 1035
SYSRESAUTH catalog table 1042
SYSTABAUTH catalog table 1062
SYSUSERAUTH catalog table 1081

datetime
arithmetic 118
constants 81
data types

description 56
string representation 57

EUR (IBM European standard) 58

Index X-11

datetime (continued)
format

setting through the CHAR function 182
ISO (International Standards Organization) 58
JIS (Japanese Industrial Standard) 58
LOCAL 58
string formats 58
USA 58

DAY function 195
day of week calculation 200
DAYNAME function 1107
DAYOFMONTH function 196
DAYOFWEEK function 197
DAYOFWEEK_ISO function 198
DAYOFYEAR function 199
DAYS function 200
DB2 private protocol access

authorization ID 46
description 14, 16
mixed environment 913

DB2 version identification, current server 458, 465
DBADM authority

GRANT statement 753
REVOKE statement 817

DBADMAUTH column of SYSDBAUTH catalog
table 991

DBCLOB
function 201

DBCLOB (double-byte character large object)
data type 52, 608
description 53
host variable 101
locator 102
restrictions 54

DBCS (double-byte character set)
ASCII 49
EBCDIC 32, 49
SQL ordinary identifier 31, 32
Unicode 49

DBCS_CCSID column
SYSDATABASE catalog table 988
SYSTABLESPACE catalog table 1077

DBCS data
description 23

DBCTRL authority
GRANT statement 753
REVOKE statement 817

DBCTRLAUTH column of SYSDBAUTH catalog
table 991

DBID
column of SYSCHECKS catalog table 969
column of SYSDATABASE catalog table 988
column of SYSINDEXES catalog table 998
column of SYSTABLES catalog table 1070
column of SYSTABLESPACE catalog table 1075
column of SYSTRIGGERS catalog table 1080

DBINFO
clause of ALTER FUNCTION statement 355
clause of ALTER PROCEDURE statement 384
clause of CREATE FUNCTION statement 498, 517
clause of CREATE PROCEDURE statement 578

DBINFO (continued)
column of SYSROUTINES catalog table 1046

DBMAINT authority
GRANT statement 753
REVOKE statement 817

DBMAINTAUTH column of SYSDBAUTH catalog
table 991

DBMLIB column of SYSJAVAOPTS catalog table 1012
DBNAME column

SYSCOPY catalog table 984
SYSINDEXES catalog table 998
SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016
SYSTABAUTH catalog table 1062
SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABLESPACE catalog table 1075
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

DBPROTOCOL column
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

DBRM (database request module)
description 14

DCLGEN subcommand of DSN
description 57

DCOLLID column of SYSPACKDEP catalog
table 1023

DCOLNAME column of SYSSEQUENCEDEP catalog
table 1054

DCONSTNAME column of SYSCONSTDEP catalog
table 983

DCONTOKEN column of SYSPACKDEP catalog
table 1023

DCREATOR column
SYSSEQUENCEDEP catalog table 1054
SYSVIEWDEP catalog table 1084

deadlock
locks and uncommitted changes 11

DEC function 202
DEC15 precompiler option 114
DEC31

column of SYSDBRM catalog table 993
column of SYSPACKAGE catalog table 1018
precompiler option 114

decimal
constants 80
numbers 55

DECIMAL
data type

CREATE TABLE statement 607
description 55

function
description 202

DECIMAL POINT IS field of panel DSNTIPF 147
decimal point precompiler option 147
DECLARE CURSOR statement

description 665
example 670

X-12 SQL Reference

DECLARE GLOBAL TEMPORARY TABLE statement
description 672
example 681

DECLARE STATEMENT statement
description 682
example 682

DECLARE TABLE statement
description 683
example 684

DECLARE VARIABLE statement
description 685
example 687

DEFAULT
column of SYSCOLUMNS catalog table 978

default database (DSNDB04)
implicit specification 38

DEFAULT REGISTERS clause
ALTER PROCEDURE statement 388, 394
CREATE PROCEDURE statement 581, 594

DEFAULT SPECIAL REGISTERS clause
ALTER FUNCTION statement 358
CREATE FUNCTION statement 500, 519

DEFAULTVALUE column of SYSCOLUMNS catalog
table 979

DEFER
clause of CREATE INDEX statement 561

DEFERPREP column
SYSPACKAGE catalog table 1018
SYSPLAN catalog table 1032

DEFERPREPARE column of SYSPACKAGE catalog
table 1020

deferred embedded SQL 2
define behavior for dynamic SQL statements 44
DEFINE clause

CREATE TABLESPACE statement 559, 638
DEGREE

column of SYSPACKAGE catalog table 1019
column of SYSPLAN catalog table 1032

DEGREES function 204
DELETE

clause of TRIGGER statement 649
statement

description 688
example 693

delete-connected 7
DELETE privilege

GRANT statement 770
REVOKE statement 834

delete rule 7
delete rules 691
DELETEAUTH column of SYSTABAUTH catalog

table 1062
DELETERULE column of SYSRELS catalog

table 1041
deleting

rows from a table 688
SQL objects 709

delimited identifier in SQL 33
delimiter

SQL 33

dependency
of objects on each other 718

dependent
row 7
table 7

DESC clause
CREATE INDEX statement 554
select-statement 323

descendent table 7
DESCRIBE CURSOR statement

description 702
example 703

DESCRIBE INPUT statement
prepared statement 704

DESCRIBE PROCEDURE statement
description 706
example 708

DESCRIBE statement
prepared statement 695
table or view 695
variables 696

descriptor name 35
DETERMINISTIC clause

ALTER FUNCTION statement 352, 364
ALTER PROCEDURE statement 384, 391
CREATE FUNCTION statement 494, 513, 540
CREATE PROCEDURE statement 577, 591

DETERMINISTIC column of SYSROUTINES catalog
table 1044

DEVTYPE column of SYSCOPY catalog table 984
DFSMShsm (Data Facility Hierarchical Storage

Manager)
dropping an index or table space 718

digit, description in DB2 31
DIGITS function 205
DISALLOW PARALLEL clause

ALTER FUNCTION statement 355
CREATE FUNCTION statement 497, 517

DISCONNECT
column of SYSPLAN catalog table 1032

DISPLAY privilege
GRANT statement 768
REVOKE statement 832

DISPLAYAUTH column of SYSUSERAUTH catalog
table 1081

DISPLAYDB privilege
GRANT statement 753
REVOKE statement 817

DISPLAYDBAUTH column of SYSDBAUTH catalog
table 991

DISTINCT
clause of subselect 301
keyword

AVG function 159
column functions 158
COUNT_BIG function 161
COUNT function 160
MAX function 163
MIN function 164
STDDEV function 165
STDDEV_SAMP function 166

Index X-13

DISTINCT (continued)
keyword (continued)

SUM function 167
VAR 168
VAR_SAMP 169
VARIANCE function 168
VARIANCE_SAMP function 169

distinct type
assignment of values 71
casting 63
catalog information 1094
comparison of values 75
CREATE TABLE statement 609
creating 474
description 60
dropping 712
granting privileges 755
name, unqualified 36, 40
naming convention 36
promotion 61
revoking privileges 819
unqualified name 40

DISTINCT TYPE clause
COMMENT statement 447
DROP statement 712

distributed data
CONNECT statement 453
CURRENT SERVER special register 90
description 14
RELEASE (connection) statement 805
SET CONNECTION statement 848

Distributed Relational Database Architecture
(DRDA) 15

DLOCATION column of SYSPACKDEP catalog
table 1023

DNAME column
SYSPACKDEP catalog table 1023
SYSPLANDEP catalog table 1036
SYSSEQUENCEDEP catalog table 1054
SYSVIEWDEP catalog table 1084

dormant connection state 18
double-byte character

LABEL ON statement 785
truncated during assignment 69

double-byte character large object (DBCLOB) 53
DOUBLE data type

CREATE TABLE statement 607
description 55

DOUBLE function 206
DOUBLE PRECISION data type

CREATE TABLE statement 607
description 55

double precision floating-point number 55
DOUBLE_PRECISION function 206
DOWNER column of SYSPACKDEP catalog

table 1023
DRDA (Distributed Relational Database

Architecture) 15
DRDA access

authorization ID 46
CONNECT (Type 1) statement 456

DRDA access (continued)
CONNECT (Type 2) statement 462
description 14, 15
mixed environment 913
restricted function 16

DROP FOREIGN KEY clause
ALTER TABLE statement 413

DROP PRIMARY KEY clause
ALTER TABLE statemen 413

DROP privilege
GRANT statement 753
REVOKE statement 817

DROP statement
description 709
example 720

DROP UNIQUE clause
ALTER TABLE statement 413

DROPAUTH column of SYSDBAUTH catalog
table 991

DROPIN privilege
GRANT statement 765
REVOKE statement 829

DROPINAUTH column of SYSSCHEMAAUTH catalog
table 1052

DSN_FUNCTION_TABLE table
EXPLAIN statement 728

DSN_STATEMNT_TABLE table
EXPLAIN statement 728

DSNAME
column of SYSCOPY catalog table 984

DSNUM column
SYSCOPY catalog table 984
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART catalog table 1067
SYSTABLEPART_HIST catalog table 1068

DSSIZE
clause of CREATE TABLESPACE statement 639
column of SYSTABLESPACE catalog table 1077

DSVOLSER column of SYSCOPY catalog table 985
DTBCREATOR column of SYSCONSTDEP catalog

table 983
DTBNAME column of SYSCONSTDEP catalog

table 983
DTYPE column

SYSCONSTDEP catalog table 983
SYSPACKDEP catalog table 1023
SYSVIEWDEP catalog table 1084

duplicate rows, UNION clause 317
duration

date 117
labeled 117
time 117
timestamp 118

DYNAMIC RESULT SET clause
ALTER PROCEDURE statement 381, 391
CREATE PROCEDURE statement 573, 589

dynamic SQL
description 2, 332
DYNAMICRULES bind option 44
EXECUTE IMMEDIATE statement 725

X-14 SQL Reference

dynamic SQL (continued)
EXECUTE statement 722
execution 334
INTO clause

DESCRIBE statement 695
PREPARE statement 793

invocation of SELECT statement 335
preparation 334
SQLDA 930
statements allowed 913

DYNAMICRULES
bind option 39
column of SYSPACKAGE catalog table 1019
column of SYSPLAN catalog table 1032
dynamic SQL authorization 43
unqualified names 39

DYNAMICRULES behavior 44

E
EBCDIC

definition 21
effect on DBCS characters 49

EBCDIC CODED CHAR SET field of panel
DSNTIPF 149

edit routine
named in CREATE TABLE statement 621
specified by EDITPROC option 621

EDITPROC clause
CREATE TABLE statement 621

EDPROC column of SYSTABLES catalog table 1070
empty table, description 4
ENABLE

column of SYSPKSYSTEM catalog table 1030
column of SYSPLSYSTEM catalog table 1037

ENCODING_CCSID column
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

encoding scheme 21
ENCODING_SCHEME column

SYSDATABASE catalog table 988
SYSDATATYPES catalog table 990
SYSPARMS catalog table 1029
SYSTABLES catalog table 1073
SYSTABLESPACE catalog table 1077

ENCRYPTPSWDS column of LUNAMES catalog
table 964

END DECLARE SECTION statement
description 721
example 721

EPOCH column of SYSTABLEPART catalog
table 1067

ERASE clause
ALTER INDEX statement 372
ALTER TABLESPACE statement 426
CREATE INDEX statement 556
CREATE TABLESPACE statement 635

ERASERULE column
SYSINDEXES catalog table 999
SYSTABLESPACE catalog table 1075

error
arithmetic expression 846
closes cursor 790
during FETCH 746
during update 877
numeric conversion 846
signaling 871

ERRORBYTE column of SYSSTRINGS catalog
table 1059

ESCAPE clause
LIKE predicate 140

evaluation order 122
EXCLUSIVE

option of LOCK TABLE statement 787
exclusive dependence 813
executable statement 332, 333
EXECUTE IMMEDIATE statement

description 725
example 726

EXECUTE privilege
GRANT statement 758, 762, 764
REVOKE statement 822, 826, 828

EXECUTE statement
description 722

EXECUTEAUTH column
SYSPACKAUTH catalog table 1022
SYSPLANAUTH catalog table 1035
SYSROUTINEAUTH catalog table 1043

EXISTS predicate 133
EXIT handler

SQL procedure 898
exit routine

named in ALTER TABLE statement 413
named in CREATE TABLE statement 615

EXITPARM column of SYSFIELDS catalog table 996
EXITPARML column of SYSFIELDS catalog table 996
EXP function 207
EXPLAIN

column of SYSPACKAGE catalog table 1018
statement

description 727
example 738

EXPLAINABLE column
SYSPACKSTMT catalog table 1026
SYSSTMT catalog table 1056

explainable statement
description 727
EXPLAIN statement 728
using bind or rebind 729

EXPLAN column of SYSPLAN catalog table 1032
exposed name 98
EXPREDICATE column of SYSPLAN catalog

table 1032
expression

arithmetic operators 113
CASE 123
CAST specification 125
concatenation operator 111
datetime operands 117
decimal operands 114
floating-point operands 116

Index X-15

expression (continued)
integer operands 114
precedence of operation 122
subselect statement 302
without operators 111

EXTENTS column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART catalog table 1067
SYSTABLEPART_HIST catalog table 1068

EXTERNAL ACTION clause
ALTER FUNCTION statement 353, 364
CREATE FUNCTION statement 495, 514, 541

EXTERNAL_ACTION column of SYSROUTINES
catalog table 1045

EXTERNAL clause
ALTER FUNCTION statement 349
ALTER PROCEDURE statement 381
CREATE FUNCTION statement 491, 512
CREATE PROCEDURE statement 574, 590

external-java-routine-name clause
ALTER FUNCTION statement 349
ALTER PROCEDURE statement 381
CREATE FUNCTION statement 491
CREATE PROCEDURE statement 574

EXTERNAL_NAME column of SYSROUTINES catalog
table 1049

EXTERNAL_SECURITY column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1047

F
FARINDREF column

SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068

FAROFFPOSF column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005

FENCED
clause of CREATE FUNCTION statement 494, 513
clause of CREATE PROCEDURE statement 577,

591
column of SYSROUTINES catalog table 1046

FETCH FIRST clause
select-statement 326

FETCH FIRST n ROWS ONLY clause
SELECT INTO statement 847

FETCH statement
description 739
example 747

field description 408
field procedure

comparisons 73
named in ALTER TABLE statement 408
named in CREATE TABLE statement 615

FIELDPROC clause
ALTER TABLE statement 408
CREATE TABLE statement 615

FILESEQNO column of SYSCOPY catalog table 984

FINAL CALL clause
ALTER FUNCTION statement 354, 496
CREATE FUNCTION statement 516

FINAL_CALL column of SYSROUTINES catalog
table 1045

FIRSTKEYCARD column
SYSINDEXSTATS catalog table 1006

FIRSTKEYCARDF column
SYSINDEXES catalog table 999
SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

FLDPROC column
SYSCOLUMNS catalog table 979
SYSFIELDS catalog table 996

FLDTYPE column of SYSFIELDS catalog table 996
FLOAT

data type
CREATE TABLE statement 607
description 55

function 206
floating-point

constants 80
double precision number 55
single precision number 55

FLOOR function 209
FOR

clause of CREATE ALIAS statement 467
clause of CREATE DISTINCT TYPE statement 476
clause of CREATE SYNONYM statement 599
clause of CREATE TABLE statement 607
clause of EXPLAIN statement 728

FOR EACH ROW clause of TRIGGER statement 651
FOR EACH STATEMENT clause of TRIGGER

statement 651
FOR FETCH ONLY clause 323
FOR READ ONLY clause 323
FOR RESULT SET clause of ALLOCATE CURSOR

statement 338
FOR UPDATE clause

select-statement 324
FOR UPDATE OF clause

NOFOR precompiler option 152
foreign key 6
FOREIGN KEY clause

ALTER TABLE statement 409
CREATE TABLE statement 616

FOREIGNKEY column of SYSCOLUMNS catalog
table 979

Fortran application program
host variable 99
INCLUDE SQLCA 928
varying-length string 52

FREE LOCATOR statement
description 748
example 748

free space
index 558
table space 423

X-16 SQL Reference

FREEPAGE
clause of ALTER INDEX statement

description 374
clause of ALTER TABLESPACE statement

description 423
clause of CREATE INDEX statement

description 558
clause of CREATE TABLESPACE statement

description 636
column of SYSINDEXPART catalog table 1002
column of SYSTABLEPART catalog table 1066

FREESPACE column
SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016

FREQUENCYF column
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974

FROM clause
DELETE statement 689
PREPARE statement 797
REVOKE statement 812
subselect 304

FULL OUTER JOIN
description 308
example 314
FROM clause of subselect 308

FULLKEYCARD column of SYSINDEXSTATS catalog
table 1006

FULLKEYCARDF column
SYSINDEXES catalog table 999
SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

fullselect
CREATE VIEW statement 660
description 317
example 319
INSERT statement 781

function
column

column name 94
description 104
maximum number in select 910
name, unqualified 40
unqualified name 40

function, built-in
column

AVG 159
COUNT 160
COUNT_BIG 161
description 153, 158
example 158
MAX 163
MIN 164
STDDEV 165
STDDEV_SAMP 166
SUM 167
VAR 168
VAR_SAMP 169
VARIANCE 168

function, built-in (continued)
column (continued)

VARIANCE_SAMP 169
description 104
invocation 106
name, unqualified 40
nesting 170
resolution 106
scalar

ABS 171
ACOS 172
ADD_MONTHS 173
ASIN 175
ATAN 176
ATAN2 178
ATANH 177
BLOB 179
CCSID_ENCODING 180
CEIL or CEILING 181
CHAR 182
CLOB 188
COALESCE 189
CONCAT 191
COS 192
COSH 193
DATE 194
DAY 195
DAYOFMONTH 196
DAYOFWEEK 197
DAYOFWEEK_ISO 198
DAYOFYEAR 199
DAYS 200
DBCLOB 201
DECIMAL or DEC 202
DEGREES 204
description 170
DIGITS 205
DOUBLE or DOUBLE_PRECISION 206
example 170
EXP 207
FLOAT 206
FLOOR 209
GRAPHIC 210
HEX 213
HOUR 214
IDENTITY_VAL_LOCAL 215
IFNULL 219
INSERT 220
INTEGER or INT 223
JULIAN_DAY 224
LAST_DAY 225
LCASE 226
LEFT 227
LENGTH 229
LN 230
LOCATE 231
LOG 230
LOG10 233
LOWER 226
LTRIM 234
MAX 235

Index X-17

function, built-in (continued)
scalar (continued)

MICROSECOND 236
MIDNIGHT_SECONDS 237
MIN 238
MINUTE 239
MOD 240
MONTH 242
MULTIPLY_ALT 243
NEXT_DAY 244
NULLIF 245
POSSTR 246
POWER 248
QUARTER 249
RADIANS 250
RAISE_ERROR 251
RAND 252
REAL 253
REPEAT 254
REPLACE 256
RIGHT 258
ROUND 260
ROUND_TIMESTAMP 262
ROWID 264
RTRIM 265
SECOND 266
SIGN 267
SIN 268
SINH 269
SMALLINT 270
SPACE 271
SQRT 272
STRIP 273
SUBSTR 275
TAN 277
TANH 278
TIME 279
TIMESTAMP 280
TIMESTAMP_FORMAT 281
TO_CHAR 292
TO_DATE 281
TRANSLATE 282
TRUNC_TIMESTAMP 286
TRUNCATE 285
UCASE 287
UPPER 287
VALUE 189
VARCHAR 288
VARCHAR_FORMAT 292
VARGRAPHIC 293
WEEK 296
WEEK_ISO 297
YEAR 298

unqualified name 40
FUNCTION clause

COMMENT statement 447
DROP statement 712

function resolution 106
function table 727
FUNCTION_TYPE column

SYSROUTINES catalog table 1044

FUNCTIONTS column
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

G
GBPCACHE clause

ALTER INDEX statement 374
ALTER TABLESPACE statement 426
CREATE INDEX statement 558
CREATE TABLESPACE statement 636

GBPCACHE column
SYSINDEXPART catalog table 1003
SYSTABLEPART catalog table 1067

GENERATED clause
ALTER TABLE statement 405
CREATE TABLE statement 612
DECLARE GLOBAL TEMPORARY TABLE

statement 675
GENERIC column of LUNAMES catalog table 965
GET DIAGNOSTICS statement

example 901
SQL procedure 901

GMT (Greenwich Mean Time) 84
GO TO clause of WHENEVER statement 885
GOTO statement

example 902
SQL procedure 902

GRANT statement
collection privileges 752
database privileges 753
description 749
function privileges 757
package privileges 762
plan privileges 764
procedure privileges 757
schema privileges 765
system privileges 767
table privileges 770
USAGE privilege 755
use privileges 773
view privileges 770

GRANTEDTS column
SYSCOLAUTH catalog table 971
SYSDBAUTH catalog table 992
SYSPLANAUTH catalog table 1035
SYSRESAUTH catalog table 1042
SYSROUTINEAUTH catalog table 1043
SYSSCHEMAAUTH catalog table 1052
SYSTABAUTH catalog table 1063
SYSUSERAUTH catalog table 1083

GRANTEE column
SYSCOLAUTH catalog table 971
SYSDBAUTH catalog table 991
SYSPACKAUTH catalog table 1022
SYSPLANAUTH catalog table 1035
SYSRESAUTH catalog table 1042
SYSROUTINEAUTH catalog table 1043
SYSSCHEMAAUTH catalog table 1052
SYSTABAUTH catalog table 1062
SYSUSERAUTH catalog table 1081

X-18 SQL Reference

GRANTEETYPE column
SYSCOLAUTH catalog table 971
SYSPACKAUTH catalog table 1022
SYSROUTINEAUTH catalog table 1043
SYSTABAUTH catalog table 1062

GRANTOR column
SYSCOLAUTH catalog table 971
SYSDBAUTH catalog table 991
SYSPACKAUTH catalog table 1022
SYSPLANAUTH catalog table 1035
SYSRESAUTH catalog table 1042
SYSROUTINEAUTH catalog table 1043
SYSSCHEMAAUTH catalog table 1052
SYSTABAUTH catalog table 1062
SYSUSERAUTH catalog table 1081

GRANULARITY column of SYSTRIGGERS catalog
table 1080

GRAPHIC
data type

CREATE TABLE statement 608
description 52

function 210
option of precompiler 50, 149

graphic string
constants 81
description 52

Greenwich Mean Time (GMT) 84
GROUP BY clause

cannot join view 662
subselect

description 311
results 302

GROUP_MEMBER column
SYSCOPY catalog table 986
SYSDATABASE catalog table 988
SYSPACKAGE catalog table 1019
SYSPLAN catalog table 1032

grouping column 311

H
handler

SQL procedure 898
handling errors

SQL procedure 898
HAVING clause of subselect

description 311
results 302

held connection state 18
HEX function 213
hexadecimal constant 80
HIGH2KEY column

SYSCOLSTATS catalog table
description 975

SYSCOLUMNS catalog table
description 977

SYSCOLUMNS_HIST catalog table 982
HIGHDSNUM column of SYSCOPY catalog table 986
HIGHKEY column of SYSCOLSTATS catalog

table 975

HOLD LOCATOR statement
description 775
example 775

host identifier 34
host structure

description 103
host variable

colon 101
description 99
EXECUTE IMMEDIATE statement 725
EXPLAIN statement 728
FETCH statement 744
input 100
naming convention 36
output 100
PREPARE statement 797
SELECT INTO statement 845
substitution for parameter markers 722

HOSTLANG column
SYSDBRM catalog table 993
SYSPACKAGE catalog table 1018

HOUR function 214
HPJCOMPILE_OPTS column

SYSJAVAOPTS catalog table 1012

I
I/O processing

CURRENT DEGREE special register 86
IBM SQL xv
IBMREQD column

IPNAMES catalog table 960
LOCATIONS catalog table 961
LULIST catalog table 962
LUMODES catalog table 963
LUNAMES catalog table 965
MODESELECT catalog table 966
release dependency indicators 949
SYSAUXRELS catalog table 967
SYSCHECKDEP catalog table 968
SYSCHECKS catalog table 969
SYSCHECKS2 catalog table 970
SYSCOLAUTH catalog table 971
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSCOLSTATS catalog table 975
SYSCOLUMNS catalog table 977
SYSCOLUMNS_HIST catalog table 982
SYSCONSTDEP catalog table 983
SYSCOPY catalog table 984
SYSDATABASE catalog table 988
SYSDATATYPES catalog table 990
SYSDBAUTH catalog table 992
SYSDBRM catalog table 993
SYSDUMMY1 catalog table 995
SYSFIELDS catalog table 996
SYSFOREIGNKEYS catalog table 997
SYSINDEXES catalog table 999
SYSINDEXES_HIST catalog table 1001
SYSINDEXPART catalog table 1002

Index X-19

IBMREQD column (continued)
SYSINDEXPART_HIST catalog table 1005
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007
SYSJARCONTENTS catalog table 1009
SYSJAROBJECTS catalog table 1011
SYSJAVAOPTS catalog table 1012
SYSKEYCOLUSE catalog table 1013
SYSKEYS catalog table 1014
SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016
SYSPACKAGE catalog table 1019
SYSPACKAUTH catalog table 1022
SYSPACKDEP catalog table 1023
SYSPACKLIST catalog table 1024
SYSPACKSTMT catalog table 1025
SYSPARMS catalog table 1029
SYSPKSYSTEM catalog table 1030
SYSPLAN catalog table 1031
SYSPLANAUTH catalog table 1035
SYSPLANDEP catalog table 1036
SYSPLSYSTEM catalog table 1037
SYSPROCEDURES catalog table 1039
SYSRELS catalog table 1041
SYSRESAUTH catalog table 1042
SYSROUTINEAUTH catalog table 1043
SYSROUTINES catalog table 1047
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051
SYSSCHEMAAUTH catalog table 1052
SYSSEQUENCEDEP catalog table 1054
SYSSEQUENCES catalog table 1053
SYSSTMT catalog table 1055
SYSSTOGROUP catalog table 1058
SYSSTRINGS catalog table 1059
SYSSYNONYMS catalog table 1061
SYSTABAUTH catalog table 1063
SYSTABCONST catalog table 1064
SYSTABLEPART catalog table 1066
SYSTABLEPART_HIST catalog table 1069
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABLESPACE catalog table 1076
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079
SYSTRIGGERS catalog table 1080
SYSUSERAUTH catalog table 1082
SYSVIEWDEP catalog table 1084
SYSVIEWS catalog table 1085
SYSVOLUMES catalog table 1086
USERNAMES catalog table 1087

ICBACKUP column of SYSCOPY catalog table 985
ICDATE column of SYSCOPY catalog table 984
ICTIME column of SYSCOPY catalog table 984
ICTYPE column of SYSCOPY catalog table 984
ICUNIT column of SYSCOPY catalog table 985
identifier in SQL

delimited 33
long 33
ordinary 32

identity column
ALTER TABLE statement 406
CREATE TABLE statement 612

IDENTITY_VAL_LOCAL function 215
IF statement

example 904
SQL procedure 904

IFNULL function 219
IMAGCOPY privilege

GRANT statement 754
REVOKE statement 818

IMAGCOPYAUTH column of SYSDBAUTH catalog
table 992

IMMEDWRITE column
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

IMPLICIT column of SYSTABLESPACE catalog
table 1075

IN
clause of CREATE AUXILIARY TABLE

statement 469
clause of CREATE PROCEDURE statement 571,

588
clause of CREATE TABLE statement 620
clause of CREATE TABLESPACE statement 632
predicate 77, 135

IN EXCLUSIVE MODE clause of LOCK TABLE
statement 787

IN SHARE MODE clause of LOCK TABLE
statement 786

INCCSID column of SYSSTRINGS catalog table 1059
INCLUDE statement

assembler declarations 927
description 776
example 777
SQLCA

C 927
COBOL 928
Fortran 928

SQLDA
assembler 942
C 942
C⁺⁺ 942
COBOL 946
PL/I 929, 946

INCLUDING COLUMN DEFAULTS clause
DECLARE GLOBAL TEMPORARY TABLE

statement 677
INCLUDING IDENTITY COLUMN ATTRIBUTES clause

DECLARE GLOBAL TEMPORARY TABLE
statement 676, 677

INCREMENT column of SYSSEQUENCES catalog
table 1053

index
altering

ALTER INDEX statement 366
catalog information about 1091, 1092
catalog table 950
creating with CREATE INDEX statement 550
description 5
dropping 713

X-20 SQL Reference

index (continued)
name, unqualifed 39
naming convention 36
partitioning 560
primary 5
space

description 10
types

changing 366
primary 1092

unique 5
unqualified name 39

INDEX clause
ALTER INDEX statement 366
CREATE INDEX statement 553
DROP statement 713

INDEX
clause of COMMENT statement 448

INDEX privilege
GRANT statement 771
REVOKE statement 834

INDEXAUTH column of SYSTABAUTH catalog
table 1063

INDEXBP
clause of ALTER DATABASE statement 340
clause of CREATE DATABASE statement 472
column of SYSDATABASE catalog table 989

INDEXSPACE column of SYSINDEXES catalog
table 998

INDEXTYPE column of SYSINDEXES catalog
table 999

indicator array 103
indicator variable

description 100
string expression 725

infix operators 113
INHERIT SPECIAL REGISTERS clause

ALTER FUNCTION statement 358
ALTER PROCEDURE statement 388, 393
CREATE FUNCTION statement 500, 519
CREATE PROCEDURE statement 581, 594

INNER JOIN
description 308
example 313
FROM clause of subselect 308

INOUT clause
CREATE PROCEDURE statement 571, 588

input host variable 100
INSENSITIVE clause

FETCH statement 740
INSENTITIVE clause

DECLARE CURSOR statement 666
INSERT clause of CREATE TRIGGER statement 649
INSERT function 220
INSERT privilege

GRANT statement 771
REVOKE statement 834

insert rule 7, 781
INSERT statement

description 778
example 783

INSERTAUTH column of SYSTABAUTH catalog
table 1063

inserting
declaration in a program 776
rows in a table 778

INSTS_PER_INVOC column of SYSROUTINES catalog
table 1048

INT function 223
INTEGER

data type
CREATE TABLE statement 606
large 55
small 55

function 223
integer constants 79
integrated catalog facility

CREATE INDEX statement 557
identifier 35

interactive SQL 3, 336
INTIAL_INSTS column of SYSROUTINES catalog

table 1049
INTIAL_IOS column of SYSROUTINES catalog

table 1049
INTO clause

DESCRIBE CURSOR statement 702
DESCRIBE INPUT statement 704
DESCRIBE PROCEDURE statement 707
DESCRIBE statement 696
FETCH statement 744
INSERT statement 779
PREPARE statement 793
SELECT INTO statement 845
VALUES INTO statement 883

INTO DESCRIPTOR clause
FETCH statement 744

invoke behavior for dynamic SQL statements 44
IOS_PER_INVOC column of SYSROUTINES catalog

table 1048
IPADDR column of IPNAMES catalog table 960
IPREFIX column

SYSINDEXPART catalog table 1003
SYSTABLEPART catalog table 1067

IS clause
COMMENT statement 449
LABEL ON statement 785

ISOBID column of SYSINDEXES catalog table 998
ISOLATION

column of SYSPACKAGE catalog table 1018
column of SYSPACKSTMT catalog table 1025
column of SYSPLAN catalog table 1031
column of SYSSTMT catalog table 1055

isolation level
control by SQL statement

DELETE statement 691
INSERT statement 781
SELECT INTO statement 846
select-statement 325

IXCREATOR column
SYSINDEXPART catalog table 1002
SYSINDEXPART_HIST catalog table 1005
SYSKEYS catalog table 1014

Index X-21

IXCREATOR column (continued)
SYSTABLEPART catalog table 1065

IXNAME column
SYSINDEXPART catalog table 1002
SYSINDEXPART_HIST catalog table 1005
SYSKEYS catalog table 1014
SYSTABCONST catalog table 1064
SYSTABLEPART catalog table 1065

IXNAME column of SYSRELS catalog table 1041
IXOWNER column

SYSRELS catalog table 1041
SYSTABCONST catalog table 1064

J
JAR_DATA column

SYSJARDATA catalog table 1010
SYSJAROBJECTS catalog table 1011

JAR_DATA_ROWID column
SYSJAROBJECTS catalog table 1011

JAR_ID column
SYSJARCONTENTS catalog table 1009
SYSJAROBJECTS catalog table 1011
SYSJAVAOPTS catalog table 1012
SYSROUTINES catalog table 1049

JAR privileges
granting 755
revoking 819

JARSCHEMA column
SYSJARCONTENTS catalog table 1009
SYSJAROBJECTS catalog table 1011
SYSJAVAOPTS catalog table 1012
SYSROUTINES catalog table 1049

JAVA_SIGNATURE column
SYSROUTINES catalog table 1049

JDBC 3
JOBNAME column of SYSCOPY catalog table 987
join operation

example 313
FROM clause of subselect 310
FULL OUTER JOIN

FROM clause of subselect 308
INNER JOIN

FROM clause of subselect 308
joining tables 308
LEFT OUTER JOIN

FROM clause of subselect 308
RIGHT OUTER JOIN

FROM clause of subselect 308
summary of results 310

JULIAN_DAY function 224

K
Katakana character 32
KATAKANA value for EBCDIC CODED CHAR SET 32
KEEPDYNAMIC column

SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

key
composite

description 5
description 5
foreign

catalog information 1092
description 6

length
maximum 910
partitioning index 375, 560, 875

parent 6
catalog information 1092

primary
defining on a single column 609
description 5

unique 5
KEYCOLUMNS column of SYSTABLES catalog

table 1071
KEYCOUNT column of SYSINDEXSTATS catalog

table 1006
KEYCOUNTF column

SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

KEYOBID column of SYSTABLES catalog table 1071
KEYSEQ column of SYSCOLUMNS catalog table 979
keywords, reserved 1097

L
LABEL

column of SYSTABLES catalog table 1071
LABEL

column of SYSCOLUMNS catalog table 979
LABEL ON statement

description 784
example 785

labeled duration 117
LABELS

USING clause of DESCRIBE statement 696
USING clause of PREPARE statement 794

LANGUAGE
clause of ALTER FUNCTION statement 351
clause of ALTER PROCEDURE statement 382
clause of CREATE FUNCTION statement 493, 512
clause of CREATE PROCEDURE statement 575,

591
column of SYSPROCEDURES catalog table 1039

LANGUAGE column
SYSROUTINES catalog table 1044

LANGUAGE SQL clause
ALTER FUNCTION statement 363
CREATE FUNCTION statement 540

LARGE clause
CREATE TABLESPACE statement 631

large object (LOB)
description 53

LAST_DAY function 225
LCASE function 226
LEAFDIST column

SYSINDEXPART_HIST catalog table 1005

X-22 SQL Reference

LEAFDIST column of SYSINDEXPART catalog table
description 1002

LEAFFAR column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005

LEAFNEAR column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005

LEAVE statement
example 905
SQL procedure 905

LEFT function 227
LEFT OUTER JOIN

example 314
FROM clause of subselect 308

length attribute of column 51
LENGTH column

SYSCOLUMNS catalog table 976
SYSCOLUMNS_HIST catalog table 981
SYSDATATYPES catalog table 990
SYSFIELDS catalog table 996
SYSPARMS catalog table 1029

LENGTH function 229
LENGTH2 column

SYSCOLUMNS catalog table 980
SYSCOLUMNS_HIST catalog table 981

letter, description in DB2 31
LIKE clause

CREATE GLOBAL TEMPORARY TABLE
statement 547

CREATE TABLE statement 619
DECLARE GLOBAL TEMPORARY TABLE

statement 675
LIKE predicate 136
LIMITKEY column

SYSINDEXPART catalog table 1002
SYSTABLEPART catalog table 1066

limits, DB2 909
LINK_OPTS column

SYSROUTINES_OPTS catalog table 1050
LINKAGE column of SYSPROCEDURES catalog

table 1038
LINKNAME column

IPNAMES catalog table 960
LOCATIONS catalog table 961
LULIST catalog table 962
USERNAMES catalog table 1087

literal 79
LN function 230
LOAD privilege

GRANT statement 754
REVOKE statement 818

LOADAUTH column of SYSDBAUTH catalog table 992
LOADMOD column

SYSPROCEDURES catalog table 1038
LOB (large object)

clause of CREATE TABLESPACE statement 632
description 53
host variable 101
locator 54, 102
restrictions 54

LOB (large object) (continued)
retrieving catalog information 1093

LOBCOLUMNS column of SYSROUTINES catalog
table 1047

local DB2 14
locale

CURRENT LOCALE LC_CTYPE special register 86
LOCATE function 231
location

LOB 54
LOCATION

column of LOCATIONS catalog table 961
column of SYSPACKAGE catalog table 1017
column of SYSPACKAUTH catalog table 1022
column of SYSPACKLIST catalog table 1024
column of SYSPACKSTMT catalog table 1025
column of SYSPKSYSTEM catalog table 1030
column of SYSTABLES catalog table 1072

location identifier 34
locator

LOB 54, 102
result set 102

LOCATOR column of SYSPARMS catalog table 1028
locator variable

freeing 748
holding beyond a unit of work 775

lock
ALTER TABLESPACE statement 421
CREATE TABLESPACE statement 640
description 11
during update 877
LOCK TABLE statement 786
object

table space (table) 786
LOCK TABLE statement

description 786
example 787

LOCKMAX clause
ALTER TABLESPACE statement

description 422
CREATE TABLESPACE statement

description 641
LOCKMAX column

SYSTABLESPACE catalog table 1076
LOCKPART

clause of ALTER TABLESPACE statement 427
clause of CREATE TABLESPACE statement 643
column of SYSTABLESPACE catalog table 1077

LOCKRULE column of SYSTABLESPACE catalog
table 1075

LOCKSIZE clause
ALTER TABLESPACE statement

description 421
CREATE TABLESPACE statement

description 640
LOG

clause of ALTER TABLESPACE statement 428
clause of CREATE TABLESPACE statement 638
column of SYSTABLESPACE catalog table 1077
function 230

LOG10 function 233

Index X-23

logical operator 144
long column string 52
long strings

restrictions on use 54
types 51

LONG VARCHAR data type
CREATE TABLE statement 604
description 51

LONG VARGRAPHIC data type
CREATE TABLE statement 604
description 52

LOOP statement
example 906
SQL procedure 906

LOW2KEY column
SYSCOLSTATS catalog table 975
SYSCOLUMNS catalog table

description 977
SYSCOLUMNS_HIST catalog table 982

LOWDSNUM column of SYSCOPY catalog table 986
LOWER function 226
lowercase character folded to uppercase 32
LOWKEY column of SYSCOLSTATS catalog table 975
LTRIM function 234
LUNAME

column of LULIST catalog table 962
column of LUMODES catalog table 963
column of LUNAMES catalog table 964
column of MODESELECT catalog table 966
column of SYSPROCEDURES table 1038

M
MAX

column function 163
scalar function 235

MAXASSIGNEDVAL column of SYSSEQUENCES
catalog table 1053

MAXROWS
clause of ALTER TABLESPACE statement 427
clause of CREATE TABLESPACE statement 643
column of SYSTABLESPACE catalog table 1077

MAXVALUE column of SYSSEQUENCES catalog
table 1053

MBCS data
description 23, 49

MEMBER CLUSTER clause
CREATE TABLESPACE statement 639

message
precompiler processing of DECLARE TABLE

statement 684
METATYPE column of SYSDATATYPES catalog

table 990
MICROSECOND function 236
MIDNIGHT_SECONDS function 237
MIN

column function 164
scalar function 238

MINUTE function 239
MINVALUE column of SYSSEQUENCES catalog

table 1053

MIXED_CCSID column
SYSDATABASE catalog table 988
SYSTABLESPACE catalog table 1077

MIXED column
SYSDBRM catalog table 993
SYSPACKAGE catalog table 1018

mixed data
convention xvi
description 49
in string assignments 69
LIKE predicate 139

MIXED DATA
field of panel DSNTIPF 50, 149

MOD function 240
MODE SQL clause of TRIGGER statement 651
MODENAME column

LUMODES catalog table 963
MODESELECT catalog table 966

MODESELECT column of LUNAMES catalog
table 965

MODIFIES SQL DATA clause
ALTER FUNCTION statement 352
ALTER PROCEDURE statement 384, 391
CREATE FUNCTION statement 494
CREATE PROCEDURE statement 577, 591

MON1AUTH column of SYSUSERAUTH catalog
table 1082

MON2AUTH column of SYSUSERAUTH catalog
table 1082

MONITOR1 privilege
GRANT statement 768
REVOKE statement 832

MONITOR2 privilege
GRANT statement 768
REVOKE statement 832

MONTH function 242
MONTHNAME function 1108
MULTIPLY_ALT function 243

N
NACTIVE column

SYSTABLESPACE catalog table
description 1075

SYSTABSTATS catalog table 1078
NACTIVEF column

SYSTABLESPACE catalog table
description 1077

NAME
column of SYSCOLDIST catalog table 972
column of SYSCOLDISTSTATS catalog table 974
column of SYSCOLSTATS catalog table 975
column of SYSCOLUMNS catalog table 976

NAME clause
ALTER FUNCTION statement 349
ALTER PROCEDURE statement 381
CREATE FUNCTION statement 491
CREATE PROCEDURE statement 574, 590

NAME column
SYSCOLDIST_HIST catalog table 973
SYSCOLUMNS_HIST catalog table 981

X-24 SQL Reference

NAME column (continued)
SYSDATABASE catalog table 988
SYSDATATYPES catalog table 990
SYSDBAUTH catalog table 991
SYSDBRM catalog table 993
SYSFIELDS catalog table 996
SYSINDEXES catalog table 998
SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007
SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016
SYSPACKAGE catalog table 1017
SYSPACKAUTH catalog table 1022
SYSPACKLIST catalog table 1024
SYSPACKSTMT catalog table 1025
SYSPARMS catalog table 1028
SYSPKSYSTEM catalog table 1030
SYSPLAN catalog table 1031
SYSPLANAUTH catalog table 1035
SYSPLSYSTEM catalog table 1037
SYSRESAUTH catalog table 1042
SYSROUTINES catalog table 1044
SYSSEQUENCES catalog table 1053
SYSSTMT catalog table 1055
SYSSTOGROUP catalog table 1058
SYSSYNONYMS catalog table 1061
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABLESPACE catalog table 1075
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079
SYSTRIGGERS catalog table 1080
SYSVIEWS catalog table 1085

names, prepared SQL statements 682
NAMES

USING clause of DESCRIBE statement 696
USING clause of PREPARE statement 794

naming convention
SQL 34

NEARINDREF column
SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068

NEAROFFPOSF column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005

nested table expressions 305
NEW AS clause of CREATE TRIGGER statement 650
NEW TABLE AS clause of CREATE TRIGGER

statement 650
NEW_TABLE AS clause of CREATE TRIGGER

statement 648
NEWAUTHID column of USERNAMES catalog

table 1087
NEXT_DAY function 244
NLEAF column

SYSINDEXES catalog table
description 998

SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

NLEVELS column
SYSINDEXES catalog table

description 998
SYSINDEXES_HIST catalog table 1001
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007

NO ACTION delete rule
CREATE TABLE statement 617
description 7

NO CASCADE BEFORE clause of CREATE TRIGGER
statement 649

NO COLLID clause
ALTER FUNCTION statement 356
CREATE FUNCTION statement 498, 517

NO DBINFO clause
ALTER FUNCTION statement 355
ALTER PROCEDURE statement 384
CREATE FUNCTION statement 498, 517
CREATE PROCEDURE statement 578, 591

NO EXTERNAL ACTION clause
ALTER FUNCTION statement 353, 364
CREATE FUNCTION statement 495, 514, 541

NO FINAL CALL clause
ALTER FUNCTION statement 354, 496
CREATE FUNCTION statement 516

NO SCRATCHPAD clause
ALTER FUNCTION statement 354
CREATE FUNCTION statement 495, 515

NO SQL clause
ALTER FUNCTION statement 352
ALTER PROCEDURE statement 384
CREATE FUNCTION statement 494, 514
CREATE PROCEDURE statement 577

NO WLM ENVIRONMENT clause
ALTER PROCEDURE statement 385, 392
CREATE PROCEDURE statement 579, 592

NOCOLLID clause
ALTER PROCEDURE statement 385, 391
CREATE PROCEDURE statement 578, 592

NOFOR option
precompiler 152

NOGRAPHIC option of precompiler 149
nonexecutable statement 332, 333
NOT DETERMINISTIC clause

ALTER FUNCTION statement 352, 364
ALTER PROCEDURE statement 384, 391
CREATE FUNCTION statement 494, 513, 540
CREATE PROCEDURE statement 577, 591

NOT FOUND clause of WHENEVER statement 885
NOT NULL CALL clause

ALTER FUNCTION statement 346
CREATE FUNCTION statement 485, 507

NOT NULL clause
ALTER TABLE statement 403
CREATE GLOBAL TEMPORARY TABLE

statement 547
CREATE TABLE statement

description 609
DECLARE GLOBAL TEMPORARY TABLE

statement 674

Index X-25

NOT VARIANT clause
ALTER FUNCTION statement 362
ALTER PROCEDURE statement 379, 390
CREATE FUNCTION statement 485, 507, 537
CREATE PROCEDURE statement 569, 587

notices, legal 1117
NPAGES column

SYSTABLES catalog table
description 1070

SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

NPAGESF column
SYSCOPY catalog table 986
SYSTABLES catalog table 1073
SYSTABLES_HIST catalog table 1074

NTABLES column of SYSTABLESPACE catalog
table 1075

NULL
CAST specification 126
predicate 143

NULL CALL clause
ALTER FUNCTION statement 346
CREATE FUNCTION statement 485, 507

NULL_CALL column of SYSROUTINES catalog
table 1045

null value
assigned to host variable 845
assignment 65
description 48
duplicate rows 301
grouping columns 311
result columns 303
specified by indicator variable 100

NULLIF function 245
NULLS column

SYSCOLUMNS catalog table 977
SYSCOLUMNS_HIST catalog table 982

numbers
data types

string representation 56
numbers in SQL 55
NUMCOLUMNS column

SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974

numeric
assignments 66
comparisons 72
conversion errors 846
data type 55

NUMERIC data type
CREATE TABLE statement 607
description 55

NUMPARTS
clause of CREATE TABLESPACE statement 640

O
OBID

clause of CREATE TABLE statement 622
column of SYSCHECKS catalog table 969

OBID (continued)
column of SYSINDEXES catalog table 998
column of SYSTABLES catalog table 1070
column of SYSTABLESPACE catalog table 1075
column of SYSTRIGGERS catalog table 1080

object name, unqualified 39
object table 95
OBTYPE column of SYSRESAUTH catalog table 1042
ODBC (Open Database Connectivity) 3
OLD AS clause of TRIGGER statement 650
OLD TABLE AS clause of CREATE TRIGGER

statement 650
OLD_TABLE AS clause of CREATE TRIGGER

statement 648
ON clause

CREATE INDEX statement 554
CREATE TRIGGER statement 649
joining tables 308

ON COMMIT ROWS clause
DECLARE GLOBAL TEMPORARY TABLE

statement 678
ON DELETE clause

ALTER TABLE statement 411
CREATE TABLE statement 617

ON ROLLBACK RETAIN CURSORS clause
SAVEPOINT statement 842

ON ROLLBACK RETAIN LOCKS clause
SAVEPOINT statement 843

ON TABLE clause
GRANT statement 771
REVOKE statement 835

OPEN
statement

description 788
example 791

open cursor 746
Open Database Connectivity (ODBC) 3
operands

datetime 117
decimal 114
floating-point 116
integer 114

operation
SQL

assignment 64
comparison 72
description 64

OPERATIVE column
SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1031

operator
arithmetic 113

OPTHINT column
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

OPTIMIZE FOR n ROWS clause 324
OR truth table 144
ORDER BY clause

select-statement 322
ORDER column of SYSSEQUENCES catalog

table 1053

X-26 SQL Reference

order of evaluation, operators 122
order of statements in a compound statement 898
ORDERING column of SYSKEYS catalog table 1014
ORDINAL column of SYSPARMS catalog table 1028
ordinary identifier in SQL 32
ORGRATIO column

SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016

ORIGIN column of SYSROUTINES catalog table 1044
OTYPE column of SYSCOPY catalog table 986
OUT clause of CREATE PROCEDURE statement 571,

588
OUTCCSID column of SYSSTRINGS catalog

table 1059
outer join

FULL OUTER JOIN
example 314
FROM clause of subselect 308

LEFT OUTER JOIN
example 314
FROM clause of subselect 308

RIGHT OUTER JOIN
example 315
FROM clause of subselect 308

output host variable 100
OVERRIDING USER VALUE

clause of INSERT statement 780
OWNER

column of SYSDATATYPES catalog table 990
column of SYSINDEXSTATS catalog table 1006
column of SYSINDEXSTATS_HIST catalog

table 1007
column of SYSJAROBJECTS catalog table 1011
column of SYSPACKAGE catalog table 1017
column of SYSPARMS catalog table 1028
column of SYSROUTINES catalog table 1044
column of SYSSEQUENCES catalog table 1053
column of SYSTABSTATS catalog table 1078
column of SYSTABSTATS_HIST catalog table 1079
column of SYSTRIGGERS catalog table 1080

P
PACKADM authority

GRANT statement 752
REVOKE statement 816

package
binding

remote 46
description 14
dropping 714
invalidated

ALTER TABLE statement 416
privileges

granting 762
remote bind 46
revoking 826

PACKAGE
clause of DROP statement 714
clause of GRANT statement 762
clause of REVOKE statement 826

page set
description 10

PAGESAVE column
SYSTABLEPART catalog table 1066
SYSTABLEPART_HIST catalog table 1068

PARALLEL column of SYSROUTINES catalog
table 1045

parallel processing
SET CURRENT DEGREE statement 851

parameter
passing to stored procedure 437, 891

PARAMETER CCSID clause
CREATE FUNCTION statement 491, 511, 529, 540
CREATE PROCEDURE statement 573, 590

parameter marker
CAST specification 126
description 798
EXECUTE statement 722
EXPLAIN statement 728
host variables in dynamic SQL 101
obtaining information with DESCRIBE INPUT 704
OPEN statement 789
PREPARE statement 798
rules 798

PARAMETER STYLE clause
ALTER FUNCTION statement 351
ALTER PROCEDURE statement 383
CREATE FUNCTION statement 493, 513
CREATE PROCEDURE statement 576

PARAMETER_STYLE column of SYSROUTINES
catalog table 1045

parent key 6
parent row 7
parent table 7
PARENTS column of SYSTABLES catalog table 1071
PARM_COUNT column of SYSROUTINES catalog

table 1044
PARM_SIGNATURE column of SYSROUTINES catalog

table 1049
PARM1 column of SYSROUTINES catalog table 1047
PARM10 column of SYSROUTINES catalog

table 1048
PARM11 column of SYSROUTINES catalog

table 1048
PARM12 column of SYSROUTINES catalog

table 1048
PARM13 column of SYSROUTINES catalog

table 1048
PARM14 column of SYSROUTINES catalog

table 1048
PARM15 column of SYSROUTINES catalog

table 1048
PARM16 column of SYSROUTINES catalog

table 1048
PARM17 column of SYSROUTINES catalog

table 1048
PARM18 column of SYSROUTINES catalog

table 1048
PARM19 column of SYSROUTINES catalog

table 1048
PARM2 column of SYSROUTINES catalog table 1047

Index X-27

PARM20 column of SYSROUTINES catalog
table 1048

PARM21 column of SYSROUTINES catalog
table 1048

PARM22 column of SYSROUTINES catalog
table 1048

PARM23 column of SYSROUTINES catalog
table 1048

PARM24 column of SYSROUTINES catalog
table 1048

PARM25 column of SYSROUTINES catalog
table 1048

PARM26 column of SYSROUTINES catalog
table 1048

PARM27 column of SYSROUTINES catalog
table 1048

PARM28 column of SYSROUTINES catalog
table 1048

PARM29 column of SYSROUTINES catalog
table 1048

PARM3 column of SYSROUTINES catalog table 1047
PARM30 column of SYSROUTINES catalog

table 1048
PARM4 column of SYSROUTINES catalog table 1047
PARM5 column of SYSROUTINES catalog table 1047
PARM6 column of SYSROUTINES catalog table 1048
PARM7 column of SYSROUTINES catalog table 1048
PARM8 column of SYSROUTINES catalog table 1048
PARM9 column of SYSROUTINES catalog table 1048
PARMLIST column

SYSFIELDS catalog table 996
SYSPROCEDURES catalog table 1039

PARMNAME column of SYSPARMS catalog
table 1028

PART
clause of ALTER INDEX statement 375
clause of ALTER TABLESPACE statement 422
clause of CREATE AUXILIARY TABLE

statement 470
clause of CREATE INDEX statement 560
clause of CREATE TABLESPACE statement 640
clause of LOCK TABLE statement 786

PARTITION column
SYSAUXRELS catalog table 967
SYSCOLDISTSTATS catalog table 974
SYSCOLSTATS catalog table 975
SYSINDEXPART catalog table 1002
SYSINDEXPART_HIST catalog table 1005
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007
SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068
SYSTABLESPACE catalog table 1075
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

PASSWORD column
USERNAMES catalog table 1087

PATH clause
SET PATH statement 866

PATHSCHEMAS column
SYSCHECKS2 catalog table 970

PATHSCHEMAS column (continued)
SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033
SYSVIEWS catalog table 1085

PCTFREE
clause of ALTER INDEX statement 374
clause of ALTER TABLESPACE statement 423
clause of CREATE INDEX statement 558
clause of CREATE TABLESPACE statement 636
column of SYSINDEXPART catalog table 1002
column of SYSTABLEPART catalog table 1066

PCTIMESTAMP column of SYSPACKAGE catalog
table 1019

PCTPAGES column
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABSTATS catalog table 1078

PCTROWCOMP column
SYSTABLES catalog table

description 1072
SYSTABLES_HIST catalog table 1074
SYSTABSTATS catalog table 1078

PDSNAME column
SYSDBRM catalog table 993
SYSPACKAGE catalog table 1019

PERCACTIVE column
SYSTABLEPART catalog table

description 1065
SYSTABLEPART_HIST catalog table 1068

PERCDROP column
SYSTABLEPART catalog table

description 1065
SYSTABLEPART_HIST catalog table 1068

PERIOD option of precompiler 147
PGM_TYPE column of SYSPROCEDURES catalog

table 1039
PGSIZE column

SYSINDEXES catalog table 999
SYSTABLESPACE catalog table 1075

PIECESIZE clause
ALTER INDEX statement 369
CREATE INDEX statement 562
effect on indexes 369

PIECESIZE column of SYSINDEXES catalog
table 999

PIT_RBA column of SYSCOPY catalog table 986
PKSIZE column of SYSPACKAGE catalog table 1017
PL/I application program

host structure 103
host variable

description 99
INCLUDE SQLCA 929
INCLUDE SQLDA 946
varying-length string 52

plan element 14, 856
PLAN

clause of EXPLAIN statement 727
clause of GRANT statement 764
clause of REVOKE statement 828

plan table 727

X-28 SQL Reference

PLAN_TABLE table
EXPLAIN statement 728

PLANNAME column
SYSIBM.MODESELECT catalog table 966
SYSPACKLIST catalog table 1024

PLCREATOR column
SYSDBRM catalog table 993
SYSSTMT catalog table 1055

PLENTRIES column of SYSPLAN catalog table 1032
PLNAME column

SYSDBRM catalog table 993
SYSSTMT catalog table 1055

PLSIZE column of SYSPLAN catalog table 1031
POBJECT_LIB column

SYSJAVAOPTS catalog table 1012
point of consistency

description 11
PORT column of LOCATIONS catalog table 961
POSSTR function 246
POWER function 248
PQTY column

SYSINDEXPART catalog table 1002
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068

precedence of operators 122
precision of numbers

description 55
determined by SQLLEN variable 939
in assignments 66
in comparisons 72
results of arithmetic operations 113
values for data types 55

PRECOMPDATE column of SYSDBRM catalog
table 993

PRECOMPILE_OPTS column of
SYSROUTINES_OPTS catalog table 1050

precompiler
checks SQL statements 683
DECLARE TABLE statement 683
DECLARE VARIABLE statement 685
escape character 33
options

COBOL decimal point 147
CONNECT 145
date 150
NOFOR 152
STDSQL 150
string delimiter 148
time 150

SET CURRENT APPLICATION ENCODING
SCHEME statement 850

using INCLUDE statements 776
PRECOMPTIME column of SYSDBRM catalog

table 993
PRECOMPTS column of SYSDBRM catalog table 993
predicate

basic 129
BETWEEN 133
description 129
EXISTS 133

predicate (continued)
IN 135
LIKE 136
NULL 143
quantified 131

prefix operator 113
PRELINK_OPTS column

SYSROUTINES_OPTS catalog table 1050
PREPARE statement

description 792
example 803

prepared SQL statement
dynamically prepared by PREPARE 792
executing 722
identifying by DECLARE 682
obtaining information

with DESCRIBE 695
with DESCRIBE INPUT 704

SQLDA provides information 931
statements allowed 913

PRIMARY KEY clause
ALTER TABLE statement

description 409
CREATE TABLE statement 609, 615

PRIQTY clause
ALTER INDEX statement 371
ALTER TABLESPACE statement 424
CREATE INDEX statement 556
CREATE TABLESPACE statement 633

privilege
granting 749
revoking 811
types 749

PRIVILEGE column of SYSCOLAUTH catalog
table 971

procedure, stored
naming convention 36

PROCEDURE
clause of COMMENT statement 448
clause of DROP statement 714
column of SYSPROCEDURES catalog table 1038

process
description 11

PROGRAM TYPE clause
ALTER FUNCTION statement 357
ALTER PROCEDURE statement 386
CREATE FUNCTION statement 500, 519
CREATE PROCEDURE statement 392, 579, 593

PROGRAM_TYPE column of SYSROUTINES catalog
table 1047

promotion of data types 61
PSEUDO_DEL_ENTRIES column

SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005

PSID column of SYSTABLESPACE catalog table 1075
PUBLIC AT ALL LOCATIONS clause

GRANT statement 750
REVOKE statement 812

PUBLIC clause
GRANT statement 750
REVOKE statement 812

Index X-29

Q
qualification of column names 95
QUALIFIER

column of SYSPACKAGE catalog table 1017
column of SYSPLAN catalog table 1032
column of SYSRESAUTH catalog table 1042
unqualified object names 39, 40

quantified predicate 131
QUARTER function 249
query 300
QUERYNO clause

DELETE statement 691
INSERT statement 781
SELECT INTO statement 847
select-statement 326
UPDATE statement 877

QUERYNO column
SYSPACKSTMT catalog table 1026
SYSSTMT catalog table 1056

question mark (?) 722
quotation mark 33, 148
QUOTE

column of SYSDBRM catalog table 993
column of SYSPACKAGE catalog table 1018
option of precompiler 148

QUOTESQL option of precompiler 148

R
RACF (Resource Access Control Facility)

security for remote execution 47
RADIANS function 250
RAISE_ERROR function 251
RAND function 252
RBA column of SYSCHECKS catalog table 969
RBA1 column of SYSTABLES catalog table 1072
RBA2 column of SYSTABLES catalog table 1072
read-only

FOR FETCH ONLY clause 323
FOR READ ONLY clause 323
result table 668
view 662

READ SQL clause
ALTER PROCEDURE statement 384

READ SQL DATA clause
ALTER FUNCTION statement 352

READS SQL DATA clause
ALTER FUNCTION statement 365
ALTER PROCEDURE statement 391
CREATE FUNCTION statement 494, 514, 541
CREATE PROCEDURE statement 577, 591

REAL data type
CREATE TABLE statement 607
description 55

REAL function 253
RECLENGTH column of SYSTABLES catalog

table 1071
RECOVER privilege

GRANT statement 768
REVOKE statement 832

RECOVERAUTH column of SYSUSERAUTH catalog
table 1082

RECOVERDB privilege
GRANT statement 754
REVOKE statement 818

RECOVERDBAUTH column of SYSDBAUTH catalog
table 992

recovery
COMMIT statement 451
description

restoring data consistency 11
REFCOLS column of SYSTABAUTH catalog

table 1063
REFERENCES clause

ALTER TABLE statement 410
CREATE TABLE statement 617

REFERENCES privilege
GRANT statement 771
REVOKE statement 834

REFERENCESAUTH column of SYSTABAUTH catalog
table 1063

REFERENCING clause of TRIGGER statement 650
referential constraint

ALTER TABLE statement 409
CREATE TABLE statement 616
description 7

referential cycle 7
referential integrity

description 7
REFTBCREATOR column of SYSRELS catalog

table 1041
REFTBNAME column of SYSRELS catalog table 1041
RELBOUND column

SYSPACKAGE catalog table 1021
SYSPLAN catalog table 1033

RELCREATED column
SYSTABLES catalog table 1073
SYSVIEWS catalog table 1085

RELEASE
column of SYSPACKAGE catalog table 1018
column of SYSPLAN catalog table 1031

RELEASE (connection) statement
description 805
example 806

release dependency indicators 949
release level identification, current server 458, 465
release pending connection state 18
RELEASE SAVEPOINT statement

description 808
example 808

RELNAME column
SYSFOREIGNKEYS catalog table 997
SYSRELS catalog table 1041

RELOBID1 column of SYSRELS catalog table 1041
RELOBID2 column of SYSRELS catalog table 1041
REMARKS column

SYSCOLUMNS catalog table 977
SYSDATATYPES catalog table 990
SYSINDEXES catalog table 1000
SYSROUTINES catalog table 1049
SYSSEQUENCES catalog table 1053

X-30 SQL Reference

REMARKS column (continued)
SYSTABLES catalog table 1070, 1089
SYSTRIGGERS catalog table 1080

REMOTE column of SYSPACKAGE catalog
table 1019

Remote Recovery Data Facility (RRDF) 622
REMOVE VOLUMES clause of ALTER STOGROUP

statement 396
RENAME statement

description 809
example 810

REOPTVAR column
SYSPACKAGE catalog table 1020
SYSPLAN catalog table 1033

REORG privilege
GRANT statement 754
REVOKE statement 818

REORGAUTH column of SYSDBAUTH catalog
table 992

REPAIR privilege
GRANT statement 754
REVOKE statement 818

REPAIRAUTH column of SYSDBAUTH catalog
table 992

REPEAT function 254
REPEAT statement

example 907
SQL procedure 907

REPLACE function 256
reserved keywords 1097
RESET

clause of CONNECT (Type 1) statement 457
clause of CONNECT (Type 2) statement 463

RESTRICT
delete rule

ALTER TABLE statement 411
CREATE TABLE statement 617
description 7

RESTRICT clause of REVOKE statement 813, 820
RESULT_COLS column of SYSROUTINES catalog

table 1049
result column

data type 303
names 303

result set locator
description 102

RESULT_SETS column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1047

result table
description 4

RETURN clause of CREATE FUNCTION (SQL scalar)
statement 542

RETURN_TYPE column of SYSROUTINES catalog
table 1044

RETURNS clause
CREATE FUNCTION statement 539

RETURNS clause of CREATE FUNCTION
statement 490, 528

RETURNS NULL ON NULL INPUT clause
ALTER FUNCTION statement 352

RETURNS NULL ON NULL INPUT clause (continued)
CREATE FUNCTION statement 494, 513

RETURNS TABLE clause of CREATE FUNCTION
statement 511

REVOKE statement
cascading effect 813
collection privileges 816
database privileges 817
description 811
distinct type privileges 819
function privileges 821
JAR privileges 819
package privileges 826
plan privileges 828
procedure privileges 821
schema privileges 829
system privileges 831
table privileges 834
use privileges 837
view privileges 834

RIGHT function 258
RIGHT OUTER JOIN

example 315
FROM clause of subselect 308

rollback
description 11

ROLLBACK statement
description 839
example 840

ROUND function 260
ROUND_TIMESTAMP function 262
ROUTINEID column

SYSPARMS catalog table 1028
SYSROUTINES catalog table 1044

ROUTINENAME column
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051

ROUTINETYPE column
SYSPARMS catalog table 1028
SYSROUTINEAUTH catalog table 1043
SYSROUTINES catalog table 1044

row
deleting 688
description 4
inserting 778
selecting single row 845
updating 872

row ID
assignment of values 71
comparison of values 75
data type 60, 609

ROWID
data type

CREATE TABLE statement 609
description 60

function 264
ROWTYPE column of SYSPARMS catalog table 1028
RRDF (Remote Recovery Data Facility)

altering a table for 414
creating a table for 622

RTRIM function 265

Index X-31

run behavior for dynamic SQL statements 44
RUN OPTIONS clause

ALTER FUNCTION statement 358
ALTER PROCEDURE statement 387, 393
CREATE FUNCTION statement 500, 519
CREATE PROCEDURE statement 580, 593

RUNOPTS column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1049

S
sample table

description 4
sample user-defined functions 1099
savepoint

releasing 808
setting 842

savepoint identifier
naming convention 38

savepoint name
naming convention 38

SAVEPOINT statement
description 842
example 843

SBCS_CCSID column
SYSDATABASE catalog table 988
SYSTABLESPACE catalog table 1077

SBCS data
description 23, 49

SCALE column
SYSCOLUMNS catalog table 977
SYSDATATYPES catalog table 990
SYSFIELDS catalog table 996
SYSPARMS catalog table 1029

scale of numbers
assignments 67
comparisons 72
description 55
results of arithmetic operations 115

schema
description 3
privileges 765, 829

SCHEMA column
SYSDATATYPES catalog table 990
SYSPARMS catalog table 1028
SYSROUTINEAUTH catalog table 1043
SYSROUTINES catalog table 1044
SYSROUTINES_OPTS catalog table 1050
SYSROUTINES_SRC catalog table 1051
SYSSEQUENCES catalog table 1053
SYSTRIGGERS catalog table 1080

schema name
naming convention 37

schema processor 5, 553, 609, 610
SCHEMANAME column

SYSSCHEMAAUTH catalog table 1052
SCRATCHPAD clause

ALTER FUNCTION statement 354
CREATE FUNCTION statement 495, 515

SCRATCHPAD column of SYSROUTINES catalog
table 1045

SCRATCHPAD_LENGTH column of SYSROUTINES
catalog table 1045

SCREATOR column of SYSTABAUTH catalog
table 1062

SCROLL clause
DECLARE CURSOR statement 667

search condition
DELETE statement 690
description 144
HAVING clause 311
order of evaluation 144
UPDATE statement 876
WHERE clause 310

SECOND function 266
SECQTY clause

ALTER INDEX statement 372
ALTER TABLESPACE statement 425
CREATE INDEX statement 556
CREATE TABLESPACE statement 634

SECQTYI column
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART catalog table 1067
SYSTABLEPART_HIST catalog table 1068

SECTNO column
SYSPACKSTMT catalog table 1025
SYSSTMT catalog table 1055

SECTNOI column
SYSPACKSTMT catalog table 1026
SYSSTMT catalog table 1056

SECURITY clause
ALTER FUNCTION statement 357
ALTER PROCEDURE statement 386, 393
CREATE FUNCTION statement 500, 519
CREATE PROCEDURE statement 580, 593

SECURITY_IN column of LUNAMES catalog table 964
SECURITY_OUT column

IPNAMES catalog table 960
LUNAMES catalog table 964

SEGSIZE
clause of CREATE TABLESPACE statement 642
column of SYSTABLESPACE catalog table 1076

SELECT
clause as syntax component 301

SELECT INTO statement
description 845
example 847

SELECT privilege
GRANT statement 771
REVOKE statement 835

SELECT statement
description 321
dynamic invocation 335
example 327

SYSIBM.SYSCOLUMNS 1090
SYSIBM.SYSINDEXES 1091
SYSIBM.SYSTABAUTH 1091
SYSIBM.SYSTABLES 1089, 1095

fullselect 317

X-32 SQL Reference

SELECT statement (continued)
list

application 302
description 301
maximum number of elements 910
notation 302

static invocation 335
subselect 301

SELECTAUTH column of SYSTABAUTH catalog
table 1063

selecting
single row 845

self-referencing constraint 7
self-referencing row 7
self-referencing table 7
SENSITIVE clause

FETCH statement 740
SENTITIVE clause

DECLARE CURSOR statement 666
SEQNO column

SYSPACKLIST catalog table 1024
SYSPACKSTMT catalog table 1025
SYSROUTINES_SRC catalog table 1051
SYSSTMT catalog table 1055
SYSTRIGGERS catalog table 1080
SYSVIEWS catalog table 1085

SEQTYPE column of SYSSEQUENCES catalog
table 1053

SEQUENCEID column of SYSSEQUENCES catalog
table 1053

server
accessible 15
current 16
establishing with CONNECT 455
remote 14

SET clause of UPDATE statement 875
SET CONNECTION statement

description 848
example 849

SET CURRENT APPLICATION ENCODING SCHEME
statement

description 850
example 850

SET CURRENT DEGREE statement
description 851
example 851

SET CURRENT LOCALE LC_CTYPE statement
description 853
example 854

SET CURRENT OPTIMIZATION HINT statement
description 855
example 855

SET CURRENT PACKAGESET statement
description 856
example 857

SET CURRENT PRECISION statement
description 858
example 858

SET CURRENT RULES statement
description 859
example 859

SET CURRENT SQLID statement
description 860
example 861

SET host-variable assignment statement
description 862
example 863

SET NULL delete rule
ALTER TABLE statement 411
CREATE TABLE statement 617
description 7

SET PATH statement
description 865
example 867

SET QUERYNO clause of EXPLAIN statement 728
SET transition-variable assignment statement

description 868
example 870

SGCREATOR column of SYSVOLUMES catalog
table 1086

SGNAME column of SYSVOLUMES catalog
table 1086

SHARE
option of LOCK TABLE statement 786

shift-in character
convention xvi
LABEL ON statement 785
not truncated by assignments 69

shift-out character
convention xvi
LABEL ON statement 785

short identifier in SQL 33
short string column 51, 52
SHRLEVEL

column of SYSCOPY catalog table 985
SIGN function 267
sign-on exit routine

CURRENT SQLID special register 44, 90
SIGNAL SQLSTATE statement

description 871
example 871

SIN function 268
single-fetch clause

FETCH statement 744
single precision floating-point number 55
SINH function 269
SMALLINT function 270
SOME quantified predicate 131
SOURCE clause of CREATE FUNCTION

statement 529
SOURCEDSN column

SYSROUTINES_OPTS catalog table 1050
SOURCESCHEMA column

SYSDATATYPES catalog table 990
SYSROUTINES catalog table 1044

SOURCESPECIFIC column of SYSROUTINES catalog
table 1044

SOURCETYPE column of SYSDATATYPES catalog
table 990

SOURCETYPEID column
DATATYPES catalog table 990
SYSCOLUMNS catalog table 980

Index X-33

SOURCETYPEID column (continued)
SYSPARMS catalog table 1028
SYSSEQUENCES catalog table 1053

space character 31
SPACE column

SYSINDEXES catalog table 999
SYSINDEXPART catalog table 1002
SYSSTOGROUP catalog table 1058
SYSTABLEPART catalog table 1066
SYSTABLESPACE catalog table 1076

SPACE function 271
SPACEF column

SYSINDEXES catalog table 1000
SYSINDEXES_HIST catalog table 1001
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSTABLEPART_HIST catalog table 1068
SYSTABLES catalog table 1073
SYSTABLES_HIST catalog table 1074
SYTABLEPART catalog table 1067

SPCDATE column of SYSSTOGROUP catalog
table 1058

special character 31
special register

behavior in user-defined functions and stored
procedures 92

CURRENT APPLICATION ENCODING
SCHEME 85

CURRENT DATE 86
CURRENT_DATE 86
CURRENT DEGREE 86
CURRENT LOCALE LC_CTYPE 86
CURRENT OPTIMIZATION HINT 87
CURRENT PACKAGESET 87
CURRENT PATH 88
CURRENT PRECISION 88
CURRENT RULES 89
CURRENT SERVER 90
CURRENT SQLID 90
CURRENT TIME 90
CURRENT_TIME 90
CURRENT TIMESTAMP 91
CURRENT_TIMESTAMP 91
CURRENT TIMEZONE 91
description 82
USER 91
values in trigger 655

SPECIAL REGISTER column
SYSROUTINES catalog table 1049

SPECIFIC clause
CREATE FUNCTION statement 490, 511, 528, 539

SPECIFIC FUNCTION clause of ALTER FUNCTION
statement 349, 363

specific name
naming convention 37
unqualified name 40

SPECIFICNAME column
SYSPARMS catalog table 1028
SYSROUTINEAUTH catalog table 1043
SYSROUTINES catalog table 1044

SQL (Structured Query Language)
assignment operation 64
character 31
comparison operation 64
constants 79
data types

binary strings 53
casting 62
character strings 49
datetime 56
description 48
graphic strings 52
LOBs (large objects) 53
numbers 55
promotion 61
results of an operation 77
row ID 60

deferred embedded 2
delimited identifier 33
description 2
dynamic

description 2
statements allowed 913

identifier 32
interactive 3
JDBC 3
keywords, reserved 1097
limits 909
naming conventions 34
null value 48
ODBC (Open Database Connectivity) 3
Open Database Connectivity (ODBC) 3
ordinary identifier 31
rules 89
SQLJ 3
standard xvi, 150
static

description 2
token 31
value 48
variable names 34

SQL_DATA_ACCESS column of SYSROUTINES
catalog table 1046

SQL path 40, 106
SQL procedure

statements allowed 918
SQL procedure statement

assignment statement 889
CALL statement 891
CASE statement 893
compound statement 895
CONTINUE handler 898
EXIT handler 898
GET DIAGNOSTICS statement 901
GOTO statement 902
handler 898
handling errors 898
IF statement 904
LEAVE statement 905
LOOP statement 906
order of statements 898

X-34 SQL Reference

SQL procedure statement (continued)
REPEAT statement 907
WHILE statement 908

SQL scalar statements
ALTER FUNCTION 359

SQL statements
ALLOCATE CURSOR 338
ALTER DATABASE 340
ALTER FUNCTION 343
ALTER INDEX 366
ALTER PROCEDURE (external) 378
ALTER PROCEDURE (SQL) 389
ALTER STOGROUP 395
ALTER TABLE 398
ALTER TABLESPACE 419
ASSOCIATE LOCATORS 430
BEGIN DECLARE SECTION 433
CALL 434
catalog table restrictions 955
CLOSE 442
COMMENT 444
COMMIT 451
CONNECT (Type 1) 456
CONNECT (Type 2) 462
CONNECT differences 453
CONTINUE 885
CREATE ALIAS 466
CREATE AUXILIARY TABLE 468
CREATE DATABASE 471
CREATE DISTINCT TYPE 474
CREATE FUNCTION 481
CREATE FUNCTION (external scalar) 482
CREATE FUNCTION (external table) 504
CREATE FUNCTION (sourced) 521
CREATE FUNCTION (SQL scalar) 535
CREATE GLOBAL TEMPORARY TABLE 545
CREATE INDEX 550
CREATE PROCEDURE 566, 584
CREATE STOGROUP 596
CREATE SYNONYM 599
CREATE TABLE 601
CREATE TABLESPACE 629
CREATE TRIGGER 647
CREATE VIEW 658
DECLARE CURSOR

description 665
example 670

DECLARE GLOBAL TEMPORARY TABLE 672
DECLARE STATEMENT 682
DECLARE TABLE 683
DECLARE VARIABLE 685
DELETE

description 688
example 693

DESCRIBE 695
DESCRIBE CURSOR 702
DESCRIBE INPUT 704
DESCRIBE PROCEDURE 706
DROP 709
END DECLARE SECTION 721
EXECUTE 722

SQL statements (continued)
EXECUTE IMMEDIATE 725
EXPLAIN

description 727
example 738

FETCH
description 739
example 747

FOR 728
FREE LOCATOR 748
GRANT 749
HOLD LOCATOR 775
INCLUDE

description 776
example 777
SQLCA 928
SQLDA 942

INSERT
description 778
example 783

invocation 332
LABEL ON 784
LOCALE LC_CTYPE 853
LOCK TABLE 786
OPEN

description 788
example 791

PREPARE 792
RELEASE (connection) 805
RELEASE SAVEPOINT 808
remote execution

description 46
dynamic execution 47
static execution 47

RENAME 809
REVOKE 811
ROLLBACK 839
SAVEPOINT 842
SELECT 844
SELECT INTO 845
SET CONNECTION 848
SET CURRENT APPLICATION ENCODING

SCHEME 850
SET CURRENT DEGREE 851
SET CURRENT OPTIMIZATION HINT 855
SET CURRENT PRECISION 858
SET CURRENT RULES 859
SET CURRENT SQLID 860
SET host-variable assignment 862
SET PATH 865
SET transition-variable assignment 868
SIGNAL SQLSTATE 871
UPDATE

description 872
example 879

VALUES 882
VALUES INTO 883
WHENEVER 885

SQL variable name
naming convention 37

Index X-35

SQLCA (SQL communication area)
contents 923
entry changed by UPDATE 877
INCLUDE statement 776

SQLCABC field of SQLCA 923
SQLCAID field of SQLCA 923
SQLCODE

+100 336, 781, 788, 845, 885
-752 459
-900 460
-918 459
description 336
field of SQLCA 923

SQLD field of SQLDA 698, 933
SQLDA (SQL descriptor area)

clause of INCLUDE statement 776
contents 930, 932

SQLDABC field of SQLDA 698, 932
SQLDAID field of SQLDA 698, 932
SQLDATA field of SQLDA 699, 936
SQLDATAL field of SQLDA 938
SQLDATALEN field of SQLDA 938
SQLDATATYPE field of SQLDA 700
SQLDATATYPE-NAME field of SQLDA 939
SQLERRD(3) field of SQLCA 692
SQLERRD(n) field of SQLCA 923
SQLERRMC field of SQLCA 923
SQLERRML field of SQLCA 923
SQLERROR

clause of WHENEVER statement 885
column of SYSPACKAGE catalog table 1019

SQLERRP field of SQLCA 923
SQLIND field of SQLDA 699, 936
SQLJ 3
SQLLEN field of SQLDA 699, 936
SQLLONGL field of SQLDA 937
SQLLONGLEN field of SQLDA 700, 937
SQLN field of SQLDA

description 696, 933
SQLNAME field of SQLDA 699, 937
SQLRULES

column of SYSPLAN catalog table 1032
SQLSTATE

'02000' 781, 788, 845, 885
description 337
field of SQLCA 923
signaling 871

SQLTNAME field of SQLDA 939
SQLTYPE field of SQLDA

description 936
values 699, 939

SQLVAR
base 698
extended 698

SQLVAR field of SQLDA 698
SQLWARN6 field of SQLCA 119
SQLWARNING clause

WHENEVER statement 885
SQLWARNn field of SQLCA 923
SQRT function 272

SQTY column
SYSINDEXPART catalog table 1002
SYSTABLEPART catalog table 1065

standard, SQL (ANSI/ISO)
description xvi
SET CONNECTION statement 848
SQL-style comments 151
STDSQL precompiler option 150

START column of SYSSEQUENCES catalog
table 1053

START_RBA column of SYSCOPY catalog table 984
STARTDB privilege

GRANT statement 754
REVOKE statement 818

STARTDBAUTH column of SYSDBAUTH catalog
table 992

state
application process 456
SQL connection 18

statement
descriptions 2
operational form 2
preparation 2
source form 2

STATEMENT clause of DECLARE STATEMENT
statement 682

statement table
EXPLAIN statement 727

STATIC clause
DECLARE CURSOR statement 666

STATIC DISPATCH clause
ALTER FUNCTION statement 365
CREATE FUNCTION statement 542

static SQL
description 2, 332
invocation of SELECT statement 335

STATS privilege
GRANT statement 754
REVOKE statement 818

STATSAUTH column of SYSDBAUTH catalog
table 992

STATSTIME column
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSCOLSTATS catalog table 975
SYSCOLUMNS catalog table 979
SYSCOLUMNS_HIST catalog table 982
SYSINDEXES catalog table 999
SYSINDEXES_HIST catalog table 1001
SYSINDEXPART catalog table 1003
SYSINDEXPART_HIST catalog table 1005
SYSINDEXSTATS catalog table 1006
SYSINDEXSTATS_HIST catalog table 1007
SYSLOBSTATS catalog table 1015
SYSLOBSTATS_HIST catalog table 1016
SYSSTOGROUP catalog table 1058
SYSTABLEPART catalog table 1066
SYSTABLEPART_HIST catalog table 1068
SYSTABLES catalog table 1072
SYSTABLES_HIST catalog table 1074

X-36 SQL Reference

STATSTIME column (continued)
SYSTABLESPACE catalog table 1076
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

STATUS column
SYSPACKSTMT catalog table 1025
SYSSTMT catalog table 1055
SYSTABLES catalog table 1071
SYSTABLESPACE catalog table 1075

STAY RESIDENT clause
ALTER FUNCTION statement 357
ALTER PROCEDURE statement 386, 392
CREATE FUNCTION statement 499, 518
CREATE PROCEDURE statement 579, 593

STAYRESIDENT column
SYSPROCEDURES catalog table 1039
SYSROUTINES catalog table 1046

STD SQL LANGUAGE field of panel DSNTIP4 150
STDDEV function 165
STDDEV_SAMP function 166
STDSQL option

precompiler 150
STGROUP column of SYSDATABASE catalog

table 988
STMT column of SYSPACKSTMT catalog table 1025
STMTNO column

SYSPACKSTMT catalog table 1025
SYSSTMT catalog table 1055

STMTNOI column
SYSPACKSTMT catalog table 1026
SYSSTMT catalog table 1056

STNAME column of SYSTABAUTH catalog table 1062
STOGROUP

clause of ALTER DATABASE statement 341
clause of ALTER INDEX statement 371, 374
clause of ALTER STOGROUP statement 395
clause of ALTER TABLESPACE statement 424
clause of CREATE DATABASE statement 472
clause of CREATE INDEX statement 555, 557
clause of CREATE STOGROUP statement 596
clause of CREATE TABLESPACE statement 633,

635
clause of DROP statement 715

STOGROUP privilege
GRANT statement 773
REVOKE statement 837

STOPALL privilege
GRANT statement 768
REVOKE statement 832

STOPALLAUTH column of SYSUSERAUTH catalog
table 1082

STOPAUTH column of SYSDBAUTH catalog table 992
STOPDB privilege

GRANT statement 754
REVOKE statement 818

storage group, DB2
altering 395
creating 596
description 10
dropping 715
retrieving catalog information 1089

storage structure 10
stored procedure

altering
with ALTER PROCEDURE (external)

statement 378
with ALTER PROCEDURE (SQL) statement 389

CALL statement 434
creating

with CREATE PROCEDURE (external)
statement 566

with CREATE PROCEDURE (SQL)
statement 584

CURRENT PACKAGESET special register 857
dropping 714
invoking 434
name, unqualified 40
naming convention 36
privileges

granting 757
revoking 821

statements allowed 916
unqualified name 40

STORES clause of CREATE AUXILIARY TABLE
statement 469

STORNAME column
SYSINDEXPART catalog table 1002
SYSTABLEPART catalog table 1065

STORTYPE column
SYSINDEXPART catalog table 1002
SYSTABLEPART catalog table 1065

STOSPACE privilege
GRANT statement 768
REVOKE statement 832

STOSPACEAUTH column of SYSUSERAUTH catalog
table 1082

string
binary 53
character 49
comparison 73
constant 80
conversion 21
datetime values 57
delimiter

COBOL 148
controlling representation 148
SQL 148

description 20
fixed-length

description 51, 52
graphic 52
long column

description 51, 52, 54
limitations 302
use restrictions 54

numbers 56
short 51, 52
varying-length

description 51, 52
string delimiter precompiler option 148
STRIP function 265, 273
strong typing 61

Index X-37

STYPE column of SYSCOPY catalog table 985
SUBBYTE column of SYSSTRINGS catalog

table 1059
subquery

description 97
HAVING clause 311
WHERE clause 310

subselect
CREATE VIEW statement 301
description 301
example 312
INSERT statement 301

substitution byte 22
substitution character 70
SUBSTR function 275
SUBTYPE column

SYSDATATYPES catalog table 990
SYSPARMS catalog table 1029

SUM function 167
synonym

defining 599
description 41
dropping 715
naming convention 38
qualifying a column name 95

SYNONYM clause
CREATE SYNONYM statement 599
DROP statement 715

syntax diagrams, how to read xvii
SYSADM authority

GRANT statement 768
REVOKE statement 832

SYSADMAUTH column of SYSUSERAUTH catalog
table 1082

SYSCTRL authority
GRANT statement 768
REVOKE statement 832

SYSCTRLAUTH column of SYSUSERAUTH catalog
table 1082

SYSENTRIES column
SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1032

SYSMODENAME column of LUNAMES catalog
table 964

SYSOPR authority
GRANT statement 768
REVOKE statement 832

SYSOPRAUTH column of SYSUSERAUTH catalog
table 1082

system
limits 909

SYSTEM column
SYSPKSYSTEM catalog table 1030
SYSPLSYSTEM catalog table 1037

SYSTEM PATH clause
SET PATH statement 865

T
table

altering
ALTER TABLE statement 398

auxiliary table 4
base table 4
controlling changes 9
creating

CREATE AUXILIARY TABLE statement 468
CREATE GLOBAL TEMPORARY TABLE

statement 545
CREATE TABLE statement 601
DECLARE GLOBAL TEMPORARY TABLE

statement 672
description 4
designator 96
dropping

DROP statement 715
empty table 4
joining 308
obtaining information with DESCRIBE 695
privileges 770

revoking 834
renaming with RENAME statement 809
result table 4, 790
retrieving

catalog information 1089
comments 1095

sample table 4
temporary copy 790
temporary table 4

TABLE
column of SYSPARMS catalog table 1029

table check constraint
catalog information 1093
defining

ALTER TABLE statement 412
CREATE TABLE statement 618

deleting rows 692
inserting rows 782
SYSCHECKDEP catalog table 968
updating rows 878

TABLE_COLNO column of SYSPARMS catalog
table 1029

TABLE LIKE clause
CREATE FUNCTION statement 489, 510, 527
CREATE PROCEDURE statement 572, 589

TABLE_LOCATION function 1109
TABLE

clause of COMMENT statement 448
clause of DECLARE TABLE statement 683
clause of DROP statement 715
clause of LABEL ON statement 784

table name
naming convention 38
qualifying a column name 95
unqualified 39

TABLE_NAME function 1111
TABLE_SCHEMA function 1113
table space

altering with ALTER TABLESPACE statement 419

X-38 SQL Reference

table space (continued)
catalog table 950
creating

CREATE TABLESPACE statement 629
implicitly 620

description 10
dropping 715
naming convention 38

TABLESPACE
clause of ALTER TABLESPACE statement 419
clause of DROP statement 715

TABLESPACE privilege
GRANT statement 773
REVOKE statement 837

TABLESTATUS column of SYSTABLES catalog
table 1073

TAN function 277
TANH function 278
TBCREATOR column

SYSCOLUMNS catalog table 976
SYSCOLUMNS_HIST catalog table 981
SYSFIELDS catalog table 996
SYSINDEXES catalog table 998
SYSINDEXES_HIST catalog table 1001
SYSKEYCOLUSE catalog table 1013
SYSSYNONYMS catalog table 1061
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1072

TBNAME column
SYSAUXRELS catalog table 967
SYSCHECKDEP catalog table 968
SYSCHECKS catalog table 969
SYSCHECKS2 catalog table 970
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSCOLSTATS catalog table 975
SYSCOLUMNS catalog table 976
SYSCOLUMNS_HIST catalog table 981
SYSFIELDS catalog table 996
SYSFOREIGNKEYS catalog table 997
SYSINDEXES catalog table 998
SYSINDEXES_HIST catalog table 1001
SYSKEYCOLUSE catalog table 1013
SYSRELS catalog table 1041
SYSSYNONYMS catalog table 1061
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1072
SYSTRIGGERS catalog table 1080

TBOWNER column
SYSAUXRELS catalog table 967
SYSCHECKDEP catalog table 968
SYSCHECKS catalog table 969
SYSCHECKS2 catalog table 970
SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSCOLSTATS catalog table 975
SYSTRIGGERS catalog table 1080

TCREATOR column of SYSTABAUTH catalog
table 1062

TEMP database
creating 472

temporary
copy of table 790

temporary table
creating 545, 672
description 4

TEXT column
SYSSTMT catalog table 1055
SYSTRIGGERS catalog table 1080
SYSVIEWS catalog table 1085

three-part name
description 16

time
arithmetic 120
data type 57
duration 117
strings 58, 59

TIME
data type

CREATE TABLE statement 609
description 57

function 279
TIME FORMAT field of panel DSNTIP4 150
TIMEGRANTED column

SYSCOLAUTH catalog table 971
SYSDBAUTH catalog table 991
SYSPLANAUTH catalog table 1035
SYSRESAUTH catalog table 1042
SYSTABAUTH catalog table 1062
SYSUSERAUTH catalog table 1081

timestamp
arithmetic 121
data type 57
duration 118
strings 59

TIMESTAMP
column of SYSCOPY catalog table 985
column of SYSDATABASE catalog table 988
column of SYSDBRM catalog table 993
column of SYSPACKAGE catalog table 1017
column of SYSPACKAUTH catalog table 1022
column of SYSPACKLIST catalog table 1024
column of SYSRELS catalog table 1041
data type

CREATE TABLE statement 609
description 57

function 280
TIMESTAMP_FORMAT function 281
TIMESTAMP

column of SYSCHECKS catalog table 969
TNAME column of SYSCOLAUTH catalog table 971
TO

clause of CONNECT (Type 1) statement 456
clause of CONNECT (Type 2) statement 462
clause of GRANT statement 750

TO_CHAR function 292
TO_DATE function 281
TO SAVEPOINT clause

ROLLBACK statement 839
token in SQL 31

Index X-39

TPN column of LOCATIONS catalog table 961
TRACE privilege

GRANT statement 769
REVOKE statement 833

TRACEAUTH column of SYSUSERAUTH catalog
table 1082

TRACKMOD
clause of ALTER TABLESPACE statement 428
clause of CREATE TABLESPACE statement 637
column of SYSTABLEPART catalog table 1067

TRANSLATE built-in function 282
TRANSPROC column of SYSSTRINGS catalog

table 1059
TRANSTAB column of SYSSTRINGS catalog

table 1059
TRANSTYPE column of SYSSTRINGS catalog

table 1059
TRIGEVENT column of SYSTRIGGERS catalog

table 1080
trigger

catalog information 1094
creating 647
description 9
dropping 716
naming convention 38

TRIGGER clause
COMMENT statement 448
DROP statement 716

TRIGGER privilege
GRANT statement 771
REVOKE statement 835

TRIGGERAUTH column of SYSTABAUTH catalog
table 1063

TRIGTIME column of SYSTRIGGERS catalog
table 1080

TRUNC_TIMESTAMP function 286
TRUNCATE function 285
truncation

numbers 66
truth table 144
truth valued logic 144
TSNAME column

SYSCOPY catalog table 984
SYSTABLEPART catalog table 1065
SYSTABLEPART_HIST catalog table 1068
SYSTABLES catalog table 1070
SYSTABLES_HIST catalog table 1074
SYSTABSTATS catalog table 1078
SYSTABSTATS_HIST catalog table 1079

TTNAME column of SYSTABAUTH catalog table 1062
TYPE 2 clause of CREATE INDEX statement 552
TYPE column

SYSCOLDIST catalog table 972
SYSCOLDIST_HIST catalog table 973
SYSCOLDISTSTATS catalog table 974
SYSDATABASE catalog table 988
SYSPACKAGE catalog table 1021
SYSTABCONST catalog table 1064
SYSTABLES catalog table 1070
SYSTABLESPACE catalog table 1076
SYSVIEWS catalog table 1085

TYPE column (continued)
USERNAMES catalog table 1087

typed parameter marker 798
TYPENAME column

SYSCOLUMNS catalog table 980
SYSPARMS catalog table 1028

TYPESCHEMA column
SYSCOLUMNS catalog table 980
SYSPARMS catalog table 1028

U
UCASE function 287
UCS-2 22
UDF

catalog information 1094
unary operation 113
unconnected state 19
Unicode

definition 22
effect on DBCS characters 49

UNION clause
duplicate rows 317
fullselect 317
result data type 77

UNIQUE clause
ALTER TABLE statement 409
CREATE INDEX statement 552
CREATE TABLE statement 609, 616
SAVEPOINT statement 842

unique constraint 6
unique index

description 5
unique key 5
UNIQUERULE column of SYSINDEXES catalog

table 998
unit of recovery

COMMIT statement 451
description 11
ROLLBACK statement 839

unit of work
closes cursors 790
description 12
dynamic caching 802
ending 12, 451, 839
initiating 12
persistence of prepared statements 802
referring to prepared statements 792

universal time, coordinated (UTC) 84
unqualified object names 39
untyped parameter marker 798
UPDATE

clause of TRIGGER statement 649
statement

description 872
example 879

UPDATE privilege
GRANT statement 771
REVOKE statement 835

update rule 7, 877

X-40 SQL Reference

UPDATEAUTH column of SYSTABAUTH catalog
table 1063

UPDATECOLS column of SYSTABAUTH catalog
table 1062

UPDATES column of SYSCOLUMNS catalog
table 977

updating
rows in a table 872

UPPER function 287
USAGE privilege

GRANT statement 755
REVOKE statement 819

USEAUTH column of SYSRESAUTH catalog
table 1042

USER clause of SET PATH statement 866
user-defined function

altering with ALTER FUNCTION statement 343, 359
creating with CREATE FUNCTION statement 481,

482, 504, 521, 535
dropping 712
privileges 757

revoking 821
statements allowed 916

user-defined function (UDF)
description 104
external functions 104
inheriting special registers 92
invocation 106
name, unqualified 40
naming convention 36
resolution 106
sample

ALTDATE 1100
ALTTIME 1103
CURRENCY 1105
DAYNAME 1107
MONTHNAME 1108
TABLE_LOCATION 1109
TABLE_NAME 1111
TABLE_SCHEMA 1113
WEATHER 1115

sourced functions 104
table functions 104
unqualified name 40

USER special register 91
USERNAMES column

IPNAMES catalog table 960
LUNAMES catalog table 965

USING clause
ALTER INDEX statement 371, 373
ALTER TABLESPACE statement 423
CREATE INDEX statement 555, 557
CREATE TABLESPACE statement 632, 635
DESCRIBE statement 696
EXECUTE statement 722
OPEN statement 788
PREPARE statement 793

USING DESCRIPTOR clause
EXECUTE statement 722
OPEN statement 789

USING TYPE DEFAULTS clause
DECLARE GLOBAL TEMPORARY TABLE

statement 677
UTC (universal time, coordinated) 84
UTF-16 22
UTF-8 22

V
VALID column

SYSPACKAGE catalog table 1017
SYSPLAN catalog table 1031

VALIDATE
column of SYSPACKAGE catalog table 1017
column of SYSPLAN catalog table 1031

validation procedure 413
validation routine

VALIDPROC clause 413, 621
VALIDPROC clause

ALTER TABLE statement 413
CREATE TABLE statement 621

VALPROC column of SYSTABLES catalog table 1070
value

composite 5
SQL 48

VALUE function 77, 189, 219
VALUES clause

ALTER INDEX statement 375
CREATE INDEX statement 560
INSERT statement 780
VALUES INTO statement 883
VALUES statement 882

VALUES INTO statement
description 883
example 884

VALUES statement
description 882
example 882

VAR function 168
VAR_SAMP function 169
VARCHAR

data type
CREATE TABLE statement 607
description 51

function 288
VARCHAR_FORMAT function 292
VARGRAPHIC

data type
CREATE TABLE statement 608
description 52

function 293
variable

description 99
host

referencing 99
SQL syntax 99

referencing 99
SQL syntax 99

VARIABLE clause
DECLARE VARIABLE statement 685

VARIANCE function 168

Index X-41

VARIANCE_SAMP function 169
VARIANT clause

ALTER FUNCTION statement 362
ALTER PROCEDURE statement 379, 390
CREATE FUNCTION statement 485, 507, 537
CREATE PROCEDURE statement 569, 587

VCAT
clause of CREATE STOGROUP statement 597
USING clause

ALTER INDEX statement 371
ALTER TABLESPACE statement 423
CREATE INDEX statement 373, 555, 557
CREATE TABLESPACE statement 632, 635

VCATNAME column
SYSINDEXPART catalog table 1002
SYSSTOGROUP catalog table 1058
SYSTABLEPART catalog table 1065

VERSION
clause of DROP statement 714
column of SYSDBRM catalog table 993
column of SYSPACKAGE catalog table 1019
column of SYSPACKSTMT catalog table 1025

version-id naming convention 39
version identificaton, current server 458, 465
view

creating
CREATE VIEW statement 658

description 10
dropping

description 716
name, unqualified 39
naming convention 39
privileges 834

granting 770
unqualified name 39
using

adding comments 1095
obtaining information with DESCRIBE 695
read-only 662
retrieving catalog information 1091
retrieving comments 1095

VIEW clause
CREATE VIEW statement 658
DROP statement 716

VOLID column of SYSVOLUMES catalog table 1086
VOLUMES clause of CREATE STOGROUP

statement 596
VSAM (virtual storage access method)

catalog 557

W
WEATHER function 1115
WEEK function 296
WEEK_ISO function 297
WHEN clause of TRIGGER statement 651
WHENEVER statement

description 885
example 886

WHERE clause
DELETE statement 690

WHERE clause (continued)
description 310
search condition 310
UPDATE statement 876

WHILE statement
example 908
SQL procedure 908

WITH CHECK OPTION clause of CREATE VIEW
statement 661

WITH clause
DELETE statement 691
INSERT statement 781
SELECT INTO statement 846
select-statement 325

WITH COMPARISONS clause of CREATE DISTINCT
TYPE statement 477

WITH GRANT OPTION clause of GRANT
statement 750

WITH HOLD clause of DECLARE CURSOR
statement 667

WITH HOLD clause of PREPARE statement 795
WITH PROCEDURE clause of ASSOCIATE LOCATORS

statement 430
WITH RETURN clause of DECLARE CURSOR

statement 668
WITH RETURN clause of PREPARE statement 796
WITH RR|RS|CS|UR clause 846
WLM_ENV column clause of SYSPROCEDURES

catalog table 1039
WLM_ENV_FOR_NESTED column of SYSROUTINES

catalog table 1046
WLM ENVIRONMENT clause

ALTER FUNCTION statement 356
ALTER PROCEDURE statement 385, 391
CREATE FUNCTION statement 499, 518
CREATE PROCEDURE statement 578, 592

WLM_ENVIRONMENT column of SYSROUTINES
catalog table 1046

work file database
creating 472

WORKAREA column of SYSFIELDS catalog table 996

Y
YEAR function 298

X-42 SQL Reference

Readers’ Comments — We’d Like to Hear from You

DB2 Universal Database for OS/390 and z/OS
SQL Reference
Version 7

Publication No. SC26-9944-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9944-01

SC26-9944-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department HHX/H3
PO BOX 49023
SAN JOSE CA
U. S. A.
95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5675-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9944-01

	Contents
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Product terminology and citations
	Conventions for describing mixed data values

	SQL standards
	How to read the syntax diagrams
	How to send your comments

	Summary of changes to this book
	Chapter 1. DB2 concepts
	Structured query language
	Static SQL
	Dynamic SQL
	Deferred embedded SQL
	Interactive SQL
	DB2 Open Database Connectivity (ODBC)
	DB2 access for Java (JDBC and SQLJ)

	Schemas
	Tables
	Indexes
	Keys
	Unique keys
	Primary keys
	Parent keys
	Foreign keys

	Constraints
	Unique constraints
	Referential constaints
	Check constraints

	Triggers
	Storage structures
	Storage groups
	Databases
	Catalog
	Views
	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Unit of recovery
	Rolling back work
	Rolling back all changes
	Rolling back selected changes using savepoints

	Packages and application plans
	Distributed data
	DRDA access
	DB2 private protocol access
	Connection management for DRDA access and DB2 private protocol
	SQL connection states
	Application process connection states
	DB2 private connections
	When a connection is ended

	Character conversion
	Character sets and code pages
	System CCSIDs
	Expanding conversions
	Contracting conversions
	Other considerations for using UTF-8 and UTF-16

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	Ordinary identifiers
	Delimited identifiers
	Short and long identifiers

	Location identifiers
	Host identifiers

	Naming conventions
	Qualification of unqualified object names
	Unqualified alias, index, table, and view names
	Unqualified data type, function, and procedure names

	Schemas and the SQL path
	Aliases and synonyms
	Authorization IDs and authorization-names
	Authorization IDs and schema names
	Authorization IDs and statement preparation
	Authorization IDs and dynamic SQL
	Authorization IDs and remote execution
	DRDA access with DB2 for OS/390 and z/OS only
	DRDA access with a server or requester other than DB2
	DB2 private protocol access
	Authorization ID translations
	Other security measures

	Data types
	Character strings
	The effect of encoding schemes on DBCS characters in mixed strings
	Examples
	DB2 and SBCS defaults
	DB2 and DBCS defaults
	Fixed-length character strings
	Varying-length character strings
	Character string host variables

	Graphic strings
	Fixed-length graphic strings
	Varying-length graphic strings
	Graphic string host variables

	Binary strings
	Large objects (LOBs)
	Restrictions using long strings
	Numbers
	Small integer (SMALLINT)
	Large integer (INTEGER)
	Single precision floating-point (REAL)
	Double precision floating-point (DOUBLE or FLOAT)
	Decimal (DECIMAL or NUMERIC)
	String representations of numbers
	Numeric host variables

	Datetime values
	Date
	Time
	Timestamp
	String representations of datetime values
	Restrictions on the use of local datetime formats

	Row ID values
	Distinct types

	Promotion of data types
	Casting between data types
	Assignment and comparison
	Numeric assignments
	Decimal or integer to floating-point
	Floating-point or decimal to integer
	Decimal to decimal
	Integer to decimal
	Floating-point to floating-point
	Floating-point to decimal
	To COBOL integers

	String assignments
	Storage assignment
	Retrieval Assignment
	Assignments involving mixed data strings
	Assignments involving C NUL-terminated strings
	Conversion rules for string assignment

	Datetime assignments
	Row ID assignments
	Distinct type assignments
	Numeric comparisons
	String comparisons
	String comparisons with field procedures
	Conversion rules for string comparison

	Datetime comparisons
	Row ID comparisons
	Distinct type comparisons

	Rules for result data types
	String operands
	Binary string operands
	Numeric operands
	Datetime operands
	Row ID operands
	Distinct type operands
	Nullable attribute of a result

	Constants
	Integer constants
	Floating-point constants
	Decimal constants
	Character string constants
	Datetime constants
	Graphic string constants

	Special registers
	General rules for special registers
	CURRENT APPLICATION ENCODING SCHEME
	CURRENT DATE
	CURRENT DEGREE
	CURRENT LOCALE LC_CTYPE
	CURRENT OPTIMIZATION HINT
	CURRENT PACKAGESET
	CURRENT PATH
	CURRENT PRECISION
	CURRENT RULES
	CURRENT SERVER
	CURRENT SQLID
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	USER
	Inheriting special registers in a user-defined function or a stored procedure

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Column name qualifiers in correlated references
	Resolution of column name qualifiers and column names

	References to variables
	References to host variables
	Host variables in dynamic SQL
	References to LOB host variables
	References to LOB locator variables
	References to stored procedure result sets
	References to result set locator variables

	Host structures in PL/I, C, and COBOL
	Functions
	Types of functions
	Function resolution
	Method of finding the best fit
	SQL path considerations for built-in functions

	Function invocation

	Expressions
	Without operators
	With the concatenation operator
	With arithmetic operators
	Arithmetic with two integer operands
	Arithmetic with an integer and a decimal operand
	Arithmetic with two decimal operands
	Decimal addition and subtraction
	Decimal multiplication
	Decimal division

	Arithmetic with floating-point operands
	Datetime operands and durations
	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	CASE expressions
	CAST specification

	Predicates
	Basic predicate
	Quantified predicate
	BETWEEN predicate
	EXISTS predicate
	IN predicate
	LIKE predicate
	Examples

	NULL predicate

	Search conditions
	Options affecting SQL
	Precompiler options for dynamic statements
	Decimal point representation
	Apostrophes and quotation marks in string delimiters
	Katakana characters for EBCDIC
	Mixed data in character strings
	Formatting of datetime strings
	SQL standard language
	Positioned updates of columns

	Chapter 3. Built-in functions
	Column functions
	AVG
	COUNT
	COUNT_BIG
	MAX
	MIN
	STDDEV or STDDEV_POP
	STDDEV_SAMP
	SUM
	VARIANCE, VAR, or VAR_POP
	VARIANCE_SAMP or VAR_SAMP

	Scalar functions
	ABS or ABSVAL
	ACOS
	ADD_MONTHS
	ASIN
	ATAN
	ATANH
	ATAN2
	BLOB
	CCSID_ENCODING
	CEIL or CEILING
	CHAR
	CLOB
	COALESCE
	CONCAT
	COS
	COSH
	DATE
	DAY
	DAYOFMONTH
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DECIMAL or DEC
	DEGREES
	DIGITS
	DOUBLE or DOUBLE_PRECISION
	EXP
	FLOAT
	FLOOR
	GRAPHIC
	HEX
	HOUR
	IDENTITY_VAL_LOCAL
	Notes
	Examples

	IFNULL
	INSERT
	INTEGER or INT
	JULIAN_DAY
	LAST_DAY
	LCASE or LOWER
	LEFT
	LENGTH
	LN
	LOCATE
	LOG10
	LTRIM
	MAX
	MICROSECOND
	MIDNIGHT_SECONDS
	MIN
	MINUTE
	MOD
	MONTH
	MULTIPLY_ALT
	NEXT_DAY
	NULLIF
	POSSTR
	POWER
	QUARTER
	RADIANS
	RAISE_ERROR
	RAND
	REAL
	REPEAT
	REPLACE
	RIGHT
	ROUND
	ROUND_TIMESTAMP
	Notes
	Example

	ROWID
	RTRIM
	SECOND
	SIGN
	SIN
	SINH
	SMALLINT
	SPACE
	SQRT
	STRIP
	SUBSTR
	TAN
	TANH
	TIME
	TIMESTAMP
	TIMESTAMP_FORMAT
	TRANSLATE
	TRUNCATE or TRUNC
	TRUNC_TIMESTAMP
	UCASE or UPPER
	VARCHAR
	VARCHAR_FORMAT
	VARGRAPHIC
	WEEK
	WEEK_ISO
	YEAR

	Chapter 4. Queries
	Authorization
	subselect
	select-clause
	from-clause
	table-spec
	joined-table
	join-condition
	Join operations

	where-clause
	group-by-clause
	having-clause
	Examples of subselects

	fullselect
	Character conversion in unions and concatenations
	Selecting the result CCSID
	Examples of fullselects

	select-statement
	order-by-clause
	read-only-clause
	update-clause
	optimize-for-clause
	with-clause
	queryno-clause
	fetch-first-clause
	Examples of select statements

	Chapter 5. Statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a SELECT statement
	Dynamic invocation of a SELECT statement
	Interactive invocation
	Checking the execution of SQL statements
	SQLCODE
	SQLSTATE

	ALLOCATE CURSOR
	ALTER DATABASE
	ALTER FUNCTION (external scalar)
	ALTER FUNCTION (SQL scalar)
	ALTER INDEX
	ALTER PROCEDURE (external)
	ALTER PROCEDURE (SQL)
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLESPACE
	ASSOCIATE LOCATORS
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	COMMENT
	COMMIT
	CONNECT
	CONNECT (Type 1)
	CONNECT (Type 2)
	CREATE ALIAS
	CREATE AUXILIARY TABLE
	CREATE DATABASE
	CREATE DISTINCT TYPE
	CREATE FUNCTION
	CREATE FUNCTION (external scalar)
	CREATE FUNCTION (external table)
	CREATE FUNCTION (sourced)
	CREATE FUNCTION (SQL scalar)
	CREATE GLOBAL TEMPORARY TABLE
	CREATE INDEX
	CREATE PROCEDURE (external)
	CREATE PROCEDURE (SQL)
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TRIGGER
	CREATE VIEW
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DECLARE STATEMENT
	DECLARE TABLE
	DECLARE VARIABLE
	DELETE
	DESCRIBE (prepared statement or table)
	DESCRIBE CURSOR
	DESCRIBE INPUT
	DESCRIBE PROCEDURE
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	FREE LOCATOR
	GRANT
	GRANT (collection privileges)
	GRANT (database privileges)
	GRANT (distinct type or JAR privileges)
	GRANT (function or procedure privileges)
	GRANT (package privileges)
	GRANT (plan privileges)
	GRANT (schema privileges)
	GRANT (system privileges)
	GRANT (table or view privileges)
	GRANT (use privileges)
	HOLD LOCATOR
	INCLUDE
	INSERT
	LABEL ON
	LOCK TABLE
	OPEN
	PREPARE
	RELEASE (connection)
	RELEASE SAVEPOINT
	RENAME
	REVOKE
	REVOKE (collection privileges)
	REVOKE (database privileges)
	REVOKE (distinct type or JAR privileges)
	REVOKE (function or procedure privileges)
	REVOKE (package privileges)
	REVOKE (plan privileges)
	REVOKE (schema privileges)
	REVOKE (system privileges)
	REVOKE (table or view privileges)
	REVOKE (use privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET CONNECTION
	SET CURRENT APPLICATION ENCODING SCHEME
	SET CURRENT DEGREE
	SET CURRENT LOCALE LC_CTYPE
	SET CURRENT OPTIMIZATION HINT
	SET CURRENT PACKAGESET
	SET CURRENT PRECISION
	SET CURRENT RULES
	SET CURRENT SQLID
	SET host-variable assignment
	SET PATH
	SET transition-variable assignment
	SIGNAL SQLSTATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER

	Chapter 6. SQL procedure statements
	SQL-procedure-statement
	assignment-statement
	CALL statement
	CASE statement
	compound-statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	LEAVE statement
	LOOP statement
	REPEAT statement
	WHILE statement

	Appendix A. Limits in DB2 for OS/390 and z/OS
	Appendix B. Characteristics of SQL statements in DB2 for OS/390 and z/OS
	Actions allowed on SQL statements
	SQL statements allowed in external functions and stored procedures
	SQL statements allowed in SQL procedures

	Appendix C. SQLCA and SQLDA
	SQL communication area (SQLCA)
	Description of fields
	The included SQLCA
	The REXX SQLCA

	SQL descriptor area (SQLDA)
	Field descriptions
	The SQLDA Header
	SQLVAR entries

	Unrecognized and unsupported SQLTYPES
	The included SQLDA
	Identifying an SQLDA in C or C
	The REXX SQLDA

	Appendix D. DB2 catalog tables
	Table spaces and indexes
	SQL statements allowed on the catalog
	Reorganizing the catalog

	New and changed catalog tables
	SYSIBM.IPNAMES table
	SYSIBM.LOCATIONS table
	SYSIBM.LULIST table
	SYSIBM.LUMODES table
	SYSIBM.LUNAMES table
	SYSIBM.MODESELECT table
	SYSIBM.SYSAUXRELS table
	SYSIBM.SYSCHECKDEP table
	SYSIBM.SYSCHECKS table
	SYSIBM.SYSCHECKS2 table
	SYSIBM.SYSCOLAUTH table
	SYSIBM.SYSCOLDIST table
	SYSIBM.SYSCOLDIST_HIST table
	SYSIBM.SYSCOLDISTSTATS table
	SYSIBM.SYSCOLSTATS table
	SYSIBM.SYSCOLUMNS table
	SYSIBM.SYSCOLUMNS_HIST table
	SYSIBM.SYSCONSTDEP table
	SYSIBM.SYSCOPY table
	SYSIBM.SYSDATABASE table
	SYSIBM.SYSDATATYPES table
	SYSIBM.SYSDBAUTH table
	SYSIBM.SYSDBRM table
	SYSIBM.SYSDUMMY1 table
	SYSIBM.SYSFIELDS table
	SYSIBM.SYSFOREIGNKEYS table
	SYSIBM.SYSINDEXES table
	SYSIBM.SYSINDEXES_HIST table
	SYSIBM.SYSINDEXPART table
	SYSIBM.SYSINDEXPART_HIST table
	SYSIBM.SYSINDEXSTATS table
	SYSIBM.SYSINDEXSTATS_HIST table
	SYSIBM.SYSJARCLASS_SOURCE table
	SYSIBM.SYSJARCONTENTS table
	SYSIBM.SYSJARDATA table
	SYSIBM.SYSJAROBJECTS table
	SYSIBM.SYSJAVAOPTS table
	SYSIBM.SYSKEYCOLUSE table
	SYSIBM.SYSKEYS table
	SYSIBM.SYSLOBSTATS table
	SYSIBM.SYSLOBSTATS_HIST table
	SYSIBM.SYSPACKAGE table
	SYSIBM.SYSPACKAUTH table
	SYSIBM.SYSPACKDEP table
	SYSIBM.SYSPACKLIST table
	SYSIBM.SYSPACKSTMT table
	SYSIBM.SYSPARMS table
	SYSIBM.SYSPKSYSTEM table
	SYSIBM.SYSPLAN table
	SYSIBM.SYSPLANAUTH table
	SYSIBM.SYSPLANDEP table
	SYSIBM.SYSPLSYSTEM table
	SYSIBM.SYSPROCEDURES table
	SYSIBM.SYSRELS table
	SYSIBM.SYSRESAUTH table
	SYSIBM.SYSROUTINEAUTH table
	SYSIBM.SYSROUTINES table
	SYSIBM.SYSROUTINES_OPTS table
	SYSIBM.SYSROUTINES_SRC table
	SYSIBM.SYSSCHEMAAUTH table
	SYSIBM.SYSSEQUENCES table
	SYSIBM.SYSSEQUENCESDEP table
	SYSIBM.SYSSTMT table
	SYSIBM.SYSSTOGROUP table
	SYSIBM.SYSSTRINGS table
	SYSIBM.SYSSYNONYMS table
	SYSIBM.SYSTABAUTH table
	SYSIBM.SYSTABCONST table
	SYSIBM.SYSTABLEPART table
	SYSIBM.SYSTABLEPART_HIST table
	SYSIBM.SYSTABLES table
	SYSIBM.SYSTABLES_HIST table
	SYSIBM.SYSTABLESPACE table
	SYSIBM.SYSTABSTATS table
	SYSIBM.SYSTABSTATS_HIST table
	SYSIBM.SYSTRIGGERS table
	SYSIBM.SYSUSERAUTH table
	SYSIBM.SYSVIEWDEP table
	SYSIBM.SYSVIEWS table
	SYSIBM.SYSVOLUMES table
	SYSIBM.USERNAMES table

	Appendix E. Using the catalog in database design
	Retrieving catalog information about DB2 storage groups
	Retrieving catalog information about a table
	Retrieving catalog information about aliases
	Retrieving catalog information about columns
	Retrieving catalog information about indexes
	Retrieving catalog information about views
	Retrieving catalog information about authorizations
	Retrieving catalog information about parent keys
	Retrieving catalog information about foreign keys
	Retrieving catalog information about check pending
	Retrieving catalog information about table check constraints
	Retrieving catalog information about LOBs
	Retrieving catalog information about user-defined functions and stored procedures
	Retrieving catalog information about triggers
	Retrieving catalog information about distinct types
	Adding and retrieving comments
	Verifying the accuracy of the database definition

	Appendix F. SQL reserved words
	Appendix G. Sample user-defined functions
	ALTDATE
	ALTTIME
	CURRENCY
	DAYNAME
	MONTHNAME
	TABLE_LOCATION
	TABLE_NAME
	TABLE_SCHEMA
	WEATHER

	Appendix H. Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

